Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis, or part of it, may not be reproduced elsewhere without the permission of the Author.
DEVELOPMENT OF EXPANDED SNACK FOODS CONTAINING PUMPKIN FLOUR AND CORN GRITS USING EXTRUSION TECHNOLOGY

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at Massey University, Palmerston North, New Zealand

NORFEZAH MD NOR
2013
Abstract

The production of expanded snack foods using vegetable powder as an ingredient in ready-to-eat food is rare. In view of its natural desirable colour, flavour, sweetness and health benefits, pumpkin was chosen as an additive to the traditional corn grits or rice used as the basis of an extrusion expanded snack or breakfast food concept. Pumpkins also have a large range of uses as a potentially valuable food for humans and animals. However, they are an underutilised product. This study was undertaken to demonstrate the potential of pumpkin products as additives in expanded snack food products. Processing the fresh pumpkin into flour dramatically extends the shelf life and makes the ingredient available throughout the year. The flour is more convenient for extrusion as it is stored and handled as a dry powder. Research was conducted to produce and characterise pumpkin flour made by convection oven and freeze drying of a pumpkin fractions such as peel, pulp (rind), flesh and seed. The flour was combined with corn grits in various proportions up to a maximum of 20% w/w. After determining suitable processing conditions and the maximum acceptable concentration of pumpkin flour for an edible product, the effect of process parameters on product quality were determined. Finally the product was optimised using response surface methodology (RSM). The proximate compositions of pumpkin flour from convection oven and freeze drying were as expected identical to commercial pumpkin flour. The carbohydrate content ranged between 69.8 and 89%, protein ranged between 1.3 and 21%, and fat between 0.03 - 0.53%. Pumpkin flour produced by freeze drying revealed L, a and b values higher than in commercial pumpkin flour, indicating that the flour was lighter in colour and appeared more orange than that oven dried. The effect of varying pumpkin flour proportion at two mass flow rates of 7.5kg/hr and 8.5kg/hr revealed that mass flow rate did not have any significant correlation to the extrusion parameters and the final quality of the expanded snack product. However, a high quality final product can be achieved at all mass flow rates with less than 20% pumpkin flour incorporated into the blend. Varying the proportion of pumpkin flour between 5% and 20% in combination with corn grits using screw speeds of 250rpm and 350rpm showed that, increasing the proportion of pumpkin flour to 20% significantly (P<0.05) decreased specific mechanical energy (SME) and torque. The extruded pellets using a 20% blend of pumpkin with corn grits were harder, more denser and less expanded than those made with higher proportions of corn grits. The crispiness and hardness of the final product was not closely related to the number or area of bubbles present in the structure. Screw speed did not significantly (P>0.05) affect the specific mechanical energy (SME)
or the physical characteristics of the final product. Hardness seemed to be due to bubble wall stiffness i.e. effectively the thickness and rigidity of the set starchy matrix. Response surface methodology (RSM) was predicted four solutions for optimum conditions which can be achieved at barrel temperature ranging from 165°C to 167°C at a constant feed rate of 10.50kg/hr and pumpkin flour percentage ranged from 16% to 17%. With these conditions, the optimum SME of 0.15 was achieved and this product had a maximum radial expansion of 11.00%, hardness less than 142.0N with a total carotenoid content of 2.07ppm to 2.13ppm. Sensory analysis revealed most consumers preferred expanded snack products containing 5% pumpkin flour and produced by extruding at a barrel temperature of 170°C and mass flow rate of 12.0kg/hr. The panellists indicated that they would buy this product due to its acceptable taste, texture, odour and overall product characteristics. However, the expanded snack with 15% pumpkin flour was found to have highest total carotenoid content (5.78ppm) and protein content (28.8%) after processing and may have been, in nutritional terms, the best product. The slowly digestible starch (SDS) value and carbohydrate content of this product was found at 97.03mg/g and 59.29% respectively. From this work useful information regarding pumpkin flour and its application in extruded expanded snack production was obtained. This work has the potential to diversify the application of pumpkin flour and offer new uses for pumpkin in the food industry.
Acknowledgements

First and foremost, thanks to GOD who made all things possible.

I would like to express my sincere gratitude to my chief supervisor, Dr Alistair Carr for his supervision, encouragement, support and precious time. I am indebted to Mr. Allan Hardacre for his direction, assistance, guidance, expertise and moreover the joy and enthusiasm he has for this research, which was precious and motivational for me, even during tough times throughout the study. Not to forget, Professor Charles Brennan for his long distance guidance, support, valuable input and involvement from the beginning of the study particularly.

