Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE USE OF OESTRADIOL BENZOATE AND PROGESTERONE TO SYNCHRONISE OESTRUS IN DAIRY CATTLE

A thesis presented in partial fulfilment of the requirement for the Degree of Master of Veterinary Science at Massey University

David William Hanlon
1995
CURRENT OESTRUS SYNCHRONISATION REGIMES FOR CATTLE ARE BASED ON SYNCHRONISING THE END OF THE PROGESTATIONAL PHASE OF THE OESTROUS CYCLE SO THAT OVULATION OCCURS SIMULTANEOUSLY IN TREATED ANIMALS. THE END OF THE PROGESTATIONAL PHASE CAN BE SYNCHRONISED THROUGH INDUCING PREMATURE LUTEOLYSIS USING PROSTAGLANDIN F₂₅ AND ITS ANALOGUES OR BY ARTIFICIALLY EXTENDING DIOESTRUS USING EXOGENOUS PROGESTERONE TREATMENT. THE TIME TAKEN FOR SUBSEQUENT FOLLICULAR MATURATION AND OVULATION TENDS TO BE INCONSISTENT BETWEEN ANIMALS, WHICH CONTRIBUTES TO THE POOR FERTILITY OBTAINED FOLLOWING FIXED-TIME INSEMINATION AFTER OESTRUS SYNCHRONISATION TREATMENTS. THE VARIABLE RATE OF FOLLICULAR DEVELOPMENT OCCURRING AFTER A SYNCHRONOUS DECLINE IN PLASMA PROGESTERONE LEVELS IS A MAJOR LIMITING FACTOR IN ACHIEVING A DEGREE OF SYNCHRONY OF OESTRUS AND OVULATION WHICH WOULD ALLOW FOR FIXED-TIME INSEMINATION.

Controlling the time of ovulation using exogenous oestrogen to induce a pre-ovulatory LH surge is a potential method by which the variability in timing of ovulation may be reduced. Alternatively, re-setting follicular wave patterns in different animals at the commencement of synchrony treatments using exogenous oestrogen, so that follicular wave emergence is synchronised, is another method by which the variability in timing of ovulation could be reduced.

A clinical trial was conducted involving 750 dairy heifers in 13 herds to determine the effects of 0.5 mg oestradiol benzoate administered intramuscularly 24 hours after removal of progesterone-containing intravaginal devices (CIDR-B) on the occurrence and timing of oestrus, synchronised pregnancy rate and synchronised conception rate in dairy heifers. Within each herd heifers were randomly allocated to one of two oestrus synchronisation treatments. All heifers received a CIDR-B progesterone-containing intravaginal device with an attached 10 mg oestradiol benzoate capsule for 12 days. Twenty-four hours after CIDR-B removal one group received an intramuscular injection of 0.5 mg oestradiol benzoate and the other group received an intramuscular injection of a placebo. Heifers were inseminated to detected oestrus 48 and 72 hours after device
removal. Administration of oestradiol benzoate 24 hours after removal of CIDR-B devices significantly increased the number of heifers exhibiting oestrus within the observation period (96.1% vs 90.5%, p < 0.01). It also altered the onset of oestrus so that significantly more heifers were in oestrus (86.6% vs 72.3%, p < 0.01) and conceived (47.1% vs 37.5%, p < 0.05) by 48 hours after device removal. The overall synchronised conception rate and synchronised pregnancy rate were unaffected by treatment.

The effects of the same oestrus synchronisation treatment, on the time to oestrus, ovulation, and peak LH concentration were examined in dairy heifers. Treatment with oestradiol benzoate tended to reduce the time from device removal to LH peak in randomly cycling heifers (median time to LH peak 40.1 hr vs 63.9 hr, p=0.07), but treatment with oestradiol had no significant effect on the time to LH peak, standing oestrus or ovulation in heifers synchronised during late dioestrus.

The effects of oestradiol benzoate on the dominant follicle and corpus luteum of cows treated with progesterone (CIDR-B) at different stages of the oestrous cycle were investigated. Treatment with oestradiol benzoate on day 3 of the oestrous cycle caused atresia of the dominant follicle present at CIDR-B insertion and resulted in the early emergence of the subsequent follicular wave. Treatment with oestradiol benzoate on days 6, 9, 12 and 15 of the oestrous cycle had no effect on follicular characteristics or the emergence of the subsequent follicular wave. Treatment with oestradiol benzoate had no effect on the day of onset of regression of the corpus luteum regardless of the stage of the oestrous cycle at CIDR-B insertion.

