Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF SOME ENDEMIC VIRUSES OF CATTLE, WITH
PARTICULAR REFERENCE TO ENTERIC VIRUSES.

A thesis presented in partial fulfilment of the
requirements for the degree of Master of
Veterinary Science at Massey University,
New Zealand.

Peter John Keith Durham
B.V.Sc. (Sydney).

May, 1975.
This investigation was undertaken to isolate and characterise a number of viruses from diarrhoeic cattle faeces, as a preliminary step in the systematic investigation of viruses as possible causes of diarrhoea in cattle, and more particularly calves. A further and important aim was to gain further experience in a number of virological procedures.

Using 3 passages of inocula in each of secondary foetal bovine kidney and lung cells and monkey kidney (Vero) cells, 7 viruses were isolated from 56 faeces, 2 intestinal samples, and 1 spleen, all from scouring animals. Five of the isolates were found to produce a rapid and complete cytopathic effect in a variety of cell cultures, and their biological and physicochemical properties were subsequently studied in some depth. One of these isolates was also studied with the immunofluorescent technique, and its buoyant density was determined in a caesium chloride gradient. These isolates were concluded to be bovine enteroviruses, and were found in further studies to be separable into 2 types on the basis of cross-neutralisation tests, fluorescent antibody tests, and behaviour in the presence of low concentrations of hydroxybenzyl benzimidazole. These 2 serotypes on further cross-neutralisation tests were found to be serologically distinct from the 7 U.S. standard serotypes that were available.

Another of the isolates was found to cause a slow growing and relatively nonprogressive type of cytopathic effect in only Vero cells, and was consequently harder to study. On the basis of limited studies of this isolate, it was concluded to be probably a member of the dinorovirus group, possibly having some affinity with the "reov-like" viruses. Further more precise studies will be needed to confirm or refute this relationship.
The remaining virus, which was isolated from the spleen, was identified as being bovine viral diarrhoea (BVD) virus on the basis of its cytopathic effect and neutralisation by standard BVD antiserum.

A limited survey for neutralising antibodies to infectious bovine rhinotracheitis and BVD viruses, and haemagglutinating-inhibiting antibodies to parainfluenza 3 virus and reoviruses 1, 2, and 3 was undertaken. It showed that antibody to all the viruses was present in a considerable proportion of the North Island cattle population.

This work can only be regarded as a preliminary study, as it is probable on the basis of overseas work that a number of other viruses remain to be isolated from diarrhoeic cattle faeces. It is hoped to continue this investigation and to eventually establish a better understanding of the relationships between viruses and bovine gastrointestinal disease, and more particularly to establish their possible economic significance.
ACKNOWLEDGEMENTS

The work for this thesis was carried out whilst in receipt of a bursary from the New Zealand Ministry of Agriculture and Fisheries, whose assistance is gratefully acknowledged.

Particular thanks must go to Dr. G.W. Burgess for the helpful advice and encouragement that he gave during the course of this project.

I would also like to thank Prof. B.W. Manktelow, head of the department, and Dr. J.K. Clarke, for their interest and encouragement. The able and willing technical assistance that was given by Miss L. Fray is very much appreciated, as is the advice and assistance given by Mr. A. Craig and other members of the staff of the electron microscope unit of the Applied Biochemical Division of the DSIR.

Further thanks are due to Mr. T.W. Law for technical assistance with photography, to Dr. R. Marshall and Dr. K. Moriarty for their advice and interest, and to Mrs. D. Steffert for typing the thesis.

Finally, I would like to acknowledge my indebtedness to the late Dr. H.W. Dunne for his generous action in supplying 7 U.S. serotypes of bovine enteroviruses and their corresponding antisera.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES IN TEXT</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
</tbody>
</table>

GENERAL INTRODUCTION

LITERATURE REVIEW

GENERAL MATERIALS AND METHODS

1. Glasswashing And Sterilising Procedures. 15
2. Preparation And Maintenance Of Primary Cell Cultures. 15
3. Production And Maintenance Of Secondary Cells And Cell lines. 16
4. Frozen Storage Of Cell Cultures. 18
5. Storage Of Viral Isolates. ... 18
6. Viral Titration Procedures. .. 19
7. Serum Neutralisation Test. ... 19
8. Viral Haemagglutination Test. .. 20
9. Haemagglutination Inhibition Test. 21
10. Negative Staining Procedure For Electron Microscopy. 22
11. Sectioning Procedure For Electron Microscopy. 22
12. Photography. ... 23

ISOLATION PROCEDURES

1. Materials And Methods. .. 24
2. Results. .. 26
3. Discussion. ... 28

BIOLOGICAL CHARACTERISTICS OF THE ISOLATES

1. Materials And Methods. .. 32
 - a) Cytopathic effects of isolates. 32
 - b) Acridine orange staining. 32
 - c) Coriphosphene 0 staining. 33
(d) Host cell range of isolates.
(e) Haemagglutinating properties of isolates.
(f) Plaque production by enterovirus isolates.
(g) Effect of additives on enterovirus plaque production.
(h) Attempts at plaque production with isolate D74/13-49.
(i) Plaque purification of enterovirus isolates.
(j) One step growth curve.