This study could not have been achieved without financial support from The Ministry of Higher Education Malaysia, Universiti Teknologi MARA Malaysia (UiTM), Universiti Teknologi MARA, Penang Malaysia and a Postgraduate Grant from the Institute of Food, Nutrition and Human Health (IFNHH), Massey University, New Zealand.

Thank you to the Graduate Research School (GRS), Massey University and my thanks also go to all staff at the International Student Office, Massey University.

I would like to acknowledge Plant & Food Research, Palmerston North, Andrew McNaughthon (University of Otago) for technical advice and support and Cedenco Food Ltd for supplying the pumpkin flour.

I am also thankful to all IFNHH Staff; Mr. Garry Radford, Mr. Steve Glasgow, Ms. Mitchell Tamehaena, Mr. Matt Levin and Mr Steve Chambers.

Appreciation also goes to Associate Professor Dr Mohamad Abdullah Hemdi, Associate Professor Abd Azis Abd Majid, Dr Zaibunissa Abdul Haiyee, Associate Professor Dr Zainal Samicho, Mrs. Saidatul Afzan Abd Aziz, Mrs. Noriza Ishak, Ms. Anida Ismail, Ms. Nurul Huda Hashim and all Colleagues at Faculty of Hotel and Tourism Management, UiTM Shah Alam and UiTM, Penang for their continuous support and contributions towards completion of this thesis.

A special thanks to Haslinda Hassan for her encouragement, and a shoulder to cry on through thick and thin along this journey. I am extremely grateful to Zeinab Deghan Shoar, Lakshmi, Khaizura, Azira, Haza, Asmad, Farihan, Sara, Yen and all friends in postgraduate room 1.33 for their encouragement and help.
I am deeply grateful and indebted to my ever loving husband, Mr Jaafar Omar and my angel daughter Nurul Izzati for their unconditional love, continuing encouragement and wisdom and their inspiration in every aspect of my life.

Blessing to my family, my Dad Md Nor, mom Hamisah, Rizal, Azli, Ain, Aini and Farah for their constant encouragement, motivations and endless guidance and love. Last but not least, thanks to my mother in law Hamedah and all family in law.

Finally I offer my regards and blessing to all those who supported me in any respect during the completion of this study.

Norfezah Md Nor
Autumn 2013
In Memory

Aminah Hashim (mom)

Nurul Izzah Jaafar (daughter)

Som Mat (grandma)

Omar Osman (father in law)
Table of Contents

Abstract.. iii

Acknowledgements... v

Table of Contents ... viii

List of Tables... xvi

List of Figures.. xix

List of Peer-Reviewed Publications, Conference Proceedings and Presentation xxiv

Chapter 1: Introduction .. 1

1.1 Background of the Study.. 1

1.2 Purpose of The Study... 2

1.3 Significance and Rationale of Study... 3

1.4 Research Aims and Objectives.. 3

1.5 Overview Outline... 4

1.6 Thesis Outline... 6

Chapter 2: Literature Review .. 7

2.1 Introduction.. 7

2.2 Snack Foods... 8

2.3 The Snack Food Market.. 10

2.3.1 Sweet and Savoury Snacks Market in Malaysia.. 12
2.3.2 Sweet and Savoury Snacks Market in New Zealand 12
2.3.3 Sweet and Savoury Snacks Market in Australia 12
2.3.4 Sweet and Savoury Snacks Market in the United Kingdom 12
2.3.5 Sweet and Savoury Snacks Market in the United States 13
2.4 Extruded Food Products ... 13
2.5 Extrusion .. 14
2.5.1 Introduction .. 14
2.5.2 Definitions of Extrusion ... 14
2.5.3 Background and Development of Extruder 14
2.5.4 Types of Extruder .. 15
2.5.4.1 Single-Screw Extruder ... 16
2.5.4.2 Twin-Screw Extruder ... 17
2.5.5 Comparison of Single Screw and Twin Screw Extruders 19
2.5.6 Principles of Extrusion Cooking .. 19
2.5.6.1 Variables and Parameters Involved In Extrusion Processing 20
2.5.6.2 Factors Influencing the Extrusion Process 21
2.5.6.2.1 Mass Flow Rate .. 21
2.5.6.2.2 Screw Speed ... 22
2.5.6.3 Bubble Formation During Extrusion ... 22
2.6 Raw Materials For Extrusion ... 23
2.6.1 Pumpkin ... 23