The effectiveness of re-using CIDR-B devices to synchronise returns to oestrus in non-pregnant dairy heifers was examined. After an initial CIDR-B synchronisation programme in dairy heifers, the used CIDR-B devices were re-inserted 14 or 16 days after first insemination, for a period of 5 days. Re-insertion of used CIDR-B devices significantly increased the number of non-pregnant heifers detected in oestrus and inseminated by 48 hours after device removal (45.2% vs 27.3%, p < 0.05, in herds where CIDR's were re-inserted on day 14; 48.8% vs 13.6%, p < 0.05, in herds where CIDR's
were re-inserted on day 16). Re-insertion at 14 or 16 days after first insemination was equally effective in increasing visible returns to service. Conception rate was unaffected by CIDR-B treatment.

In conclusion, intramuscular administration of oestradiol benzoate 24 hours after the removal of CIDR-B progesterone-containing intravaginal devices increases the number of heifers exhibiting oestrus at an earlier time after device removal. The administration of oestradiol benzoate appears to reduce the variability in timing of LH peaks typically occurring in a herd of synchronised heifers due to different stages of follicular development being present at the time of CIDR-B removal. Treatment with oestradiol benzoate at the start of CIDR-B treatment appears to have no significant effect on synchronising follicular wave emergence in different animals other than those in early metoestrus. Administration of oestradiol benzoate after treatment with exogenous progesterone therefore appears to offer the most potential in controlling the time of oestrus and ovulation and allowing for fixed-time insemination.
ACKNOWLEDGEMENTS

Over the past 3 years I have been very fortunate to work with and learn from many different people in the Department of Veterinary Clinical Sciences at Massey University. The opportunity to complete a post-graduate degree whilst retaining a clinical position has been rewarding, challenging and above all, thoroughly enjoyable.

The guidance, assistance and support of my supervisors Prof. Norm Williamson, Ian Steffert and Jeff Wichtel is gratefully appreciated. Many thanks also to Dirk Pfeiffer for his advice regarding statistical analyses and study design.

Many people have spent many hours assisting with the large amount of work involved in this thesis. All of my supervisors have helped in this regard. I owe a huge thankyou to Louise Craigie for the hundreds of hours she has spent designing graphs, tables, slides, helping with blood collection, ultrasonography, and generally providing a great sense of humour and valuable friendship. Thankyou to Genevieve Rogerson for providing assistance with blood collection, ultrasonography, and heifer synchronisation and for providing an ever-lasting friendship, for helping me fall in love with New Zealand and for changing the way I think about life.

Many people have offered valuable advice and suggestions throughout these studies, Scott McDougall, Jock Macmillan and Glenys Parton have all helped in this regard.

Funding for these projects was provided by InterAg, NZ Ltd, Massey University Research Fund, Veterinary Research Fund, TJ Lewis Veterinary Fund and the Dairying Research Corporation

None of these studies would have been possible without the help of the Manawatu dairymfarmers and their staff who let me use their animals and provided much enthusiasm and support. Thanks to Paul Barber, Harry Brown, David Clegg, Brian Coulter, Colin
Cudby, Ricky Finnigan, Harold Johnston, Gary Knight, Eddie Millard, John Noakes, Kevin O'Connor, Chris Russell, and Darren Smith. The students of the 1993 BVSc final-year class provided valuable assistance in helping with heifer synchronisation, a big thankyou to all of them. Thanks to Robin Whitson for helping manage cattle involved in studies conducted at the Large Animal Teaching Unit.

To my flatmates, friends and drinking partners Andrew, Alan, Emma, Deidre and Nettle a big thankyou for helping make life fun during the past 3 years.

Finally a special thankyou to Mum, Dad, Nan and Pop, Auntie Christine and the Wagner family for fostering my love of veterinary science and dairy farming.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>Publications</td>
<td>xii</td>
</tr>
<tr>
<td>Chapter 1 Literature Review: Oestrus synchronisation in cattle</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2 The effect of oestradiol benzoate administration on oestrous response and synchronised pregnancy rate in dairy heifers after treatment with exogenous progesterone</td>
<td>24</td>
</tr>
<tr>
<td>Chapter 3 Ovulatory responses and plasma luteinising hormone concentrations in dairy heifers after treatment with exogenous progesterone and oestradiol benzoate</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 4 The effect of oestradiol benzoate on ovarian dynamics in dairy cows treated with progesterone</td>
<td>57</td>
</tr>
<tr>
<td>Chapter 5 Re-insertion of the CIDR-B progesterone-containing intravaginal device to synchronise returns to oestrus in dairy heifers</td>
<td>70</td>
</tr>
</tbody>
</table>
General Discussion .. 80