(2) Results.
(a) Cytopathic effects of isolates.
(b) Acriflavine orange staining.
(c) Coriphosphene O staining.
(d) Host cell range of isolates.
(e) Haemagglutinating properties of isolates.
(f) Plaque production by enterovirus isolates.
(g) Effect of additives on enterovirus plaque production.
(h) Attempts at plaque production with isolate D74/13-49.
(i) Plaque purification of enterovirus isolates.
(j) One step growth curve.

(3) Discussion.

PHYSICOCHEMICAL PROPERTIES OF THE ISOLATES

(1) Materials And Methods.
(a) Filtration studies of the isolates.
(b) Sensitivity of the isolates to bromodeoxyuridine.
(c) Chloroform sensitivity of the isolates.
(d) Ether sensitivity of the isolates.
(e) Sensitivity of the isolates to sodium deoxycholate.
(f) Acid sensitivity of the enterovirus isolates.
(g) Heat stability of the enterovirus isolates.
(h) Cationic stabilisation of the enterovirus isolates.
(i) Sensitivity of isolates to hydroxybenzyl-benzimidazole.
(j) Enterovirus concentration by polyethylene glycol 6000 precipitation.
(k) Enterovirus concentration by protamine sulphate precipitation.
(l) Enterovirus concentration by ammonium sulphate precipitation.
(m) Bucyant density determination of isolate D74/13-49.
(n) Ultracentrifugation of isolate D74/13-49.

(2) Results.
(a) Filtration studies of the isolates.
(b) Sensitivity of the isolates to bromoexyuridine.
(c) Chloroform sensitivity of the isolates.
(d) Ether sensitivity of the isolates.
(e) Sensitivity of the isolates to sodium deoxycholate.
(f) Acid sensitivity of the enterovirus isolates.
(g) Heat stability of the enterovirus isolates.
(h) Cationic stabilisation of the enterovirus isolates.
(i) Sensitivity of isolates to hydroxybenzyl-benzimidazole.
(j) Enterovirus concentration by polyethylene glycol precipitation.
(k) Enterovirus concentration by protamine sulphate.
(l) Enterovirus concentration by ammonium sulphate precipitation.
(m) Bucyant density determination of isolate D74/18.
(n) Ultracentrifugation of isolate D74/13-49.
(c) Electron microscopic examination of negatively stained isolates.

(p) Electron microscopic examination of thin sections of cell cultures infected with the enterovirus isolates and with isolate D7h/13-49.

(3) Discussion.

SEROLOGICAL STUDIES OF THE ISOLATES

(1) Materials And Methods
 (a) Antiserum production.
 (b) Titration of antisera.
 (c) Cross neutralisation tests with the enterovirus isolates.
 (d) Cross neutralisation tests with American enterovirus serotypes and local enterovirus prototypes.
 (e) Identification of isolate D7h/25A.
 (f) Fluorescent antibody production.
 (g) Testing of conjugated antiserum.
 (h) Fluorescent antibody tests with enterovirus isolates.

(2) Results.
 (a) Antiserum production.
 (b) Titration of antisera.
 (c) Cross neutralisation tests with the enterovirus isolates.
 (d) Cross neutralisation tests with American enterovirus serotypes and local enterovirus prototypes.
 (e) Identification of isolate D7h/25A.
 (f) Fluorescent antibody production.
 (g) Testing of conjugated antiserum.
 (h) Fluorescent antibody tests with enterovirus isolates.

(3) Discussion.
LIST OF TABLES IN TEXT

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cultural histories of samples yielding cytopathic agents.</td>
<td>27</td>
</tr>
<tr>
<td>2.</td>
<td>The production of CPE in various cell cultures by the 7 isolates.</td>
<td>47</td>
</tr>
<tr>
<td>3.</td>
<td>The titres of enterovirus isolates in cell cultures in which they produced CPE.</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>Plaque development at 4 days under agar and seaplaque agarose media.</td>
<td>50</td>
</tr>
<tr>
<td>5.</td>
<td>Effect of additives on enterovirus D74/18 plaque production at 4 days, using agar and agarose overlay media.</td>
<td>53</td>
</tr>
<tr>
<td>6.</td>
<td>Titres of filtrates of the enterovirus isolates and of viral controls.</td>
<td>75</td>
</tr>
<tr>
<td>7.</td>
<td>Growth of 4 enterovirus isolates in the presence and absence of BUDR.</td>
<td>76</td>
</tr>
<tr>
<td>8.</td>
<td>Effect of chloroform treatment on viral infectivity.</td>
<td>78</td>
</tr>
<tr>
<td>9.</td>
<td>Effect of ether treatment at 4°C on viral infectivity.</td>
<td>79</td>
</tr>
<tr>
<td>10.</td>
<td>Effect of sodium deoxycholate on viral infectivity.</td>
<td>79</td>
</tr>
<tr>
<td>11.</td>
<td>Effect of acid treatment (pH 3) for 1 and 3 hours at 37°C on viral infectivity.</td>
<td>80</td>
</tr>
<tr>
<td>12.</td>
<td>Cationic stabilisation of enterovirus isolates by molar magnesium chloride at 50°C.</td>
<td>81</td>
</tr>
<tr>
<td>13.</td>
<td>Growth of enterovirus isolates in the presence and absence of HBB.</td>
<td>84</td>
</tr>
<tr>
<td>14.</td>
<td>Infectivity of viral concentrates obtained by precipitation with various concentrations of PEG 6,000.</td>
<td>85</td>
</tr>
<tr>
<td>15.</td>
<td>Infectivity of viral concentrates obtained by precipitation with various strengths of protamine sulphate.</td>
<td>85</td>
</tr>
</tbody>
</table>
16. Infectivity of viral concentrates obtained by precipitation with 30% and 40% ammonium sulphate.

17. Titres of antisera against their homologous viruses.

18. Antigenic relationships of the enterovirus isolates as revealed by cross neutralisation tests.

19. Antigenic relationships of U.S. enterovirus serotypes and local enterovirus prototype strains.

20. The prevalence of antibodies to some endemic viruses.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Unstained cytopathic effect induced in MDBK cells by the 5 enterovirus isolates.</td>
<td>39</td>
</tr>
<tr>
<td>2.</td>
<td>Unstained cytopathic effect induced by isolates D74/13-49 and D74/25A in Vero and lung cells.</td>
<td>40</td>
</tr>
<tr>
<td>3.</td>
<td>Haematoxylin-eosin stained cell monolayers infected with enterovirus isolates and isolate D74/13-49.</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>Higher magnification of haematoxylin eosin stained MDBK cells infected with isolate D74/19B.</td>
<td>42</td>
</tr>
<tr>
<td>5.</td>
<td>Acridine orange stained MDBK cells infected with enterovirus isolate D74/18.</td>
<td>45</td>
</tr>
<tr>
<td>6.</td>
<td>Coriphosphene O stained MDBK cells infected with enterovirus isolate D74/18.</td>
<td>46</td>
</tr>
<tr>
<td>7.</td>
<td>Coriphosphene O stained Vero cell cultures infected with isolate D74/13-49.</td>
<td>48</td>
</tr>
<tr>
<td>8.</td>
<td>Foetal bovine thyroid cell culture infected with enterovirus isolate D74/18.</td>
<td>49</td>
</tr>
<tr>
<td>9.</td>
<td>Plaque development at 4 days of 4 enterovirus isolates under agarose overlay medium.</td>
<td>51</td>
</tr>
<tr>
<td>10.</td>
<td>Effect of various additives on plaque development by isolate D74/18 under agar overlay medium.</td>
<td>54</td>
</tr>
<tr>
<td>11.</td>
<td>Microplaque production by isolate D74/13-49 under agarose medium containing supplemental MgCl₂ and DEAE dextran.</td>
<td>56</td>
</tr>
<tr>
<td>12.</td>
<td>Effect of protamine sulphate on Vero cell maintenance.</td>
<td>57</td>
</tr>
<tr>
<td>13.</td>
<td>One step growth curve with isolate D74/18.</td>
<td>59</td>
</tr>
<tr>
<td>14.</td>
<td>Growth of enterovirus D74/18, and IBR and BVD viruses, in the presence and absence of BUDR.</td>
<td>77</td>
</tr>
<tr>
<td>15.</td>
<td>Thermal inactivation of enterovirus isolates at 56°C.</td>
<td>82</td>
</tr>
<tr>
<td>16.</td>
<td>Thermal inactivation of enterovirus isolates at 37°C.</td>
<td>83</td>
</tr>
<tr>
<td>17.</td>
<td>Density and infectivity of collected fractions of CsCl gradient with isolate D74/18.</td>
<td>87</td>
</tr>
<tr>
<td>18.</td>
<td>Electron micrographs of negatively stained enterovirus isolates and isolate D74/13-49.</td>
<td>90</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>19.</td>
<td>Electron micrographs of thin sections of cell cultures infected with some of the enterovirus isolates</td>
<td>91</td>
</tr>
<tr>
<td>20.</td>
<td>Fluorescent antibody staining with enterovirus isolates and reovirus 3 control.</td>
<td>107</td>
</tr>
<tr>
<td>21.</td>
<td>Distribution of antibody titres to IBR, BVD and PI3 viruses.</td>
<td>114</td>
</tr>
<tr>
<td>22.</td>
<td>Distribution of antibody titres to 3 serotypes of reovirus.</td>
<td>115</td>
</tr>
</tbody>
</table>