Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Dynamical Modelling of the effect of Insulin-like Growth Factor 1 on Human Cell Growth

A thesis presented in fulfilment of the requirements for the degree of

Master of Science
in Mathematics
at Massey University, Albany, New Zealand

Gemma Phillips
2013
Abstract

Insulin-like Growth Factor-1 (IGF-1) plays a vital role in human growth and development. Interactions with IGF-1 receptors and IGF-1 binding proteins (IGFBPs) regulate IGF-1 function. Boroujerdi et al. (1997) published a mathematical model describing dynamic regulation of IGF-1. We extended the Boroujerdi et al. (1997) model to evaluate the role of cyclic Gly-Pro (CGP) in dynamic regulation of IGF-1 function. Recent research from the Liggins Institute suggests that a metabolite of IGF-1, CGP, may have a role in regulating IGF-1 homeostasis, possibly through competitive binding to IGFBPs.

The goal of the research was to understand the kinetics of IGF-1, IGFBPs and CGP, along with their interactions with IGF-1 receptors. This goal and an understanding of how the kinetics mediate IGF-1 function was achieved through consideration of the nonlinear dynamics of the physiology using a modelling approach.

The resulting models were directly focused on three central theories. The first is that CGP can either inhibit, stimulate or maintain IGF-1 function based on the extent of receptor binding. The other theories are that CGP regulates IGF-1 through competitive binding to IGFBPs and that CGP does not directly interact with the IGF-1 receptors.

Four in vitro models were developed and fitted to experimental data. These included two implicit models which relied on two feedback terms in the equations. The second model was an alteration of the first to produce a reduction in cell number levels for high doses of CGP added to the system. The other two models were explicit models, the first of which could not express the IGF-1 dynamics well (it showed no CGP response). Although the models incorporated these theories, there are other mechanisms influencing the system which will have an effect on the data. Therefore the fourth model was introduced as a simplified version of the third. This was aimed at resembling cell culture situations more closely and was designed to have the receptor bound IGF-1 dependent on IGF-1 and CGP production rates.

The models can be used to predict cellular response in an in vitro situation, or as a basis for further research in this field.
Acknowledgements

I would like to thank my supervisors, Professor Graeme Wake and Dr Paul Shorten for their constant advice, encouragement and support throughout this project.

Prof. Wake and Dr. Shorten were funded to supervise this thesis via the Gravida National Centre for Growth and Development.

Thank you to Dr Jian Guan (Head Biologist at Liggins Institute) for her feedback, guidance and biological explanations.

In addition I would like to express my gratitude towards Mr Tony Pleasants and the Norman F Barry Foundation, Wake’s Scientific Consulting and Dr Guan the head of Neuroscience from Liggins Institute (Ministry of Business and Employment, MIBIE) for funding this project.

Lastly I would like to express my appreciation to my family, Alistair Watt, and his family for their understanding, love and support.
List of Figures