References .. 85
LIST OF FIGURES

Figure 3.1. Profiles of concentration of LH in plasma for dairy heifers treated with a CIDR-B progesterone containing intravaginal device for 12 days in Period 1, with (n=7) (a) or without (n=7) (b) 0.5mg oestradiol benzoate intramuscularly 24 hours after device removal. ... 49

Figure 3.2. Profiles of concentration of LH in plasma for dairy heifers treated with a CIDR-B progesterone containing intravaginal device for 12 days in Period 2, with (n=7) (a) or without (n=7) (b) 0.5mg oestradiol benzoate intramuscularly 24 hours after device removal. ... 50

Figure 3.3. Survival function of time to LH peak in dairy heifers treated with a CIDR-B in Period 1 (n=14) (a) and Period 2 (n=14) (b) with or without 0.5mg oestradiol benzoate intramuscularly 24 hours after device removal (●Oestradiol, ▼ Control). ... 51

Figure 3.4. Survival function of time to standing oestrus in dairy heifers treated with a CIDR-B in Period 1 (n=14) (a) and Period 2 (n=14) (b) with or without 0.5mg oestradiol benzoate intramuscularly 24 hours after device removal (●Oestradiol, ▼ Control). ... 52

Figure 3.5. Survival function of time to ovulation in dairy heifers treated with a CIDR-B in Period 1 (n=14) (a) and Period 2 (n=14) (b) with or without 0.5mg oestradiol benzoate intramuscularly 24 hours after device removal (●Oestradiol, ▼ Control). ... 53
Figure 4.1. Profiles of the treatment dominant follicle (●), post-treatment dominant follicle (■), and corpus luteum (▲) in cows treated with a CIDR-B for 12 days commencing on day 3 of the oestrous cycle, with (a) or without (b) 10mg oestradiol benzoate intravaginally at CIDR-B insertion. ... 64

Figure 4.2. Profiles of the treatment dominant follicle (●), post-treatment dominant follicle (■), and corpus luteum (▲) in cows treated with a CIDR-B for 12 days commencing on day 6 of the oestrous cycle, with (a) or without (b) 10mg oestradiol benzoate intravaginally at CIDR-B insertion. ... 65

Figure 4.3. Profiles of the treatment dominant follicle (●), post-treatment dominant follicle (■), and corpus luteum (▲) in cows treated with a CIDR-B for 12 days commencing on day 12 of the oestrous cycle, with (a) or without (b) 10mg oestradiol benzoate intravaginally at CIDR-B insertion. ... 66

Figure 4.4. Profiles of the treatment dominant follicle (●), post-treatment dominant follicle (■), and corpus luteum (▲) in cows treated with a CIDR-B for 12 days commencing on day 15 of the oestrous cycle, with (a) or without (b) 10mg oestradiol benzoate intravaginally at CIDR-B insertion. ... 67
LIST OF TABLES

Table 2.1. Oestrus synchronisation protocol for dairy heifers treated with a progesterone containing intravaginal device (CIDR-B) for 12 days with or without intramuscular administration of 0.5 mg oestradiol benzoate 24 hours after device removal .. 30

Table 2.2. Number of heifers responding to treatment with a CIDR-B for 12 days with or without intramuscular administration of 0.5mg oestradiol benzoate 24 hours after device removal 34

Table 3.1. Oestrus synchronisation protocol for dairy heifers treated with a progesterone containing intravaginal device (CIDR-B) for 12 days with or without intramuscular administration of 0.5 mg oestradiol benzoate 24 hours after device removal .. 43

Table 3.2. Ovulatory, oestrous and LH responses in dairy heifers treated with a CIDR-B, with or without 0.5 mg oestradiol benzoate intramuscularly 24 hours after CIDR-B removal .. 47

Table 4.1. Characteristics (mean ± SEM) of the dominant follicle and corpus luteum and the time taken to standing oestrus in cows receiving a CIDR-B progesterone-containing intravaginal device with (+ E₂) or without (- E₂) 10mg oestradiol benzoate intravaginally at device insertion on days 3, 6, 9, 12 and 15 of the oestrous cycle (n=3 per group) .. 63

Table 5.1. Oestrous response and conception rates for non-pregnant heifers either receiving or not receiving a CIDR-B device for 5 days, 14 or 16 days after first insemination, to synchronise returns to oestrus .. 76
PUBLICATIONS FROM THIS THESIS

In Press:

Submitted:

