Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Development of a Beverage Model to Test Appetite Control Food Ingredients

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Technology

in

Food Technology

at Massey University, Palmerston North, New Zealand

Hui Hsing Irene Ho
2013
The present project is part of the broader ‘Foods for Appetite Control' research programme of Plant & Food Research. The programme aims to deliver validated satiety effects (reduce appetite and provide more than four hours of satiety) in foods through phytochemicals and macro-nutrients. As it is necessary to validate the satiety effects through clinical trials, a beverage model was developed. It served as a ‘vehicle’ for incorporating phytochemicals (e.g. fruit extract) and macro-nutrients (e.g. viscous fibre – alginate) to deliver their satiety effects, which were validated by a satiety measurement trial.

The development work began with the characterization of viscous fibres. Based on the literature review, pectins and alginates appear to be more satiating than other viscous fibres. It is believed that gastric gelation can induce satiety, through the formation of a gel that has some strength (presumably in the stomach). Based on rheological measurements, Protanal® LF120 alginate and Grindsted® Pectin LA410 were selected for further evaluation in the beverage model. These viscous fibres met the criteria of providing viscosity to the beverage, showing sensitivity to acids and calcium ions resulting in gelation, and contributing to higher gel strength than others that were evaluated.

The beverage model was developed as a partial-meal replacer beverage, which is non-dairy, soy protein-based, fruit-flavoured (blueberry), 250 mL and of neutral pH (~7.2). The development work has established a base formulation and processing method for the beverage model and has successfully incorporated Protanal LF120 (0.25% and 0.5%) and fruit extract (0.2%). Due to its low viscosity and poor stability in UHT-processing even at high levels, Pectin LA410 was excluded from further evaluation. Incorporation of quercetin and isoquercetin into the beverage model was unsuccessful because of their insolubility in water and interactions with soy proteins.

A methodology for satiety measurement was established and a trial was carried out to validate the satiety effects (subjective appetite) of the fruit extract and Protanal LF120 in the beverage model. The trial used a preload (6 test beverages), within-subject (n = 12), repeated measures, completely balanced, crossover and randomized design. The satiety effect of Protanal LF120 was found to be dose-dependent; higher alginate level significantly increased the satiety effect of the beverage. Differences in mean appetite
ratings \((P < 0.05)\) between low and high alginate levels were 6.9\%, 8.3\%, 10.6\%, 6.3\% and 6.7\% for hunger, fullness, satiety, desire to eat and prospective food consumption ratings, respectively.

On the other hand, the data did not reveal statistically significant results across all appetite scales (except for hunger, \(P = 0.015\)) between beverages with and without fruit extract. In addition, the interaction of alginate\(^*\)fruit extract was not statistically significant, implying that the higher satiety effect of the high level alginate \(+\) fruit extract beverage could be purely due to the alginate. Further testing is warranted: (1) to incorporate higher levels of fruit extract in the beverage model to evaluate any dose-dependency, (2) to determine if an additive or synergetic satiety effect exists with a higher level of fruit extract and high alginate level in the beverage, and (3) to modify the current experimental design to increase power of the study to 80\% by increasing the number of subjects.
Acknowledgements

This project is funded by the New Zealand Ministry of Business, Innovation and Employment (MBIE) through the ‘Foods for Appetite Control’ research programme. I would like to acknowledge the administrative, operational and other support provided by The New Zealand Institute for Plant & Food Research Ltd (PFR) and The Institute of Food, Nutrition and Human Health (IFNHH) of Massey University.

I would like to express my deepest gratitude and sincere thanks to my supervisors, Dr. Lara Matia-Merino (IFNHH) and Dr. Lee Huffman (PFR), for their valuable advice, guidance, support and encouragement throughout the project. It has been a very enriching and enjoyable project journey with them.

