Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
AMORPHOUS LACTOSE CRYSTALLISATION KINETICS

A thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Bioprocess Engineering at Massey University, Manawatu, New Zealand.

Zachary Clark
2012
Abstract

The crystallisation kinetics of amorphous lactose were investigated at different relative humidity and temperature combinations. Relative humidity was controlled by placing the amorphous lactose in sealed pans containing saturated salt solutions. These pans were stored, for defined time periods, at temperatures ranging from 10-40°C above the glass transition temperature ($T_g$). The degree to which crystallisation had occurred was measured using both dynamic vapour sorption and isothermal microcalorimetry. The results showed crystallisation to be an all or nothing event, such that a direct measurement of the kinetics could not be obtained. This is not well accounted for by Avrami type models. It is proposed that the rapid crystallisation could be an autocatalytic effect as moisture is released during crystallisation, or a showering event as is seen in highly supersaturated lactose solutions. The latter is supported by the observation that experiments using Supertab (a blend of crystalline and amorphous lactose) show crystallisation at lower $T_g$ conditions than is required for the crystallisation of 100% amorphous lactose.

As part of confirming the equilibrium time for amorphous lactose particles the diffusion rates were investigated. The diffusivity of water through lactose was estimated by fitting a model to the DVS results. Diffusivities of $3.4 \cdot 10^{-13}$, $1.4 \cdot 10^{-14}$, $7.6 \cdot 10^{-12}$ and $3.6 \cdot 10^{-13}$ m$^2$s$^{-1}$ were found for Supertab, spray dried, freeze dried and milled lactose, respectively.
Acknowledgments

Special thanks to my primary supervisor, Tony Paterson, for his help and support. I was fortunate to have him as a supervisor. Thanks also to Raymond Joe at Fonterra, for his help and use of the lab. Also, Tony Styles for his backing. Thanks to Jeremy Mcleod at Hilmar as well, for his insights and support. I appreciate everyone’s time and efforts for the meetings and jobs dealt with due to the project.

Previous research, mainly by Tony Paterson, John Bronlund and Georg Ripberger, was also very helpful.

The project was funded with the support of Fonterra NZ and Hilmar Cheese. I am grateful to both companies for doing so.
# Table of Contents

ABSTRACT ............................................................................................................................... III

ACKNOWLEDGMENTS ......................................................................................................... IV

TABLE OF CONTENTS ............................................................................................................ V

LIST OF FIGURES ................................................................................................................ VIII

1 INTRODUCTION ............................................................................................................ 10

2 LITERATURE REVIEW ................................................................................................ 11

2.1 Lactose ......................................................................................................................... 11

2.2 Lactose Production ....................................................................................................... 12

2.3 Lactose Forms ................................................................................................................ 13

2.3.1 Crystalline Lactose ..................................................................................................... 13

2.3.2 Amorphous Lactose .................................................................................................. 13

2.3.3 Partially Amorphous Lactose .................................................................................... 13

2.4 Glass Transition Temperature ..................................................................................... 14

2.5 Amorphous Lactose ...................................................................................................... 14

2.5.1 Diffusivity of lactose types ......................................................................................... 15

2.5.2 Sticking & Caking ........................................................................................................ 16

2.6 Moisture Isotherms for amorphous lactose ................................................................. 17

2.7 Quantification of amorphous lactose ...................................................................... 20

2.7.1 X-ray Powder Diffraction (XRPD) ........................................................................... 20

2.7.2 Infra-Red (IR) ............................................................................................................ 20

2.7.3 Raman ....................................................................................................................... 20

2.7.4 Solution Calorimetry ................................................................................................. 20

2.7.5 Thermal Gravimetric Analysis (TGA) ....................................................................... 21

2.7.6 Differential Scanning Calorimetry (DSC) ................................................................. 21

2.7.7 Isothermal Microcalorimetry (IMC) ......................................................................... 21

2.7.8 Gravimetric Methods ............................................................................................... 23

2.7.9 Isotherm Method ...................................................................................................... 23

2.7.10 Relative Humidity ................................................................................................. 23

2.7.11 Glass rod method ................................................................................................... 23

2.8 Amorphous lactose crystallisation .............................................................................. 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.1 Products of amorphous lactose crystallisation</td>
<td>24</td>
</tr>
<tr>
<td>2.8.2 Diffusion</td>
<td>25</td>
</tr>
<tr>
<td>2.8.3 Crystallisation kinetics</td>
<td>26</td>
</tr>
<tr>
<td>2.9 Fluidisation</td>
<td>32</td>
</tr>
<tr>
<td>2.10 Possible Methods</td>
<td>34</td>
</tr>
<tr>
<td>2.11 Conclusion</td>
<td>36</td>
</tr>
<tr>
<td>3 METHOD DEVELOPMENT</td>
<td>37</td>
</tr>
<tr>
<td>3.1 Experimental Range</td>
<td>37</td>
</tr>
<tr>
<td>3.1.1 Mass and Energy Balance of Industrial Process</td>
<td>37</td>
</tr>
<tr>
<td>3.2 Preparing Amorphous Lactose</td>
<td>42</td>
</tr>
<tr>
<td>3.2.1 Freeze drying</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2 Spray drying</td>
<td>43</td>
</tr>
<tr>
<td>3.3 Measuring amorphous lactose</td>
<td>45</td>
</tr>
<tr>
<td>3.3.1 Thermal Activity Monitor (TAM)</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2 TAM Method</td>
<td>45</td>
</tr>
<tr>
<td>3.3.3 TAM Results</td>
<td>46</td>
</tr>
<tr>
<td>3.3.4 Dynamic Vapour Sorption (DVS)</td>
<td>49</td>
</tr>
<tr>
<td>3.3.5 Method</td>
<td>50</td>
</tr>
<tr>
<td>3.4 Prediction of Crystallisation times</td>
<td>51</td>
</tr>
<tr>
<td>3.5 Control of Experimental Parameters</td>
<td>52</td>
</tr>
<tr>
<td>3.5.1 Temperature Control</td>
<td>52</td>
</tr>
<tr>
<td>3.5.2 Humidity</td>
<td>53</td>
</tr>
<tr>
<td>3.6 Experimental Procedure</td>
<td>55</td>
</tr>
<tr>
<td>3.7 Conclusion</td>
<td>57</td>
</tr>
<tr>
<td>4 DIFFUSIVITY</td>
<td>58</td>
</tr>
<tr>
<td>4.1 Method</td>
<td>58</td>
</tr>
<tr>
<td>4.2 Results</td>
<td>59</td>
</tr>
<tr>
<td>4.3 Conclusion</td>
<td>64</td>
</tr>
<tr>
<td>5 AMORPHOUS LACTOSE CRYSTALLISATION KINETICS</td>
<td>65</td>
</tr>
<tr>
<td>5.1 Milled lactose</td>
<td>65</td>
</tr>
<tr>
<td>5.2 Amorphous Lactose</td>
<td>66</td>
</tr>
<tr>
<td>5.2.1 Variable T–T&lt;sub&gt;g&lt;/sub&gt;</td>
<td>66</td>
</tr>
</tbody>
</table>
# Table of Contents

5.2.2  Constant $T - T_g$ ............................................................................................................................ 67  
5.2.3  Supertab ........................................................................................................................................ 69  

5.3  Conclusion ...................................................................................................................................... 70  

6  CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK ...................................................... 71  
6.1  Suggestions for future work ........................................................................................................... 72  

7  REFERENCES .................................................................................................................................. 73  

8  APPENDICES .................................................................................................................................... 78  
8.1  Sensor data...................................................................................................................................... 78  
8.1.1  RH heating peak ........................................................................................................................ 78  
8.1.2  Heating and cooling rates ......................................................................................................... 78  
8.2  XRD data....................................................................................................................................... 79  
8.3  Code for User Defined Functions ................................................................................................. 80  
8.3.1  Diffusion Total ......................................................................................................................... 80  
8.3.2  Diffusion Total with Particle Size Distribution ......................................................................... 81
List of Figures

Figure 2-1: α-Lactose Structure (Roelfsema, Kuster, Heslinga, Pluim, & Verhage, 2000). .......... 11
Figure 2-2: Process flow diagram for manufacture of edible grade α-lactose monohydrate (Paterson, 2009). .............................................................. 12
Figure 2-3: Micrograph of spray dried lactose (220°C gas inlet) containing both amorphous and crystalline regions (Whiteside et al., 2008). ................................................................. 14
Figure 2-4: Free specific volume in crystalline and amorphous structures against temperature (Palzer, 2010). ........................................................................................................................................... 15
Figure 2-5: Water activity state diagram for amorphous lactose. Dotted line and transition zone drawn as guide only (Thomsen et al., 2005). ................................................................. 17
Figure 2-6: Amorphous lactose moisture isotherm (Foster 2000). ........................................................ 19
Figure 2-7: Amorphous lactose crystallisation at 55% RH and 25°C (Burnett et al., 2006). .............. 25
Figure 2-8: Crystallisation stages in spray dryer (Langrish, 2008).................................................................................................................. 27
Figure 2-9: Experimental ratio of the rate of change in crystallinity (k) to the rate of change at T_g (k at T_g) for spray dried lactose, along with the ratio from the WLF equation as functions of T−T_g (Langrish, 2008). ................................................................. 30
Figure 2-10: Time for 90% crystallisation versus T−T_g. ............................................................................ 31
Figure 2-11: Time for 90% crystallisation versus T−T_g including Ibach & Kind data. ............. 32
Figure 2-12: Upper limits for fluidisation for process air under lactose (Yazdanpanah & Langrish, 2011). .............................................................................................................. 34
Figure 3-1: Process flow diagram of lactose plant drying system. .............................................. 38
Figure 3-2: Spray dryer flowrate against T−T_g. ............................................................................ 44
Figure 3-3: Closed ampoule with saturated salt solution (photograph: Thermometric), Thermal Activity Monitor (TAM). ......................................................................................... 46
Figure 3-4: TAM results for spray dried Supertab. ........................................................................... 47
Figure 3-5: Amorphous lactose sample mass against energy released. ....................................... 48
Figure 3-6: HIDEN IGA-Sorp with mesh sample holder visible and chamber lowered. Left: Close up of sample holder........................................................................................................ 50
Figure 3-7: Amorphous lactose adsorption isotherm at 25°C. .................................................... 51
Figure 3-8: Amorphous lactose crystallisation time versus (T−T_g).............................................. 52
Figure 3-9: Salt range and stability (Greenspan, 1977). ................................................................ 54
Figure 3-10: LiCl and MgCl2 salt solution temperatures and crystallisation times for various T−T_g. ........................................................................................................................................... 55
Figure 3-11: Sample pan with saturated salt solution and ibutton (bottom). ....................... 57
Figure 4-1: Supertab adsorption for 2 passes with RH increased from 0 to 35%. ....................... 59
Figure 4-2: Y_exp for amorphous lactose sample from 0 to 25% RH, 2 runs, Y_prior given for diffusivity. ........................................................................................................................................... 60
Figure 4-3: Fitted model to experimental data for fractional accomplished diffusion change out of a spray dried lactose dried for 16 hours then subjected to 30% RH. .......... 60
Figure 4-4: Fitted model to experimental data for fractional accomplished diffusion change out of a freeze dried lactose sphere dried for 10 hours then subjected to 35% RH. ......... 61
Figure 4-5: Crystallisation of spray dried amorphous lactose at 50% RH and 25°C. .................... 64
Figure 5-1: Lactose isotherms for crystalline, milled and milled conditioned lactose.......... 65
Figure 5-2: Experimental T−T_g against amorphicity data after 100 minutes including model predictions. .............................................................. 67
Figure 5-3: Experimental data at T−T_g of 23.3°C against amorphicity for spray dried lactose including model predictions. ................................................................. 68
Figure 8-1: RH peak displayed by ibuttons during heating. .......................................................... 78
Figure 8-2: Heating and cooling rate of sample pan using ibutton data. ........................................ 78
Figure 8-3: XRD data for spray dried amorphous lactose produced using GEA niro spray dryer. Analysed in 2θ range from 15° to 35° at a speed of 0.1 °/min. .............................. 79