Page | ix
2.6.1.1 Introduction .. 23
2.6.1.2 Pumpkin Structure .. 26
2.6.1.3 Plant Species .. 26
2.6.1.4 Nutritional Value of Pumpkin ... 27
2.6.1.5 Food Products Containing Pumpkin Fractions 29
2.6.1.6 Commercial Pumpkin Products in New Zealand and Australia 30

2.6.2 Corn ... 31
 2.6.2.1 Introduction ... 31
 2.6.2.2 Corn Kernel Structure and Types .. 31
 2.6.2.3 Corn for Food Industry Processing .. 32
 2.6.2.4 Dry Milled Corn Fractions ... 33
 2.6.2.5 Dry Milled Corn Fractions for Extruded Snack Processing 33
 2.6.2.6 Nutritional Value of Dry Milled Corn Fractions 33

2.6.3 Nutrient Components: Chemical and Nutritional Changes in Food During Extrusion ... 34
 2.6.3.1 Carbohydrate .. 34
 2.6.3.1.1 Starch .. 34
 2.6.3.1.2 Starch Structure Changes during Extrusion 36
 2.6.3.1.3 Fibre .. 36
 2.6.3.2 Protein ... 37
 2.6.3.3 Lipids ... 37
Chapter 3: Characterisation and Production of Pumpkin Flour

3.1 Introduction

3.2 Materials and Methods

3.2.1 Raw Materials

3.2.2 Sample Preparation

3.2.2.1 Pumpkin Flour Production Using Convection Oven

3.2.2.2 Pumpkin Flour Production Using Freeze Drying

3.2.3 Proximate Analysis

3.2.4 Colour Measurement

3.2.5 Statistical Analysis

3.3 Results and Discussion

3.3.1 Characterisation of Pumpkin and Pumpkin Flour Production

3.3.2 Raw Pumpkin

3.3.3 Pumpkin Flour Production

3.3.4 Proximate Composition of Raw Pumpkin and Pumpkin Flour

3.3.5 Commercial Pumpkin Flour

3.3.6 Colour Value of Raw Pumpkin and Pumpkin Flour

3.4 Conclusion

Chapter 4: Preliminary Extrusion Processing of Pumpkin-Corn Grits Expanded Snacks

4.1 Introduction
Chapter 5: The effect of varying the proportion of pumpkin flour at two mass flow rates and at two screw speeds on processing parameters and the physical characteristics of the extruded product.67