1. Schematic diagram of the IGF-1 receptor. ... 3
2. Lab pictures of Steve Moon at Liggins Institute, washing the cells 7
3. Mini-PROTEAN Tetra system used for western blotting 8
4. Model diagram reprinted from Boroujerdi et al. (1997) 11
5. Model simulations for subject one reproduced from Boroujerdi et al. (1997) (left) along side the replicated model simulations (right) 15
6. Bifurcation analysis showing the effect of IGF-1 production rate, R_a, on free plasma IGF-1, q_2. (Boroujerdi et al. (1997) model) 17
7. Bifurcation analysis showing the effect of IGFBP (50kDa) production rate, $R_{a,1}$, on the amount of free IGFBPs (50kDa), q_1. (Boroujerdi et al. (1997) model) .. 17
8. Bifurcation analysis showing the effect of IGFBP-3 (150kDa) production rate, $R_{a,2}$, on the amount of free IGFBP-3 (150kDa), q_4. (Boroujerdi et al. (1997) model) .. 18
9. Bifurcation analysis showing the effect of IGF-1 production rate, R_a, on free plasma IGF-1, q_2. (Boroujerdi et al. (1997) model, $-k_{02}q_2$ term included) ... 21
10. Model diagram reprinted from Mizuno et al. (2001) 23
11. Reproduced Mizuno et al. (2001) time series plots (left) alongside the replicated results (right) ... 24
12. *In vivo* model diagram ... 27
13. Feedback term, F, in the implicit *in vivo* model 29
15. Bifurcation analysis showing q_4 vs a_1 (fixed low a_2 value) 33
16. Bifurcation analysis showing q_4 vs a_1 (fixed medium a_2 value) 33
17. Bifurcation analysis showing q_4 vs a_1 (fixed high a_2 value) 34
18. Bifurcation analysis showing q_4 vs a_a (fixed low a_1 value) 34
19. Bifurcation analysis showing q_4 vs a_2 (fixed medium a_1 value) 35
20. Bifurcation analysis showing q_4 vs a_2 (fixed high a_1 value) 35
21. Bifurcation analysis showing q_4 vs negative a_1 36
22. Enlarged view of the Hopf bifurcation when looking at q_4 vs negative a_1 37
23. Bifurcation analysis of q_4 vs negative a_2 38
24. Enlarged view of the Hopf bifurcation when looking at q_4 vs negative a_2 38
25. Bifurcation analysis showing q_1 against $R_{a,1}$ (*In Vivo* Model) 39
Bifurcation analysis showing free q_2 against $R_{a,2}$ (In Vivo Model)........ 39
27 Bifurcation analysis showing q_5 against $R_{a,5}$ (In Vivo Model)........ 40
28 Bifurcation analysis showing q_6 against $R_{a,6}$ (In Vivo Model)........ 40
29 Diagram of the first in vitro model (implicit)................................. 43
30 Equation one fitted to IGF-1 only data ($R^2=0.69$).......................... 44
31 Equation two fitted to IGF-1 only data ($R^2=0.71$).......................... 45
32 Equation three fitted to IGF-1 only data ($R^2=0.82$)....................... 45
33 In vitro model one predictions for IGF-1 only treatments (left) and IGF-1 only treatment data... 51
34 In vitro model one predictions for CGP only treatments (left) and CGP only treatment data... 51
35 In vitro model one predictions for combination one treatments (left) and combination one treatment data.. 52
36 In vitro model one predictions for combination two treatments (left) and combination two treatment data... 52
37 In vitro model two predictions for IGF-1 only treatments (left) and IGF-1 only treatment data (right)... 55
38 In vitro model two predictions for CGP only treatments (left) and CGP-1 only treatment data (right)... 55
39 In vitro model two predictions for combination one treatments (left) and combination one treatment data (right)................................. 56
40 In vitro model two predictions for combination two treatments (left) and combination two treatment data (right)................................. 56
41 In vitro model three (explicit) diagram... 59
42 Graph of BSA influence over IGF-1 binding with and without CGP. Data provided by Dr Jian Guan (Liggins Institute). The red line is BSA treatment with CGP (equimolar with IGF-1) and the blue line is BSA treatment without CGP. ... 60
43 In vitro model three predictions for IGF-1 only treatments (left) and IGF-1 only treatment data (right)... 64
44 In vitro model three predictions for CGP only treatments (left) and CGP only treatment data (right)... 64
45 In vitro model three predictions for combination one treatments (left) and combination one treatment data (right)................................. 65
46 In vitro model three predictions for combination two treatments (left) and combination two treatment data (right)................................. 65
In vitro model four (explicit simplified model) diagram .. 67
In vitro model four predictions for IGF-1 only treatments (left) and IGF-1 only treatment data (right). ... 70
In vitro model four predictions for CGP only treatments (left) and CGP only treatment data (right). ... 70
In vitro model four predictions for combination one treatments (left) and combination one treatment data (right). ... 71
In vitro model four predictions for combination two treatments (left) and combination two treatment data (right). ... 71
In vitro model four (simplified explicit) diagram with antibody treatment .. 72
Model testing results for IGF-1 and CGP treatments with no antibodies data plot (left) next to model predicted values (right), $R^2=0.6890$.. 75
Model testing results for IGF-1 and CGP treatments with antibodies data plot (left) next to model predicted values (right), $R^2=0.7815$.. 75
Model simulations reproduced from Boroujerdi et al. (1997) for subjects 2-4 86
Replicated model simulations for subjects 2-4 ... 87
Bifurcation analysis for q variables against IGF-1 production rate, R_a in nmol min$^{-1}$ L$^{-1}$ (Boroujerdi et al. (1997) model) ... 88
Bifurcation analysis for q variables against IGFBP (50kDa) production rate, $R_{a,1}$ in nmol min$^{-1}$ L$^{-1}$ (Boroujerdi et al. (1997) model) ... 89
Bifurcation analysis for q variables against IGFBP-3 (150kDa) production rate, $R_{a,2}$ in nmol min$^{-1}$ L$^{-1}$ (Boroujerdi et al. (1997) model) ... 90
Bifurcation analysis for q variables against IGF-1 production rate, R_a in nmol min$^{-1}$ L$^{-1}$ (Boroujerdi et al. (1997) model with -$k_{02}q_2$ term) ... 91
Bifurcation analysis for q variables against IGFBP production rate, $R_{a,1}$ in nmol min$^{-1}$ L$^{-1}$ (In Vivo Model) ... 92
Bifurcation analysis for q variables against IGF-1 production rate, $R_{a,2}$ in nmol min$^{-1}$ L$^{-1}$ (In Vivo Model) ... 93
Bifurcation analysis for q variables against receptor production rate, $R_{a,5}$ in nmol min$^{-1}$ L$^{-1}$ (In Vivo Model) ... 94
Bifurcation analysis for q variables against CGP production/infusion rate, $R_{a,6}$ in nmol min$^{-1}$ L$^{-1}$ (In Vivo Model) ... 95
Example of a stable spiral equilibrium, before the Hopf bifurcation point at $R_a=1$ nmol min$^{-1}$ (negative complex eigenvalue) ... 100
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Example of a Hopf bifurcation at the bifurcation point with zero amplitude at $R_a=5$ nmol min$^{-1}$ (purely imaginary eigenvalues)</td>
</tr>
<tr>
<td>67</td>
<td>Example of an unstable spiral equilibrium, after Hopf bifurcation point at $R_a=10$ nmol min$^{-1}$ (positive complex eigenvalue). The amplitude increases until it reaches a constant amplitude (reaches the limit cycle).</td>
</tr>
<tr>
<td>68</td>
<td>Example of a Hopf bifurcation diagram</td>
</tr>
<tr>
<td>69</td>
<td>Example of a local minimum compared to a global Minimum</td>
</tr>
</tbody>
</table>
List of Tables

