Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ASPECTS OF LIPOLYSIS IN SHEEP

A THESIS PRESENTED IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF AGRICULTURAL SCIENCE
IN ANIMAL SCIENCE AT
MASSEY UNIVERSITY

SAMUEL WALTER PETERSON
1983
ABSTRACT

1. Treatments which might be expected to produce lipolytic responses were applied to ewes. These treatments included fasting and the administration of ACTH, noradrenaline and BGH. Twelve experiments are reported, 3 of which involved indirect calorimetry and 9 which involved measuring the responses of blood hormones and metabolites including GH, insulin, FFA's and glucose.

2. Two groups of ewes were used. The first group consisted of 2 Romneys and 2 Southdowns. Each breed pair comprised a short, fat and a long, lean phenotype which may have been genotypically different in their propensity to be overfat. The second group of ewes comprised 4, 5 year cull Romney ewes.

3. Calorimetry showed that there were no differences in the normal fed metabolic rate of the first group of sheep sufficient to explain their differences in fatness.

4. Fasting (2-3 days) resulted in significantly elevated mean afternoon plasma FFA levels in the long, lean ewes.

5. The fat ewes had steeper regressions of RQ on time when fasted than the lean ewes, which probably indicated a greater rate of lipolysis.

6. The injection of ACTH into ewes produced inconclusive results in terms of plasma hormones and metabolites.

7. Injection of the catecholamine, Bronkephrine into the cull Romney ewes, did not produce any significant effects on blood hormones and metabolites in one study. In a second study N.A. resulted in transitory peaks in GH insulin and FFA's. These results were confused with concurrent responses to feeding.
8. Fasting cull Romney ewes resulted in higher mean afternoon levels of GH and FFA. Insulin levels were lower than in fed sheep but differences were not statistically significant.

9. Administration of ACTH and N.A. did not produce detectable changes in heat production or respiratory exchange ratios. However these studies were complicated by ruminal CO$_2$ production following feeding.

10. Both BGH and PBS infusions produced marked declines in plasma insulin and increases in FFA levels.

11. It is concluded that the prime control of lipolysis in sheep is probably the autonomic nervous system through the release of N.A. at sympathetic nerve endings. GH and insulin secretion are neurally mediated and these hormones have important roles in directing the transfer and utilisation of metabolites between tissues. GH potentiates lipolysis, defends tissue protein stores and promotes the transfer to and utilization of FFA in productive tissues such as muscle and mammary gland. Insulin is primarily anabolic and antilipolytic in adipose tissue. It antagonises GH action in adipose tissue yet supports the anabolic role of GH in the productive tissues.
I am grateful to my supervisors Prof. D.S. Flux and Dr R. Purchas for their help and guidance.

Thanks also to; Dr C.W. Holmes for expert help with the calorimetry, Dr D.D.S. MacKenzie for helpful discussions and advice on biochemical and physiological matters, and to other members of the department for advice and discussions.

Dr R.M. Greenway for glucose analyses and other analytical information. Dr J.M. Gooden for discussions on fatness and advice on the Dole analysis.

Dr S.N. McCutcheon for help and company on the night shift, as well as A.K. Gibson, J. Lockyear and B. Parlane for attending the sheep.

Veronica and Mark Fieldsend for typing the script.

My friends for their encouragement, threats and support and my parents for instilling the ambition.