5.1 Introduction ..67

5.2 Materials and Methods ...68

5.2.1 Raw Materials ..68

5.2.2 Pasting Properties (RVA) ...68

5.2.3 Extrusion Processing..69

5.2.3.1 Extrusion at constant screw speed with two mass flow rate..........69

5.2.3.2 Extrusion at Two Screw Speeds with Constant Mass Flow Rate70

5.2.4 Physical Characteristics ...71

5.2.5 Texture Analysis of Product Mapping ...71

5.2.6 Statistical Analysis ..72

5.3 Results and Discussion ..72

5.3.1 Pasting Properties of Raw Ingredients (pumpkin flour-Cedenco)........72

5.3.2 Extrusion at Constant Screw Speed with Two Mass Flow Rate75

5.3.3 Extrusion at Two Screw Speeds with Constant Mass Flow Rate78

5.3.3.1 Extrusion Parameters ..78

5.3.3.2 Physical Characteristics of Extruded Products81

5.3.3.3 Expansion Ratio and Hardness of Expanded Snack Product82

5.3.3.4 Density of Expanded Snack Product ..83

5.3.3.5 Pearson Correlation Interrelationship ..85
5.3.4 Texture Analysis of Product Mapping .. 86

5.4 Conclusion .. 87

Chapter 6: Product Optimisation ... 89

6.1 Introduction ... 89

6.2 Materials and Methods ... 90

6.2.1 Extrusion Conditions ... 90

6.2.2 Experimental Design ... 90

6.2.3 Extrusion Parameters Analysis ... 92

6.2.4 Product Analysis .. 92

6.2.5 Total Carotenoid Analysis ... 93

6.2.5.1 Total Carotenoid Standard Curve .. 93

6.3 Results and Discussion .. 93

6.3.1 Extrusion Parameters ... 93

6.3.2 Product Characteristics ... 98

6.4 Summary of Results and Optimisation ... 109

6.5 Conclusion ... 113

Chapter 7: Final Product Quality ... 114

7.1 Background ... 114

7.2 Materials and Methods ... 117

7.2.1 Extrusion Conditions ... 117

7.2.2 Total Carotenoid Analysis .. 118

Page | xiv
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.3</td>
<td>Starch Digestibility</td>
<td>118</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Proximate Composition</td>
<td>119</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Sensory Evaluation</td>
<td>119</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Microstructure of Expanded Snack Product</td>
<td>119</td>
</tr>
<tr>
<td>7.3</td>
<td>Results and Discussion</td>
<td>122</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Total Carotenoid Content</td>
<td>122</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Starch Digestibility</td>
<td>124</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Pearson’s Correlation of Proximate Composition</td>
<td>128</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Sensory Evaluation</td>
<td>128</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Microstructure of Expanded Snack Product</td>
<td>134</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>135</td>
</tr>
</tbody>
</table>

Chapter 8: Overall Conclusion, Limitations and Further Research | 136 |
8.1	Overall Conclusion	136
8.2	Limitations and Recommendations	137
8.3	Further Research	138

References | 139 |

Appendices | 158 |
List of Tables

Table 2-1 : Summary of current research on vegetable and fruit inclusion during extrusion processing .. 8

Table 2-2 : Summary of research on snack food vegetable enrichment 9

Table 2-3 : Examples of extruded food products produced by extrusion 13

Table 2-4 : Brief history of extrusion development (Riaz, 2000) 15

Table 2-5 : Functions of Extruder Sections ... 17

Table 2-6 : Comparison of single screw and twin screw extruders 19

Table 2-7 : Proximate composition, Total dietary fibre and energy of raw pumpkin (edible part), (USDA National Nutrient Database For Standard Reference, 2005) 28

Table 2-8 : Summary of food products containing pumpkin fractions 30

Table 2-9 : Kernel structures and their functions .. 32

Table 2-10 : Summary of corn uses in food industry processing (Serna-Saldivar, Gomez, & Rooney, 2001) ... 32

Table 2-11 : Typical yields of corn dry-milled fractions ... 33

Table 2-12 : Composition of dry-milled corn grits (Watson & Ramstad, 1987) 33

Table 2-13 : Functional role of raw ingredient components ... 34

Table 2-14 : Amylose and amylopectin content of various starches (Harper, 1981) 36

Table 3-1 : Proximate composition of raw pumpkin and pumpkin flour prepared from different fractions of two (2) types of pumpkin prepared by different drying methods .. 45

Table 3-2 : Commercial pumpkin flour (proximate) .. 46

Table 3-3 : Colour Value ($L^*a^*b^*$) of raw pumpkin and pumpkin flour (peel, flesh, seed) from two (2) cultivars using different methods of drying .. 47
Table 4-1: Basic recipes for extruding pumpkin with corn grit .. 50

Table 4-2: Extrusion conditions (Brennan et al., 2008) .. 51

Table 4-3: Processing parameters of control and pumpkin flour mixed with corn grits at different percentage levels to produce expanded snacks ... 55

Table 4-4: Colour value ($L^*a^*b^*$) of expanded snacks made of pumpkin flour (peel, flesh and seed) with corn grits at different percentage levels ... 56

Table 5-1: Proximate composition of raw materials (corn grits and pumpkin flour) used for the extrusion .. 68

Table 5-2: Effect of formulations and feed rates on operating conditions of expanded snacks made from pumpkin flour-corn grits ... 76

Table 5-3: Pearson’s correlation .. 78

Table 5-4: The effect and relationships between experiment variables, control variables and physical characteristics of extruded snacks made from pumpkin flour-corn grits .. 85

Table 6-1: Coded levels for the independent variables ... 91

Table 6-2: Determining α for Rotatability .. 91

Table 6-3: Extrusion conditions with actual variable levels for experimental design ... 92

Table 6-4: The regression models for the product colour .. 104

Table 6-5: Analysis of variance (ANOVA) for response surface for dependant variables of pumpkin flour-corn grits snacks ... 109

