Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Genetic diversity and relationships of New Zealand totara
(Podocarpus totara)

A thesis presented in partial fulfilment of the requirements for the Degree of

Master of Science
in
Genetics

at Massey University, Manawatu,
New Zealand.

Christina Whitney Marshall
2013
E kore te totara e tu noa ki te parae, engari me tu ki roto i te wao.

A totara is not found growing out in the open country, but in the heart of the forest
Totara (*Podocarpus totara*) is an iconic and endemic New Zealand species and its use as a timber for carving is still highly preferred by Tohunga whakairo (Māori carving experts). Current mature totara timber resources are scarce and mass replanting of totara is very costly. The ability to distinguish between species (especially *P. totara* and *P. hallii*) - identifying species from seed and seedlings – would be of much interest for nursery and restoration projects. Existing methods relying on bark characteristics, seed classification, and needle morphology are inadequate for this purpose. Hybridization can also make problematic species designations. This thesis reports the successful development of ten High Resolution Melting DNA markers that can differentiate New Zealand totara species. The chloroplast genome sequence of *P. totara* x *P. hallii* was completed and annotated, providing a further resource for developing additional molecular markers. The findings of this thesis will help ensure the “true” totara species (*P. totara*) is retained as a resource in perpetuity for Māori, conservationists, foresters and home gardeners.
ACKNOWLEDGEMENTS

The production of this thesis was not a sole effort on my part but a collection of the input from many people. I wish to express my deepest appreciation and thanks to all the wonderful people who have provided support, guidance and encouragement throughout my Masters project.

Firstly, I would like to acknowledge and thank my supervisors Peter Lockhart and Phillip Wilcox. Many thanks to Pete, for guiding me through the marathon of writing the thesis; for sharing your unique sense of humour; and for playing your banjo tracks to me. Thanks to Phill for his manaakitanga and making me feel welcome in his whare. Thanks for providing me with a decent beer and kai after a long day in the lab, and for being a caring soundboard, tēnā rawa atu koe.

Many thanks to my “unofficial supervisors” Nick Roskruge and David Chagne. Thanks to Nick for helping with Iwi consultation and always being available for a korero and cup of tea. Thanks to David for spending great deals of time teaching me how to analyse all the HRM data. All the one-on-one sessions and comments towards the results section of the thesis are appreciated.

Thanks to all the people of Level 5, Science Tower D, IMBS. Thanks to Trish for all your help with lab work dilemmas, and the tedious task of annotating the chloroplast genome. Thanks to the many people who helped with queries towards lab procedures, data analysis, DOC permits, paper assignments, IT, and thesis writing. With special thanks to Patrick Biggs, Robin Atherton, Simon Cox, Barbara Schoenfeld, Ibrar Ahmed, Matthias Becker, Nicole Grunheit and Oliver Deusch.

I would also like to thank the staff of Scion especially to Greg Steward, Heidi Dungey and David Bergin. Many thanks to Greg for providing help with DOC permits, sample gathering and thesis editing. Also to David for his support in sampling, and being open with his knowledge of totara. Thanks to Mark Morris for sample gathering and to the South Park lab members and other associated staff for all the help and friendly support.
Thanks must also go to all the other people that helped in one way or another. Thanks to John McCullum for assistance with the Galaxy pipeline. Thanks to Jimmy Schuster and James Rickard for help with traditional Maori knowledge and site selection. Also, many thanks to Takarei Te Tamaki, Jackie Aratema, Paul Horton, Maikara Tapuke, George Mutu, and Tom Myers for giving their permission to collect samples.

Special thanks must be given to all the trusts and organisations that provided financial support. To Future Forest Limited (Scion) for funding this project. To Wi Pere Trust for the Education Grant. Also to Kahungunu Iwi Inc., Wairoa Waikaremoana Trust Board, Te Whanau-a-Taupara Trust, Whakatohea Trust, Whakapaupakihi Trust 6 & 7 and Massey University for the education grants and scholarships.

Most importantly I would like to thank my whanau and friends. For without their support I would not have had the strength to persevere through the past two years. Special thanks go to my parents Terry and Jewell Marshall and grandparents Haina and Trevor Christie. Thanks to my sisters Alannah, Shannen and Terri and to all my other extended whanau. I sincerely appreciate the phone calls, text messages, emails and long talks when I came back home. For it is these things that made me feel loved and gave me perspective when times were rough. I am extremely grateful for the financial support you provided, along with Mum and Nan always ensuring I had a package of food to take back to Palmy – Me te arohanui ki a koutou katoa.

Last but not least I would like to thank Jeff, who entered my life towards the end, and unfortunately most stressful part of the project. I am greatly indebted to you for being such an understanding, supportive, and loving person. I thank you for your efforts to get me out of bed in time for the bus, rides you gave me to Massey, and many many meals you provided. Thank you for being there I truly appreciate it - Taku arohanui ki a koe.

