Leptospirosis in humans and pastoral livestock in New Zealand

A thesis presented in partial fulfilment of the requirements for the doctoral degree of Doctor of Philosophy at Massey University

Anou Dreyfus
Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand, 2013
This PhD investigated leptospirosis in humans and pastoral livestock in New Zealand (NZ). A longitudinal ‘abattoir study’, in which blood from workers (n=592) from sheep (n=4), deer (n=2) and beef (n=2) slaughtering abattoirs was tested by the microscopic agglutination test (MAT), revealed that 10-31%, 17-19% and 5% of workers respectively, had antibodies against *Leptospira interrogans* sv Pomona (Pomona) and/or *L. borgpetersenii* sv Hardjobovis (Hardjobovis). While the annual infection risk for meat workers of sheep plants was 11.1%, it was 0% in workers processing deer and 1.2% in those processing beef cattle. Sixty workers had a history of probable leptospirosis while working in abattoirs between 1962 and 2010 and three sheep abattoir workers within the one year study period. In sheep abattoirs, new infection with Hardjobovis or Pomona measured by serology was associated with a two-fold higher risk of ‘flu-like’ illness, and an average of four days absence from work. The average annual risk of experiencing flu-like symptoms due to infection with *Leptospira* measured by serology was 2.7%. The under-ascertainment of officially notified cases with leptospirosis in the last five years was estimated at between 16 and 56 times. Work position was the strongest risk factor for sero-positivity with Pomona and/or Hardjobovis in sheep and deer abattoir workers. The prevalence and new infection risk was highest in workers at the beginning of the slaughter board and the use of personal protective equipment (PPE) appeared not to reduce the risk of sero-positivity or new infection. The risk factor analysis revealed that the infection risk prevailed in the abattoirs and was not evident for non-work related risk factors, such as hunting, home slaughtering and farming.

In a multi-species cross-sectional ‘farm study’ (n=238), 97% of sheep and beef and 76% of deer farms had at least one in 20 animals MAT sero-positive against Hardjobovis and/or Pomona. Overall, 50% of adult sheep, 58% of adult beef and 34% of yearling/adult deer were positive against either serovar. Hardjobovis was more prevalent in all three livestock species than Pomona. The regional prevalence distribution in sheep was different for Hardjobovis and Pomona. Grazing beef with deer reduced the likelihood of positivity against Pomona in beef. Co-grazing with another species did not increase the odds of the within-herd prevalence for deer and sheep of Pomona or Hardjobovis and for beef the within-herd prevalence of Hardjobovis controlling for other farm-level risk factors. The incidence of probable leptospirosis in cattle herds in 2009 was 2.6%, in sheep flocks 0% and in deer herds 1%. Tailing rates of sheep farms were positively correlated with prevalence of Hardjobovis: a 1% increase in prevalence was equivalent to a 0.11 increase in tailing percentages, which is unlikely to be causative since this association lacks biological plausibility. All other reproduction and culling rates of any species were not significantly associated with prevalence.
Acknowledgements

“Ehara taku toa, he taki tahi, he toa taki tini”

“My success should not be bestowed onto me alone, as it was not individual success but success of a collective”

I sincerely thank my four supervisors Cord Heuer, Peter Wilson, Jackie Benschop and Julie Collins-Emerson for guiding me, sharing their knowledge and expertise. Their enthusiasm and open door policy were motivating, and I truly enjoyed our lively discussions. Even though they were rigorous in their scientific approach, there was always time for a smile or a joke. I learned so much from each one of you – thank you!

I especially thank all meat workers and farmers who gave freely of their time, labour, patience and blood. Thanks too, to the veterinarians who did most of the sampling on farms, to the abattoir management who let me conduct the study in their abattoirs, to the staff who took their time to show and explain me procedures and to the nurses and phlebotomists who were willing to get up early in the morning to help me with blood sampling (names not mentioned due to confidentiality reasons).

I am immensely grateful to Sarah Moore, who was an irreplaceable help in data collection and entry, communication of results and a great travel companion. You became a wonderful friend and without your support I could not have done this!

A huge thanks to Neville Haack and Raewynne Pearson for all the lab work, to Saskia Prickaerts and a long list of students who helped processing samples, to Fang Fang, Prakriti Bhattarai, Rayon Gregory, Claire Cayol and Emilie Vallee for the help with interviewing, to Brian O’Leary, Massood Sujau and Simon Verschaffelt for the support to build the database and queries, to Paulina Guzman for the data entry, to Roger Lentle for advice regarding the Massey University Human Ethics Committee application, and to Mark Stevenson, Geoff Jones, Lesley Stringer, Ahmed Rabiee and Sarah Rosanowski for good advice on using Stata commands, to Cristobal Verdugo, Chris Jewel and John Alawneh for statistical advice. To the occupational health physicians John Reekie and John Kerr for advice and support in organizing the abattoir study, to Heather Duckett for helping in sampling logistics, to Christine Cunningham and Wendy Maharey for administrative support, to Bruce White for great support at the library, to Sabine Walser for the help with formatting, and to the NZ Veterinary Pathology (NZVP) for their support in sample processing and storage.

I gratefully acknowledge the support of the Swiss National Science Foundation (SNF) and Rural Woman NZ (RWNZ), without which I could not have undertaken the studies. Further, I am thankful for the financial contributions to the projects from the Alma Baker Trust Fund, the Tertiary Education
Commission (TEC) via the Institute of Veterinary, Animal and Biomedical Sciences, Massey University and the Department of Labour (DoL).

I would like to express my affection and appreciation to all the EpiCentre/Hopkirk people for their friendship, for sharing their thoughts and ways widening my horizon and for shared meals and barbecues during these years. Further, to my climbing buddies for discovering with me the beauty of NZ and the simplicity of life. Huge thanks to Lesley, Marta and Raewynne and her family for sharing their homes, their wonderful friendship and support in many ways.

Further, I would like to thank my previous mentors Joachim Frey, Ulrich Kihm, Dirk Pfeiffer and Hans Matter who have supported me on my professional path.

Finally I want to express my gratitude to my much-loved mother Agathe and father Sundar, my grandmothers Oma and Mimi who have given me love and support, to my siblings Jeshua, Eli and Sarah for existing, and my soul-sister Sabine for constant support on all levels, and to my beloved Sebastian who unexpectedly entered and entirely changed my life.

It was an amazing experience to live in New Zealand - such a precious land full of beautiful landscapes and wonderful space. I will never forget you, Aotearoa!
List of Publications

List of Presentations and Posters

Dreyfus, A., Wilson, P. R., Benschop, J., Collins-Emerson, J., Moore S. & Heuer, C. Adjusting the leptospirosis sero-prevalence of NZ abattoir workers for sampling bias. Presented at the Australian College of veterinary scientists Science Week, 1-3 July 2010 in Surfers Paradise, Australia.

Table of Contents

Abstract .. iii
Acknowledgements .. v
List of Publications .. vii
List of Presentations and Posters .. ix
Table of Contents ... xi
List of Figures .. xvii
List of Tables ... xix
Preface ... xxiii

Chapter 1 ... 1
General Introduction .. 1
1. Introduction .. 1
2. Leptospirosis Overview .. 1
2.1. Microbiology .. 1
2.2. Epidemiology .. 2
2.3. Pathogenesis, Clinical Symptoms and Pathology .. 4
2.4. Immunology .. 5
2.5. Diagnostic Tests ... 5
2.6. Treatment .. 8
2.7. Vaccination and Control ... 9
2.7.1. Vaccination challenge trials in cattle ... 10
2.7.2. Vaccine efficacy in sheep and deer ... 11
3. The Meat Industry in New Zealand ... 13
4. Leptospirosis in New Zealand .. 14
4.1. Leptospirosis in Animals ... 14
4.2. Leptospirosis in Humans ... 16
5. Thesis Aim and Structure ... 19
6. References ... 21

