INTRODUCING GROUND EFFECT INTO PERSONAL WATERCRAFT
ABSTRACT

This applied design research focuses on the introduction of ground effect into personal watercraft as a way of improving the efficiency and performance of the craft, while also creating a new user experience. Ground effect is an aerodynamic phenomenon experienced by bodies flying in close proximity to a surface and results in a significant increase in the lift to drag ratio. It is used by race boats as a means of improving performance.

The scope of this research will be to investigate how ground effect may be implemented into personal watercraft to help increase their efficiency. This will be used as a framework for designing a revised form of personal watercraft. The opportunity to redesign a craft (from the ground up) provides a product offering a level of market differentiation. As such, all aspects will be assessed for their impact on the efficiency, performance and user experience.

The current paradigm in personal watercraft design is based upon a saddle-style seat, like that of a motorbike. This arrangement does not actively promote a shared user experience, resulting in personal watercraft use being perceived as an anti-social activity. Research conducted into the design of a new general arrangement that promotes more interaction between the driver and passenger while using the product is investigated.

The outcome of this research is a design that has performance comparable to the existing market leaders, while having less impact on the environment. Moreover, it will be a design that confronts the social issues surrounding this adrenalin-inducing pastime.
ACKNOWLEDGEMENTS

This project would not have been possible without the help and support of my friends and family. Throughout the project I had many people who lent a hand or offered guidance and support.

My biggest thank you goes to my parents; without their love and support I would not be where I am today. Thank you for your faith and encouragement.

Oliver Neuland, my supervisor for the project, deserves a huge thank you: the advice and guidance he offered throughout the project was invaluable. Thanks to my girl friend Clare Saunders-Lee, my rock, for sticking by my side and helping me keep perspective when things were down. Thanks to Resene Santano and Plastic Design Technologies for their continued support of not just me but Massey University students in general. You make a lot of projects possible. I thank Richard Karn for offering advice and helping to give the project direction in the early stages. Lastly, thanks to Bruce Woods, who encouraged and gave me the confidence to study my masters.
Fig. 4