1. The four types of treatments used for parameter calibration 9
2. The two types of treatments used for validation 9
3. Variable definitions reproduced from Boroujerdi et al. (1997) 10
4. Parameter definitions reproduced from Boroujerdi et al. (1997) 11
5. Data table to find initial variable values from Boroujerdi et al., 1997) .. 13
6. Subject one initial values from Boroujerdi et al. (1997) 14
7. Subject one parameter values from Boroujerdi et al. (1997) 14
8. Glossary of *in vivo* variables from Mizuno et al. (2001) 22
10. Glossary of the new *in vivo* model variables and parameters 26
11. *In vivo* parameter and initial variable values estimated from the Boroujerdi et al. (1997) article .. 30
12. Final parameter values estimated from the Boroujerdi et al. (1997) model and a guess and check method which produced steady state values as close as possible to the estimates 31
13. Steady state values found using estimated parameters from Boroujerdi et al. (1997) model and then a guess and check method involving XPPaut. 32
14. Glossary of the implicit *in vitro* model one and two parameters 42
15. Glossary of the implicit *in vitro* model one and two variables 43
16. Equation one variance covariance matrix (A=3830.48 and B=39152.89) 46
17. Equation two variance covariance matrix (A=71142.26 and B=0.17) ... 46
18. Equation three variance covariance matrix (A=59596.03 and B=2.22 and C=28751.95) ... 46
19. Parameter and initial values which are assumed for the *in vitro* model one (Implicit) based on Tables 11-13 48
20. Estimated parameter and initial values before being fit to data for the *in vitro* model one (Implicit) 48
21. Type of data used for fitting parameters (molar mass of IGF is approx 7649g/mol) ... 49
22. Final parameter values for *in vitro* model one which are assumed (top) and parameter values after the equations were fit to data (bottom) 50
23. Initial values of *in vitro* model one (implicit) which were assumed (top) and initial values after being fit to data (bottom) 50
Final parameter values for *in vitro* model two (implicit) with quadratic q_6 term added, which were assumed (top) and parameter values which were fit to data (bottom). ... 54

Initial values for *in vitro* model two (implicit) with quadratic q_6 term added, which were assumed (top) and initial values which were fit to data (bottom). ... 54