There are many helpful professionals who have kindly supported the project work, in one way or another. Sincere thanks to (Ms./Mrs./Mr./Dr.) Garry Radford, Warwick Johnson, Michelle Tamehana and Steve Glasgow of IFNHH; Duncan Hedderley, Virginia Corrigan, Claire Redman, Shiji Nair, Sarah Eady, Kevin Sutton, Chrissie Butts, Carolyn Lister, Carl Massarotto and Michelle Hopson of PFR; and Paul Ginn of Sanitarium. The prompt organization of ingredients by many suppliers is highly appreciated; they include Graeme Nealie (Hawkins Watts), Derek Horne (DuPont Nutrition and Health), Sarah Brodrick (GS Hall), Friederike Socik (Salkat) and Clinton Meharry (Sherratt).

A very big THANK YOU to all participants of the satiety measurement trial, the trial will not be possible without their enthusiasm and helpfulness. Participants who have consented to be acknowledged are (Ms./Mrs./Mr./Dr.) Sheridan Martell, Marian McKenzie, Greg Sawyer, Carl Massarotto, Belinda Diepenheim, Sue Middlemiss-Kraak, Hannah Smith, Lei Wang, Robert Simpson, Mareike Knaebel, Siva Sivakumaran, Huaibi Zhang and Kerry Bentley-Hewitt.

Last but not least, special thanks to Ms. Esther Chong for her company, encouragement and support during hectic times of the project.
Table of Contents

Abstract ... i
Acknowledgements .. iii
Table of Contents ... v
List of Tables and Figures .. viii
Chapter 1 Introduction ... 1
Chapter 2 Literature Review .. 3
 2.1 Introduction ... 3
 2.2 Appetite control: Satiation and Satiety... 3
 2.2.1 Defining satiation and satiety... 3
 2.2.2 Factors affecting satiation and satiety.. 4
 2.2.3 Measuring satiation and satiety ... 7
 2.2.3.1 Free-living versus laboratory studies ... 7
 2.2.3.2 Preload study design ... 8
 2.2.3.3 Covert vs. overt experimental protocol... 11
 2.2.3.4 Common models and designs of satiety studies............................. 11
 2.2.3.5 Types, reliability and validity of self-report scales in satiety studies 12
 2.2.3.6 Confounders in satiety studies... 15
 2.2.3.7 Biomarkers of satiation and satiety ... 15
 2.3 Food Ingredients for Enhancing Satiety ... 16
 2.3.1 Fibres and hydrocolloids... 17
 2.3.1.1 Pectins .. 22
 2.3.1.2 Alginates .. 23
 2.3.1.3 β-glucans ... 25
 2.3.2 Proteins... 36
 2.3.2.1 High protein diets ... 36
 2.3.2.2 Different sources of protein .. 37
 2.3.2.3 Mechanisms of action ... 38
 2.3.2.4 Controversy on the safety of high protein diets 39
 2.3.3 Plant- and lipid-based ingredients ... 40
 2.4 Summary and recommendations ... 46
Chapter 3 Materials and Methods .. 49
 3.1 Introduction ... 49
 3.2 Characterization of viscous fibres ... 49
 3.2.1 Materials ... 49
Chapter 6 Satiety Measurement Trial ... 113
 6.1 Introduction .. 113
 6.2 Results and discussion .. 113
 6.2.1 Microbiological testing of the beverages .. 113
 6.2.2 Estimated nutritional contents of the test foods 114
 6.2.3 Solids content, pH and rheological properties of the beverages 117
 6.2.4 Sensory evaluation of the beverages .. 121
 6.2.5 Subjective appetite .. 125
 6.2.5.1 Satiety effect of the fruit extract .. 125
 6.2.5.2 Satiety effect of the alginate .. 126
 6.2.5.3 Satiety effect of fruit extract + alginate 128
 6.2.5.4 Power analysis .. 135
 6.2.5.5 Sources of variation .. 135
 6.3 Conclusion .. 138

Chapter 7 Key Findings, Conclusions and Recommendations 139

References .. 144

Appendix I – Advertisement 'Seeking participants for a satiety measurement trial' 152
Appendix II – Participant Information Sheet and Consent Form 153
Appendix III – Appetite Rating Form ... 159
Appendix IV – Sensory Evaluation Form ... 172
Table 1 Factors affecting satiation and satiety (Adapted from Benelam, 2009; Blundell et al., 2010) ...5