"What I do is me, for that I came" G.M. Hopkins
CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER ONE: RATIONALE

1.1 The problem of overfatness in meat animals 1
1.2 Grading systems and disincentives to overfatness 1
1.3 The present study 2

CHAPTER TWO: REVIEW OF THE LITERATURE

2.1 Introduction 4
2.2 Pathways of ovine lipid metabolism 5
2.2.1 Introduction 5
2.2.2 Lipogenesis 5
2.2.2.1 Precursors: their sources and transport 5
2.2.2.2 Uptake of preformed fatty acids: lipoprotein lipase 9
2.2.2.3 De novo fatty acid synthesis 10
2.2.2.4 Synthesis of glycerol 3-phosphate 12
2.2.2.5 Esterification 14
2.2.3 Lipolysis 14
2.3 Control of lipogenesis 17
2.3.1 Introduction 17
2.3.2 Supply of precursors 17
2.3.3 Regulation of fatty acid uptake 18
2.3.4 Regulation of fatty acid synthesis 18
2.3.5 Regulation of glycerol 3-phosphate synthesis 21
2.3.6 Regulation of esterification 22
2.3.7 Summary of major factors affecting lipogenesis 23
2.4 Control of lipolysis 23
2.4.1 Introduction 23
2.4.2 Mechanism of hormone action: cAMP 24
2.4.2.1 Introduction 26
2.4.2.2 ACTH 26
2.4.2.3 Catecholamines 27
2.4.2.4 Glucagon 27
2.4.2.5 Corticosteroids 27
2.4.2.6 Growth Hormone 28
2.4.2.7 Insulin 28
2.4.2.8 LH 29
Prostaglandins
Thyroid hormones
TSH
Problems in establishing the role of cAMP
Summary
Hormones affecting lipolysis in sheep
Introduction
ACTH
Catecholamines and the sympathetic nervous system
Glucagon
Corticosteroids
Growth Hormone
Insulin
Prolactin
Prostaglandins
Thyroid hormones
Non-hormonal factors affecting lipolysis in sheep
Glucose
β-hydroxybutyrate and butyrate
Long chain fatty acids and albumin
Calcium
Other agents
Evidence for genetic differences in control of lipolysis between animals
Summary of review
The sheep
Cannulation
Health, feeding and care of sheep
Blood sampling
Requirements
Procedure
Measuring back-fat depth
Plasma glucose assay
Plasma free fatty acid assay
Reagents
Method
3.8 Radioimmunoassays
3.8.1 Growth Hormone RIA
1) Hormones
2) Iodination
3) Antisera
4) Radioimmunoassay method
5) Development of GH RIA
3.8.2 Insulin RIA
1) Hormone
2) Iodination
3) Antisera
4) Radioimmunoassay method
3.8.3 RIA data transformations
3.8.4 Testing parallelism in RIA's
3.9 Experimental design

CHAPTER FOUR: EXPERIMENTAL SECTION
4.1 Calorimetry Experiment I
4.1.1 Experimental design
1) Objectives
2) Method
4.1.2 Results
4.1.3 Discussion
4.2 Experiment I
4.2.1 Experimental design
1) Objectives
2) Method
4.2.2 Results
1) Growth Hormone
2) Glucose
3) Free fatty acids
4.2.3 Discussion
4.3 Experiments II and III
4.3.1 Experimental design
1) Objectives
2) Method
4.3.2 Results
1) Growth Hormone
2) Glucose
3) Free fatty acids
4.3.3 Discussion
4.4 Calorimetry Experiment 2
4.4.1 Experimental design
 1) Objectives
 2) Method
4.4.2 Results
4.4.3 Discussion
4.5 Experiment IV
4.5.1 Experimental design
4.5.2 Discussion
4.6 Experiment V
4.6.1 Experimental design
 1) Objectives
 2) Method
4.6.2 Results
 1) Growth Hormone
 2) Free fatty acids
 3) Glucose
4.6.3 Discussion
4.7 Experiment VI
4.7.1 Experimental design
 1) Objectives
 2) Method
4.7.2 Results
 1) Growth Hormone
 2) Insulin
 3) Glucose
 4) Free fatty acids
4.7.3 Discussion
4.8 Experiment VII
4.8.1 Experimental design
 1) Objectives
 2) Method
4.8.2 Results
 1) Growth Hormone
 2) Insulin
 3) Glucose
 4) Free fatty acids
4.8.3 Discussion
4.9 Calorimetry Experiment 3
4.9.1 Experimental design
 1) Objectives
 2) Method
4.9.2 Results
4.9.3 Discussion
4.10 Experiment VIII
4.10.1 Experimental design
4.10.2 Discussion
4.11 Experiment IX
4.11.1 Experimental design
 1) Objectives
 2) Method
4.11.2 Results
 1) Growth Hormone
 2) Insulin
 3) Glucose
 4) Free fatty acids
4.11.3 Discussion

CHAPTER FIVE: SUMMARY, DISCUSSION AND CONCLUSIONS
5.1 Introduction
5.2 Summary and discussion of experimental results
5.3 Conclusions

APPENDICES

BIBLIOGRAPHY
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Outline of lipoprotein metabolism</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Scheme for triglyceride assimilation</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Pathways of fatty acid synthesis in ruminant adipose tissue</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Pathways of fatty acid metabolism and lipid synthesis and breakdown</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Lipolysis, re-esterification and FFA release in adipose tissue</td>
<td>15</td>
</tr>
<tr>
<td>2.6 Mechanism of hormone action in adipose tissue</td>
<td>25</td>
</tr>
<tr>
<td>2.7 Insulin action on fat cell metabolism</td>
<td>28</td>
</tr>
<tr>
<td>2.8 Model for activation of lipolysis by catecholamines and its modulation by methyl xanthines, fatty acids and adenosine</td>
<td>31</td>
</tr>
<tr>
<td>3.1 The first group of ewes; Romneys and Southdowns of different phenotypes</td>
<td>55</td>
</tr>
<tr>
<td>3.2 The second group of ewes; cull Romneys of similar phenotype and unknown genetic background</td>
<td>57</td>
</tr>
<tr>
<td>3.3 Cannulated Romney Ewe</td>
<td>62</td>
</tr>
<tr>
<td>3.4 FFA standard curve: Regression of FFA concentration on titre of NaOH</td>
<td>72</td>
</tr>
<tr>
<td>3.5 Binding of BGH using 5 dilutions of 1st antibody, 4 dilutions of 2nd antibody, 2 levels of BGH and 2 incubation times</td>
<td>77</td>
</tr>
</tbody>
</table>
3.6 BGH Dose response curves with 3 levels of 2nd antibody after 96 hour incubation 79

3.7 Standard curves of authors BGH standards compared to Prof. D.S. Flux's BGH standards 82

3.8 BGH and OGH standard curves at first antibody dilution of 1:20,000 and unknowns with or without HP in 50μl sample 85

3.9 BGH and OGH standard curves with and without HP and some unknowns at 2 levels (50 and 100μl) with and without HP 87

3.10 Parallelism investigation: Slopes of lines joining bound counts of 2 or 3 levels of plasma samples compared to OGH and BGH standard curves from Experiment IX 98