Glossary of the explicit *in vitro* model three and four variables 58

Glossary of the explicit *in vitro* model three and four parameters 59

Assumed parameter and initial values for the *in vitro* model three (Explicit) 62

Parameter and initial value estimates for the third *in vitro* model (explicit) 62

Parameter values for the third *in vitro* model (explicit) which were assumed (top) and parameter values which have been fit to data (bottom). 63

Initial values for the third *in vitro* model three (explicit) after being fit to data. ... 63

Parameter values for the fourth *in vitro* model (explicit) which were assumed (top) and parameter values after being fit to data (bottom) .. 69

Initial values for the fourth *in vitro* model (explicit) which were assumed (top) and initial values after being fit to data (bottom) 69

Type of data used for testing *in vitro* model four ... 73

Subject two parameter and initial values reproduced from Boroujerdi et al. (1997) ... 83

Subject three parameter and initial values reproduced from Boroujerdi et al. (1997) ... 84

Subject four parameter and initial values reproduced from Boroujerdi et al. (1997) ... 85
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CGP</td>
<td>Cyclo-glycyl-proline or Cyclic Gly-Pro</td>
</tr>
<tr>
<td>DE</td>
<td>Differential equation</td>
</tr>
<tr>
<td>DKP</td>
<td>Diketopiperazine</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>GPE</td>
<td>Glycine-proline-glutamate</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like Growth Factor 1</td>
</tr>
<tr>
<td>IGF-1R</td>
<td>Insulin-like Growth Factor 1 Receptor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>Insulin-like Growth Factor Binding Proteins</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton (Dalton is a unit of mass based on molecular mass)</td>
</tr>
<tr>
<td>nM</td>
<td>nmol L^{-1}</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary Differential Equation</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Solution</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial Differential Equation</td>
</tr>
<tr>
<td>RK4</td>
<td>Runge Kutta fourth order method</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SSE</td>
<td>Sum of Squares of Errors</td>
</tr>
<tr>
<td>WST-1</td>
<td>Water Soluble Tetrazolium Salt-1</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 1
 1.1 Objective of this Study 1
 1.2 Thesis Outline .. 2

2 Biological Background:
 2.1 Introduction ... 2
 2.2 Data Collection Methods 5
 2.2.1 In vivo data collection methods 5
 2.2.2 In vitro data collection methods 6
 2.3 Types of Data Collected 8

3 Previous Research:
 3.1 Introduction ... 10
 3.2 Boroujerdi et al. (1997) Model 10
 3.3 Boroujerdi et al. (1997) Equations 12
 3.4 Results from the Boroujerdi et al. (1997) Model 13
 3.5 Extended Analysis of the Boroujerdi et al. (1997) Model .. 16
 3.5.1 Bifurcation Analysis 16
 3.6 Altered Boroujerdi et al. (1997) Model 19
 3.6.1 Altered Boroujerdi et al. (1997) model equations 19
 3.6.2 Bifurcation analysis of the altered Boroujerdi et al. (1997) model 21
 3.7 Mizuno et al. (2001) Model 22
 3.8 Mizuno et al. (2001) Equations 23
 3.9 Results from the Mizuno et al. (2001) Model 24
 3.10 Discussion ... 25

4 In Vivo Model:
 4.1 In Vivo Model Introduction 26
 4.2 In Vivo Model Equations 27
 4.3 In Vivo Model Results 30
 4.3.1 Bifurcation analysis of a_1 and a_2 32
 4.3.2 Bifurcation analysis of q variables 39
 4.4 In Vivo Model Discussion 41
<table>
<thead>
<tr>
<th>Appendix C Basic Mathematical Background of Methods used in this Research:</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Introduction</td>
<td>96</td>
</tr>
<tr>
<td>C.2 Ordinary Differential Equations</td>
<td>96</td>
</tr>
<tr>
<td>C.3 Stability of the system</td>
<td>98</td>
</tr>
<tr>
<td>C.4 Explanation of Bifurcations</td>
<td>99</td>
</tr>
<tr>
<td>C.5 Law of Mass Action and Mass Action Kinetics</td>
<td>102</td>
</tr>
<tr>
<td>C.6 Nonlinear Least Squares</td>
<td>104</td>
</tr>
<tr>
<td>C.7 Variance-Covariance Matrix</td>
<td>108</td>
</tr>
</tbody>
</table>