Ehara taku toa, he taki tahi, he toa taki tini

My success should not be bestowed onto me alone, as it was not individual success but success of a collective
Previous to the commencement of this study I completed a summer project at Massey University where I investigated the taxonomy of the New Zealand kamokamo or *C. pepo*. The project involved the use of molecular techniques such as PCR, Sanger sequencing, and also networking with local Māori growers. At the conclusion of the project it became clear that a research field that used such research skills and also provided some benefit to Māori would bring utmost satisfaction to me. As a Māori science student I also felt obliged to partake in a research project that would be of some significance to my whanau, iwi, and I. By coincidence I was briefed on the commencement of my summer project about the Totara, Forestry project at Scion. I was very interested in being part of a project where modern research techniques could be utilised to gain knowledge and help solve the issue of declining timber resources for Tohunga whakairo (carving). This thesis is written in hope that the future resources of totara will be sustained in a manner that allows the use of timber for whakairo by Māori throughout New Zealand.
Table of Contents

Abstract .. iii
Acknowledgements ... iii
My Position within this Research Project ... vi
Table of Contents ... vii
List of Tables .. x
List of Figures .. xii

Chapter 1 Introduction

1.1 General Introduction .. 1
1.2 Natural History of *Podocarpus* .. 2
 1.2.1 Origins of New Zealand Podocarps ... 2
 1.2.2 Natural Distribution and Forest Ecology .. 3
 1.2.3 Reproductive Biology .. 5
1.3 Uses of Totara .. 5
 1.3.1 Totara and Māori Cosmology ... 5
1.4 Application of Differentiating Totara Seedlings .. 8
 1.4.1 Commercial Timber Resource ... 8
 1.4.2 Carving Timber for Māori .. 9
 1.4.3 Pharmaceutical Companies ... 9
 1.4.4 Nursery Growers .. 10
 1.4.5 Ecorestoration ... 11
1.5 Species Delimitation ... 11
1.6 Defining Species Limits ... 16
 1.6.1 Molecular Marker Development .. 16
 1.6.2 Next Generation (High-Throughput) Sequencing 17
 1.6.3 Chloroplast Markers .. 18
 1.6.4 Nuclear EST Markers .. 18
 1.6.5 Low Cost Screening Methods for Nuclear DNA 19
1.7 Hypotheses and Work Undertaken ... 20

Chapter 2 Materials and Methods .. 21
 2.1 Māori Consultation ... 21
 2.2 Other Consultation – DOC ... 22
 2.3 Sampling ... 23
 2.3.1 Site Selection ... 23
 2.3.2 Sample Collection .. 24
 2.4 Genomic DNA Extraction .. 25
 2.5 Molecular Marker Development ... 26
 2.5.1 Plant Genomes ... 26
 2.6 The Chloroplast Genome ... 33
 2.6.1 Assembly and Annotation of Chloroplast Genome 33
 2.6.2 Identifying Polymorphic “hotspot” Regions 35

Chapter 3 Results ... 38
 3.1 Māori Consultation ... 38
 3.2 Sample Collection .. 39
 3.3 Genomic DNA Extraction .. 43
 3.4 Molecular Marker Development ... 44
 3.4.1 Nuclear Markers .. 44
 3.4.2 High Resolution Melting (HRM) Screening and Analysis 48
 3.4.3 Annotation of Nuclear Molecular Markers 68
 3.4.4 Cluster Analysis .. 74
 3.5 The Chloroplast Genome ... 81
 3.5.1 Assembly and Annotation of the Totara Chloroplast Genome 81
 3.5.2 Identifying Polymorphic “hotspot” Regions 83

Chapter 4 Discussion ... 86
 4.1 Consultation with Maori .. 86
 4.2 Sample Collection .. 87
 4.3 Molecular Marker Development ... 87
 4.3.1 Nuclear Markers .. 87
 4.3.2 High Resolution Melting (HRM) Screening and Analysis 89
Table 1: Contacts for Māori consultation. .. 22
Table 2: Sites chosen based on presence of totara species. Target populations of totara and P. hallii present at 7 sites. ... 24
Table 3: Details of planned totara sample collection ... 25
Table 4: Parameters used to design HRM primers .. 30
Table 5: Summary of samples used for screening (seed source) 31
Table 6: Details of primers used to fill P. totara chloroplast gaps 33
Table 7: Number of totara samples collected (original planned estimates shown in brackets) .. 39
Table 8: Example of five SNPs identified using bcftools software 45
Table 9: Example of five results obtained with the Galaxy pipeline. Contig name refers to nuclear contig used. Forward and reverse primers are shown. Information used for filtering is shown in columns 4 and 5. .. 47
Table 10: Types of Podocarpus species splits produced for HRM analysis with Galaxy primers .. 50
Table 11: Phase 4 screening results for P. aurea, P. lawrencii and synthetic hybrid samples. “Synthetic hybrid” samples comprised P. totara and P. hallii DNA 57
Table 12: Summary of 10 markers developed and their phylogenetic resolutions. T=P. totara, H=P. hallii, A=P. acutifolius, N=P. nivalis ... 67
Table 13: Gene description for markers based on Blast2GO results. The 10 successful candidate markers are highlighted in red. ... 68
Table 14: Location of P. totara SNPs in putative hotspot regions of the chloroplast genome ... 85
Table 15: Description of gene origins for 10 nuclear markers. 96
Table 16: Summary of what marker to use when differentiating P. totara from other species .. 99
APPENDICES