Table 2 Recommended primary scales for self-reported appetite in healthy adults, using line scales of 100 or 150 mm on paper or appropriate length for electronic capture systems (Adapted from Blundell et al, 2010) ...9

Table 3 Issues and considerations when using preload study design (Adapted from Benelam, 2009; Blundell et al., 2010) ..10

Table 4 Confounders in satiety studies (Adapted from Benelam, 2009; Blundell et al., 2010) ...15

Table 5 Grouping of fibres and their assumed physicochemical properties (Adapted from Wanders et al, 2011) ...20

Table 6 Studies investigating the effects of viscous fibres on satiety, with a focus on pectin, alginate and β-glucan in beverages or liquid test meals. Abbreviations: Visual analogue scales (VAS), ad libitum (AB) ..27

Table 7 Potential ingredients for satiety enhancement and/or weight management 41

Table 8 List of materials used in the characterization of viscous fibres ...50

Table 9 Formulations of the GDL-acidication method ...52

Table 10 List of materials / ingredients used, their supplier and functionality ...55

Table 11 Age and BMI data of the participants ..58

Table 12 The test beverages ..59

Table 13 List of materials used in the satiety measurement trial ..59

Table 14 Product information, pH and viscosity data of the pectins and alginates 66

Table 15 Beverage concepts (Adapted from Kleef et al., 2011) ..81

Table 16 Usage levels of ingredients for the beverage model ... 83

Table 17 Viscosity data of beverages with various levels of CMC, beverages without hydrocolloid and the commercial beverage ...86

Table 18 Viscosity data of beverages with various levels of Protanal LF120, and the commercial beverage (CB) ..87
Table 19 Viscosity data of Pectin LA410 solutions, old and new samples 89
Table 20 Viscosity data of beverages from laboratory trials and pilot plant trials 96
Table 21 Descriptions and results of the evaluation of quercetin and isoquercetin in the beverage model .. 104
Table 22 Formulations of the beverages for satiety measurement trial 112
Table 23 Microbiological test results of the beverages ... 115
Table 24 Estimated nutritional contents of various combinations of test beverage and breakfast .. 117
Table 25 Solids content, pH and viscosity data of the test beverages 118
Table 26 JAR score means and ANOVA results of the beverages 122
Table 27 RM ANCOVA results comparing beverages with and without fruit extract .. 125
Table 28 Mean appetite ratings and RM ANCOVA results comparing none, low and high alginate levels in the beverages ... 127
Table 29 Mean appetite ratings, RM ANCOVA results and mean total AUC of the beverages ... 129

Figure 1 The ‘Satiety Cascade’ linking the timing and sequence of eating motivations and behaviours to associated cognitive and physiological processes (Source: Blundell et al, 2010) ... 5
Figure 2 The SLIM scale (Source: Cardello et al., 2005) .. 14
Figure 3 Chemical structure of pectin (a repeating segment of the molecule) (Source: Thakur et al., 1997) .. 22
Figure 4 Chemical structure of alginate (a) monomers, (b) chain conformation, and (c) block distribution (Source: Draget et al., 2005) .. 24
Figure 5 General structure of cereal β-glucans (Source: Gómez et al., 1997) 25
Figure 6 Anton Paar Physica MCR 301 Rheometer .. 51
Figure 7 Settings of the rheometer for viscosity measurements 52
Figure 8 Settings of the rheometer for gelation (small deformation oscillatory) measurements .. 53
Figure 9 Process flowchart of the beverage model .. 56
Figure 10 Presentation of the standard breakfast ..59

Figure 11 Timeline of a typical test session in the satiety measurement trial61

Figure 12 Viscosity curves of various (a) pectin solutions and (b) alginate solutions (1% and 2% w/w), measured at 20°C ...67

Figure 13 Viscosity curves of (a) Pectin Classic AF101 and (b) Pectin AMD780 solutions (2% w/w), measured at 37°C, with and without pH adjustment to 2.068