3.11 Comparison of OGH and BGH regressions in Experiment IX 99

4.1 Standard curves produced in Growth Hormone assay of Experiment I 112

4.2 Plasma Glucose and FFA concentrations in fed ewes of short/fat phenotype and fasted ewes of long/lean phenotype 115

4.3 Slopes of average FFA levels in the afternoon for 2 fed and 2 fasted ewes 117

4.4 Slopes of regressions of RQ on time (days) for 4 sheep when fed or fasted 130

4.5 GH, FFA and Glucose responses to ACTH Experiment IV The effect of ACTH on plasma GH, insulin, glucose and FFA concentrations in four Romney ewes 139
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>The effect of noradrenaline (N.A.) on plasma GH, glucose and FFA concentrations in four Romney ewes</td>
<td>147</td>
</tr>
<tr>
<td>4.7</td>
<td>The effect of fasting on plasma GH insulin glucose and FFA concentrations in 4 Romney ewes</td>
<td>156</td>
</tr>
<tr>
<td>4.8</td>
<td>A ewe in the ventilated hood of the open-circuit calorimetry system used in Calorimetry Experiment 3</td>
<td>164</td>
</tr>
<tr>
<td>4.9</td>
<td>Heat production and respiratory exchange ratio (R) in four Romney ewes showing responses to injections of noradrenaline, ACTH and control solutions</td>
<td>168</td>
</tr>
<tr>
<td>4.10</td>
<td>The interrelationship between O_2 production, CO_2 production and respiratory exchange ratio (R) in a Romney ewe, showing a typical response to feeding and a response to N.A. injection</td>
<td>173</td>
</tr>
<tr>
<td>4.11</td>
<td>The effect of BGH and N.A. on plasma GH, insulin, FFA and glucose in 2 Romney ewes</td>
<td>183</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some Biological Effects of GH</td>
</tr>
<tr>
<td>3.1</td>
<td>Initial phenotypic characteristics of the first group of ewes</td>
</tr>
<tr>
<td>3.2</td>
<td>Initial characteristics of the second group of ewes</td>
</tr>
<tr>
<td>3.3</td>
<td>Composition of feed additive</td>
</tr>
<tr>
<td>3.4</td>
<td>Maintenance requirements of the experimental ewes</td>
</tr>
<tr>
<td>3.5</td>
<td>Design and results (CPM) of factorial experiment to determine optimal RIA method</td>
</tr>
<tr>
<td>3.6</td>
<td>Bound counts (CPM) of 3 dilutions of calf plasma with 3 levels of second antibody after 96 hour incubation</td>
</tr>
<tr>
<td>3.7</td>
<td>Analysis of variance of binding of sheep plasma at 4 levels with 2 dilutions of second antibody</td>
</tr>
<tr>
<td>3.8</td>
<td>Comparison of results from two methods of data manipulation: Estimates of GH levels in plasma of Ewe 57 obtained from log-logit transformation and from Burger transformation using the same set of BGH standards (Experiment (VII))</td>
</tr>
<tr>
<td>3.9</td>
<td>Analysis of variance of estimates of GH concentration (\log_{10} \text{ng.cm}^{-3}) derived from 50 and 100(\mu)l levels of plasma in Experiment IX using OGH standards</td>
</tr>
</tbody>
</table>
Table

3.10 Summary of tests for deviations from parallelism in corrected RIA data presented in Chapter Four 102

3.11 Experimental design: Summary of all experimental trials 104

4.1 Daily heat production of fat and lean ewes (KJ.Kg\(^{-0.75}\)) 107

4.2 Mean heat production of fat and lean ewes (KJ.Kg\(^{-0.75}\).day\(^{-1}\)) 108

4.3 Liveweight and backfat thickness of ewes before and after calorimetry 108

4.4 Planned experimental programme of feeding and fasting 111

4.5 Weights of feed given to fed and fasted ewes 111

4.6 Plasma growth hormone concentration in 2 fed and 2 fasted ewes (Experiment I) 114

4.7 Theoretical respiratory quotients for the oxidation of glucose and fatty acids 129

4.8 Daily respiratory quotients of 4 ewes when fed or fasted for 4-5 days 131

4.9 Design of Experiment V 137

4.10 Design of Experiment VI 146

4.11 Design of Experiment VII 154

4.12 Weight of feed given to sheep (g.d.\(^{-1}\)) 155

4.13 Design of Calorimetry Experiment 3 167
Table

4.14 Treatments and doses applied to each ewe in Calorimetry Experiment 3 167

4.15 Regression coefficients of the polynomial curves of the form $Y = t_1x + t_2x^2 + t_3x^3 + t_4x^4 + C$ fitted to heat production data of 4 ewes 171

4.16 Comparison of heat production values observed in Ewe 57 (Day 1) with those predicted by the fitted polynomial 172

4.17 Design of Experiment IX 181

4.18 Early insulin peak levels associated with feeding (pg cm$^{-3}$) 185

4.19 Lowest insulin levels during BGH infusion period (pg cm$^{-3}$) 186