Table 1: Nuclear Primers ..112
Table 2: Pine Primers ...113
Table 3: Galaxy Primers ...113
Table 4: Samples Used for Screening ...116
Table 5: Sample Details ...119
Table 6: HRM Screening Results – Phase 4 ...131
LIST OF FIGURES

Figure 1: Long narrow seed of *P. hallii* and ovoid seed of *P. totara* on the right.........10
Figure 2: Leaf morphology of *P. totara*, *P. hallii*, *P. acutifolius*, *P. nivalis*12
Figure 3: Deeply furrowed bark of *P. totara* (A), thin paper bark of *P. hallii* (B)............14
Figure 4: Diagram summarising the process used to detect interspecific SNPs.27
Figure 5: Representation of a typical VCF file with each line representing a SNP call and the information to it shown in tabular format ...28
Figure 6: Summary of screening process for marker development30
Figure 7: Circos plot of taro (*Colocasia esculenta*) ...36
Figure 8: Example of a putative SNP..37
Figure 9: Photograph of Makatiti Dome ...39
Figure 10: Geographic origin of *Podocarpus* samples collected40
Figure 11: Geographic origin of *Podocarpus* samples collected from the Taranaki site. Altitude at which samples have been collected is indicated (bottom left).41
Figure 12: Geographic origin of *Podocarpus* samples collected from the Mamaku site. Altitude at which samples have been collected is indicated (top right)41
Figure 13: Geographic origin of Podocarpus samples collected from the Pureora site. Altitude at which samples have been collected is indicated (bottom left).42
Figure 14: Geographic origin of *Podocarpus* samples collected from the Makatiti site. Altitude at which samples have been collected is indicated (top left).42
Figure 15: Electrophoresis of totara DNA extracts to confirm the presence of high molecular weight DNA ..43
Figure 16: Summary of protocol for SNP identification ..44
Figure 17: Example of a putative SNP visualised using Tablet.. ..46
Figure 18: Schematic representation of screening results for primers.........................48
Figure 19: HRM profile of four *Podocarpus* species for marker GA9050
Figure 20: Examples of HRM profile for four *Podocarpus* species described in Table 10 using marker GA44, GA77, & GA92 ...51
Figure 21: HRM profile of unsuccessful markers for four *Podocarpus* species52
Figure 22: HRM profile of four Podocarpus species for marker GA90. 53
Figure 23: HRM profile of four Podocarpus species for marker GA90. 54
Figure 24: HRM profile of four Podocarpus species for marker GA42. 54
Figure 25: Example of complex HRM profile shown in phase 2 screening. 55
Figure 26: HRM profile of four species for marker GA99. 56
Figure 27: HRM profile of four species for marker GA15 58
Figure 28: HRM profile of four species for marker GA48 59
Figure 29: HRM profile of four species for marker GA54 60
Figure 30: HRM profile of four species for marker GA58 61
Figure 31: HRM profile of four species for marker GA78 61
Figure 32: HRM profile of four species for marker GA84 62
Figure 33: HRM profile of four species for marker GA90 63
Figure 34: HRM profile of four species for marker GA92 64
Figure 35: HRM profile of four species for marker GA99 65
Figure 36: HRM profile of four species for marker GA113 66
Figure 37: Neighbor-Net analysis (A) and Neighbor-Joining tree (B) for accessions from the Pureora Site. .. 74
Figure 38: Neighbor-Net analysis (A) and Neighbor-Joining tree (B) for accessions from the Mamaku Site .. 76
Figure 39: Neighbor-Net analysis (A) and Neighbor-Joining tree (B) for accessions from the Makatiti Site .. 77
Figure 40: Neighbor-Net analysis (A) and Neighbor-Joining tree (B) for accessions from the Taranaki Site .. 79
Figure 41: Neighbor-Joining tree for all accessions from Phase 4 screening including data from four transect sites (Pureora, Mamaku, Makatiti, Taranaki). 80
Figure 42: Chloroplast genome of P. totara with orientation and order of contigs deduced via PCR and Sanger sequencing. 83
Figure 43: Circos plot of P. totara x P. hallii ... 83
Figure 44: Example of a putative SNP in the chloroplast genome of P. totara visualised using Tablet ... 85