Figure 14 Gelation profiles of Pectin LA410 (2% w/w), changes in G’ and G” correlation to lowering of pH by 0.5M GDL, tricalcium phosphate was used at 0.4% w/w (equivalent to 0.16% Ca^{2+}), measured at 37°C, 1 Hz and 0.2% strain70

Figure 15 Equations of the chemical reactions involved ...71

Figure 16 Gelling mechanism of low methoxyl pectins; complexing with calcium ions (Source: Herbstreith & Fox, 1999) ...71

Figure 17 Viscosity curves of Pectin Classic AF101, Pectin AMD780 and Pectin LA410 solutions (2% w/w), measured at 37°C, with pH adjustment to 7.0 using NaOH (1N) ..72

Figure 18 Viscosity curves of Kelcosol solutions (2% w/w), measured at 37°C, with and without pH adjustment to 2.0 ...73

Figure 19 Gelation profiles of Protanal IC2053 (2% w/w), changes in G’ and G” correlation to lowering of pH (a) by either 0.5M or 1M GDL, and (b) by 1M GDL, tricalcium phosphate was used at 0.4% w/w (equivalent to 0.16% Ca^{2+}), measured at 37°C, 1 Hz and 0.2% strain ...74

Figure 20 The egg-box model for binding of divalent cations e.g. Ca^{2+} to homopolymeric blocks of \(\alpha\)-L-guluronic residues, and a probably binding site in a GG-sequence (Source: Draget et al., 2005) ..75

Figure 21 Gelation profiles of Dariloid QH (2% w/w), changes in G’ and G” correlation to lowering of pH by 1M GDL, tricalcium phosphate was used at 0.4% w/w (equivalent to 0.16% Ca^{2+}), measured at 37°C, 1 Hz and 0.2% strain76

Figure 22 Gelation profiles of Protanal LF120 (2% w/w), changes in G’ and G” correlation to lowering of pH by 1M GDL, tricalcium phosphate was used at 0.4% w/w (equivalent to 0.16% Ca^{2+}), measured at 37°C, 1 Hz and 0.2% strain77

Figure 23 The slip effect phenomenon observed in Protanal LF12078

Figure 24 Gelation profiles of the pectin and alginates (2% w/w), changes in G’ correlation to lowering of pH by GDL, (a) without and (b) with tricalcium phosphate used at 0.4% w/w (equivalent to 0.16% Ca^{2+}), measured at 37°C, 1 Hz and 0.2% strain ..79

x
Figure 25 Viscosity curves of the commercial beverage, measured at 4°C and 20°C 82

Figure 26 Viscosity curves of the control beverage (initially without hydrocolloid), commercial beverage and beverages with 0.5% Pectin LA410 / Protanal LF120, lab trial (LT) 3/5/12, measured at 20°C.. 84

Figure 27 Viscosity curves of the commercial beverage, beverage without hydrocolloid, and beverages with various levels of CMC, measured at 20°C... 85

Figure 28 Gelation profiles of beverage without hydrocolloid and beverage with 0.3% CMC, changes in G' and G" correlation to lowering of pH by 0.5M GDL, measured at 37°C, 1 Hz and 0.2% strain ... 86

Figure 29 Viscosity curves of the commercial beverage and beverages with various levels of Protanal LF120, measured at 20°C.. 88

Figure 30 Viscosity curves of Pectin LA410 solutions (1%, 1.5% and 2% w/w), old vs. new samples, measured at 20°C ... 89

Figure 31 Viscosity curves of the commercial beverage and beverages with various levels of Pectin LA410 (new sample), measured at 20°C... 90

Figure 32 Viscosity curves of beverages with and without potassium citrate, measured at 20°C .. 92

Figure 33 Gelation profiles of beverages (a) with 0.4% Protanal LF120 and (b) 2.9% Pectin LA410, with and without potassium citrate, changes in G' and G" correlation to lowering of pH by 0.5M GDL, measured at 37°C, 1 Hz and 0.2% strain....................... 93

Figure 34 Diagram showing the chemical reactions that could occur in beverages with potassium citrate, tricalcium phosphate, and alginate or pectin, during acidification by GDL.. 94

Figure 35 Viscosity curves of commercial beverage and control beverages with pasteurization in lab trial (LT) vs. UHT-processing in pilot plant trial (PT), measured at 20°C... 97

Figure 36 Viscosity curves of beverages with (a) low level alginate and (b) high level alginate, pasteurization in lab trial (LT) vs. UHT-processing in pilot plant trial (PT), measured at 20°C.. 98

Figure 37 Viscosity curves of beverages with (a) low level pectin and (b) high level pectin, pasteurization in lab trial (LT) vs. UHT-processing in pilot plant trial (PT), measured at 20°C ... 100

Figure 38 (a) Fruit extract in water, 0.1% (left) and 0.2% (right), (b) Beverages after centrifugation, from left to right: Control, 0.1% fruit extract (before heating), 0.1% fruit
extract (after heating), 0.2% fruit extract (before heating) and 0.2% fruit extract (after heating)...

Figure 39 Pilot plant beverages, from left to right: (1) with fruit extract, (2) with fruit extract and colourings and (3) without fruit extract, with colourings.

Figure 40 NIP and ingredients of the beverages – (a) Control and CMC + fruit extract, (b) LLA and LLA + fruit extract, (c) HLA and HLA + fruit extract, negligible nutritional contribution by fruit extract is assumed ...

Figure 41 Viscosity curves of the commercial beverage and the test beverages (UHT-processed), measured at 20°C..

Figure 42 Gelation profiles of beverages (a) Control (694) / CMC + fruit extract (786) and (b) LLA (694) / LLA + fruit extract (127), changes in changes in G’ and G” correlation to lowering of pH by 0.5M GDL, measured at 37°C, 1 Hz and 0.2% strain ...

Figure 43 Gelation profiles of beverages HLA (905) / HLA + fruit extract (289 and 281), changes in changes in G’ and G” correlation to lowering of pH by 0.5M GDL, measured at 37°C, 1 Hz and 0.2% strain ..

Figure 44 Gelation profiles of the test beverages, changes in changes in G’ correlation to lowering of pH by 0.5M GDL, measured at 37°C, 1 Hz and 0.2% strain

Figure 45 Histogram of JAR score means of the beverages, grouping using Tukey Method, 95.0% confidence, NSD: not significantly different

Figure 46 Top row left to right: beverages without fruit extract – 543, 694 and 905; bottom row left to right: beverages with fruit extract – 786, 127 and 281

Figure 47 Histogram of appetite ratings; means ±SE, n = 12, grouping using Tukey Method, 95.0% confidence, NSD: not significantly different

Figure 48 Histogram of appetite ratings; means ±SE, n = 12, grouping using Tukey Method, 95.0% confidence, NSD: not significantly different

Figure 49 Histgrams (a) Mean ratings (b) Total AUC; means ±SE, n = 12, grouping using Tukey Method, 95.0% confidence, NSD: not significantly different

Figure 50 Hunger ratings, means ±SE, n = 12, after consumption of preload (test beverage) and breakfast. BL: baseline (~5 minutes before preload)

Figure 51 (a) Fullness and (b) Satiety ratings; means ±SE, n = 12, after consumption of preload (test beverage) and breakfast. BL: baseline (~5 minutes before preload) .

Figure 52 (a) Desire to eat and (b) Prospective consumption ratings; means ±SE, n = 12, after consumption of preload (test beverage) and breakfast. BL: baseline (~5 minutes before preload) ...
Figure 53 Interval plot of appetite rating data comparing females and males, 95% confidence interval for the mean... 136

Figure 54 Interval plot of appetite rating data (a) hunger and fullness, (b) satiety, desire to eat and prospective consumption; comparing 12 subjects, 95% confidence interval for the mean... 137

Figure 55 Summary on the key findings and methodology of the project 140