Table 6-6: Solutions for optimum conditions and responses .. 110

Table 7-1: Carotenoid study done by several researchers .. 115

Table 7-2: In vitro nutritional classification of starch ... 116

Table 7-3: Formulation and extruder conditions ... 118
Table 7-4 : Pearson’s correlation of total carotenoid .. 123

Table 7-5 : Pearson’s correlation of extruded pumpkin flour-corn grits snacks 127

Table 7-6 : Pearson’s correlation of unextruded (raw materials) and extruded pumpkin-corn grits snacks .. 127

Table 7-7 : Pearson’s correlation of proximate composition in pumpkin flour-corn grits expanded snack .. 128

Table 7-8 : Mean scores for sensory attributes of pumpkin flour – corn grits snack products .. 131

Table 7-9 : Pearson’s correlation of sensory attributes .. 133

Table 7-10 : X-ray tomography cross sectional of 2-D image (radial): Changes of bubble size through out the extruded sample at screw speed 250rpm (Scale 1:2) 135
List of Figures

Figure 1-1: An overview of thesis outline ... 6

Figure 2-1: Global sweet and savoury snacks retail value sales 2004-2009 10

Figure 2-2: Global sweet and savoury retail value sales 2004-2009 11

Figure 2-3: Global sweet and savoury retail value growth 2004-2009 11

Figure 2-4: Single screw extruder and Twin screw extruder 16

Figure 2-5: Schematic diagram of single screw extruder 17

Figure 2-6: A twin screw extruder Clextral BC21, Firminy Cedex, France at Massey University, New Zealand ... 18

Figure 2-7: Schematic diagram of twin screw extruder components 19

Figure 2-8: Interaction of raw material properties, process variables and product characteristics (Chessari & Sellahewa, 2001) .. 21

Figure 2-9: Schematic diagram of bubble formation during extrusion (Moraru et al., 1992) ... 22

Figure 2-10: Pumpkin structure .. 26

Figure 2-11: Components of corn kernel ... 31

Figure 2-12: Amylose structure .. 35

Figure 2-13: Amylopectin structure .. 35

Figure 3-1: The production process for pumpkin flour .. 39

Figure 3-2: Proportion of two types of pumpkin ... 41

Figure 3-3: Recovery yield of pumpkin flour ... 43
Figure 4-1: Displacement (mm) versus Force (N) for 100% corn grits extruded product at 250rpm .. 53

Figure 4-2: Expansion ratio of the expanded snack .. 58

Figure 4-3: Product density of the expanded snack .. 60

Figure 4-4: Hardness of the expanded snack .. 62

Figure 4-5: Expanded snacks made from pumpkin flour (peel fractions) with corn grits .. 63

Figure 4-6: Expanded snacks made from pumpkin flour (flesh fractions) with corn grits .. 64

Figure 4-7: Expanded snacks made from pumpkin flour (seed fractions) with corn grits .. 65

Figure 5-1: A typical complete RVA curve (Paton & Spratt, 1981) 69

Figure 5-2: Schematic diagram of screw configuration of the extruder, the angle on the schematic represent screw pitch from the feed at the left hand side to the die on the right hand side. .. 70

Figure 5-3: Compression graph of force (N) against time (s) 72

Figure 5-4: RVA pasting curves of starches in corn grits, pumpkin flour and their blend .. 73

Figure 5-5: Relationship between percentage of pumpkin flour and hot peak viscosity .. 74

Figure 5-6: Effect of formulations and feed rates on expansion ratio of expanded snacks made from pumpkin flour-corn grits .. 76

Figure 5-7: Effect of formulations and feed rates on hardness (kg) of expanded snacks made from pumpkin flour-corn grits .. 77
Figure 5-8: Effect of formulations and feed rates on true density (g/m^3) of expanded snacks made from pumpkin flour-corn grits. ... 77

Figure 5-9: Effect of screw speed and the proportion of pumpkin flour on torque during extrusion. Error bars indicate standard deviations. .. 79

Figure 5-10: Effect of screw speed and the proportion of pumpkin flour on the specific mechanical energy (SME). Each value was an average of duplicate samples. 79

Figure 5-11: Effect of screw speed and the proportion of pumpkin flour on power consumption (kw) during extrusion. ... 80

Figure 5-12: Effect of screw speed and the proportion of pumpkin flour on pressure thrust during extrusion. Error bars indicate standard deviations. 80

Figure 5-13: Effect of screw speed (250rpm) and the proportion of pumpkin flour on the physical characteristics of extruded products. ... 81

Figure 5-14: Effect of screw speed (350rpm) and the proportion of pumpkin flour on the physical characteristics of extruded products. ... 81

Figure 5-15: Effect of screw speed and the proportion of pumpkin flour on the expansion ratio. Error bars represent the standard deviation. .. 82

Figure 5-16: Effect of varying pumpkin flour percentage and screw speed on the hardness of extrudates. Error bars indicate the standard deviation. 83

Figure 5-17: Effect of varying pumpkin flour percentage and screw speed on the bulk density of extrudates. Error bars indicate the standard deviation 83

Figure 5-18: Effect of varying pumpkin flour percentage and screw speed on the true density of extruded products. Error bars indicate the standard deviation 84

Figure 5-19: Texture mapping of pumpkin flour – corn grits snack with commercial snack products ... 87

Figure 6-1: Predicted response surface plot for power consumption (kW) as a function of pumpkin flour level (%) and barrel temperature (°C) at a feed rate of 11.25 kg/hr. 94
Figure 6-2: Predicted response surface plot for torque (Nm) as a function of pumpkin flour level (%) and barrel temperature (°C) at a constant feed rate of 11.25 kg/hr.

Figure 6-3: Response surface plot for specific mechanical energy (kwhr/kg) as a function of pumpkin flour level (%) and barrel temperature (°C) at a feed rate of 11.25 kg/hr.

Figure 6-4: Response surface plot for pressure thrust as a function of pumpkin flour level (%) and barrel temperature (°C) at a feed rate of 11.25 kg/hr.

Figure 6-5: Product expansion characteristics.

Figure 6-6: Longitudinal expansion of extrudate product as a function of barrel temperature and pumpkin flour percentage at a constant feed rate of 11.25 kg/hr.

Figure 6-7: Sectional expansion of extruded product as a function of barrel temperature and pumpkin flour concentration (%) at a constant feed rate of 11.25 kg/hr.

Figure 6-8: Effect of barrel temperature, feed rate and pumpkin flour percentage on lightness (L value).

Figure 6-9: Effect of barrel temperature, feed rate and pumpkin flour percentage on redness (a value).

Figure 6-10: Effect of barrel temperature, feed rate and pumpkin flour percentage on yellowness (b value).

Figure 6-11: Effect of barrel temperature, feed rate and pumpkin flour percentage on bulk density.

Figure 6-12: Effect of barrel temperature, feed rate and pumpkin flour percentage on true density.

Figure 6-13: Effect of barrel temperature, feed rate and pumpkin flour percentage on the product hardness.

Figure 6-14: Effect of barrel temperature, feed rate and pumpkin flour percentage on the total carotenoid.
Figure 6-15: Predicted response surface plot for the effect of feed rate and barrel temperature on radial expansion of pumpkin flour-corn grits snack.......................... 110

Figure 6-16: Predicted response surface plot for the effect of feed rate and barrel temperature on hardness of pumpkin flour-corn grits snack..................................... 111

Figure 6-17: Predicted response surface plot for the effect of feed rate and barrel temperature on specific mechanical energy (SME) of pumpkin flour-corn grits snack. ... 112

Figure 6-18: Predicted response surface plot for the effect of feed rate and barrel temperature on total carotenoid content of pumpkin flour-corn grits snacks......... 113

Figure 7-1: Summary of the process of how the microstructure of the expanded snack was captured and analysed .. 121

Figure 7-2: Total carotenoid content of raw materials (unextruded).......................... 122

Figure 7-3: Total carotenoid level (ppm) in pumpkin flour-corn grits snacks at different level of pumpkin flour added, different barrel temperature (°C) and different mass flow (kg/hr)... 123

Figure 7-4: In vitro starch fractions of raw materials (unextruded) and extruded pumpkin flour-corn grits snack products.. 126

Figure 7-5: Spider web of mean scores for sensory attributes of pumpkin flour-corn grits expanded snacks.. 132

Figure 7-6: Effect of varying pumpkin flour at constant screw speed (250rpm) on bubble area distribution at the upper end and centre of the extruded expanded snack .. 134
List of Peer-Reviewed Publications, Conference Proceedings and Presentation

Journal Articles

Conference Proceedings

Oral presentation