Chapter 2 ... 27
Leptospira and Leptospirosis in Sheep, Beef and Deer Farms and Farmers in New Zealand ... 27
1. Abstract .. 27
2. Introduction ... 29
3. Methods ... 30
3.1. Study Population and Design .. 30
Chapter 4 ... 83
Sero-prevalence and Risk Factors for Leptospirosis in Abattoir Workers in New Zealand 83
1. Abstract ... 83
2. Introduction .. 85
3. Methods .. 86
3.1. Study Design, Data Collection and Management ... 86
3.2. Serological Testing ... 87
3.3. Case Definitions ... 87
3.4. Sample Size and Power Calculation .. 87
3.5. Data Entry and Validation ... 88
3.6. Data Analysis .. 88
3.6.1. Categories of work position and Personal Protective Equipment 88
3.6.2. Risk factors for sero-positivity ... 90
3.6.3. Model diagnostics ... 90
4. Results .. 91
4.1. Data Entry Validation .. 91
4.2. Participants, Slaughter Plants and Study Population .. 91
4.3. Study Outcomes .. 92
4.3.1. Sero-prevalence and antibody titres ... 92
4.3.2. Disease and risk factors for disease ... 95
4.3.3. The use of personal protective equipment ... 95
4.3.4. Risk factors for sero-prevalence in sheep plants ... 96
4.3.5. Risk factors for sero-prevalence in deer abattoirs .. 99
4.3.6. Risk factors for sero-prevalence in beef abattoirs .. 101
5. Discussion ... 104
5.1. Sero-prevalence .. 104
5.2. Probable Leptospirosis ... 108
5.3. Risk Factors for Sero-positivity .. 108
6. Conclusion ... 111
7. Acknowledgements ... 112
8. References ... 113

Chapter 5 ... 117
New Infection with Leptospira and Associated Risk Factors in Meat Workers in New Zealand 117
1. Abstract ... 117
2. Introduction .. 119
3. Methods .. 120
3.1. Study Design, Data Collection and Management ... 120
Chapter 6

General Discussion 147

1. Introduction .. 147

2. Research Findings in Context 147

2.1. Leptospirosis in animals 147

2.2. Human Leptospirosis 149

2.3. Animal to Human Transmission of *Leptospira* spp .. 152

2.4. Leptospirosis Control 155

2.4.1. Leptospirosis vaccination in livestock 157

2.4.2. Leptospirosis control in abattoirs 159

3. Reflective Critique of Study Methodologies 159

3.1. Use of the Microscopic Agglutination Test 159

3.2. Production Effects in Livestock 161

3.3. *Leptospira* Infection Risk in Abattoir Workers 161

4. Areas for Future Research 164

4.1. Prevalence of Ballum in Meat Workers 164

4.2. Prevalence of Ballum in Sheep and Beef Cattle 164

4.3. Prevalence of Ballum and other *Leptospira* Serovars in Farmers, Livestock, Dogs and Wildlife 164

4.4. *Leptospira* Prevalence in other Professional Groups 164

4.5. Strain-specific Susceptibility 164
4.6. Investigation of *Leptospira* Contamination on the Slaughter Board ..165
4.7. Investigation of *Leptospira* Contamination of PPE and Reassessment of PPE Policies166
4.8. Field Trials of Leptospirosis Vaccination Programme ..166
4.9. Field Trials of Production Loss due to Leptospirosis in Livestock in New Zealand167
4.10. Analysis of Cost-Effectiveness of Leptospirosis Control in the New Zealand Livestock Sector
167
4.11. Estimation of the Burden of Leptospirosis in the New Zealand Public Health Sector167
4.13. Diagnostic Tests and ACC Case Definition ...169
5. Conclusion ..171
6. References ..172

Bibliography ..175

Appendix A ...185
Questionnaire Abattoir Study ...185

Appendix B..201
Questionnaire Farm Study ..201
List of Figures

Chapter 1 .. 1
Figure 1: Computer model of *Leptospira interrogans* ... 2
Figure 2: Comparison of a slaughter house in the early 1930s (left) with a modern one (right) 14

Chapter 2 .. 27
Figure 1: Frequency distribution of positive antibody titres against *Leptospira borgpetersenii* serovar Hardjobovis and *L. interrogans* serovar Pomona in beef cattle (top), deer (centre), and sheep (bottom) ... 38
Figure 2: Scatter plots displaying the relationship (by the generalized equations estimator extended logistic regression model adjusted) between sero-prevalence against *Leptospira borgpetersenii* sv Hardjobovis in sheep and (i) number of dogs present (above) and the flock size (below) 50

Chapter 3 .. 61
Figure 1: Sampled regions in New Zealand. Map with courtesy from C. Verdugo 65
Figure 2: Distribution of the within-herd/flock sero-prevalence for *Leptospira interrogans* sv Pomona and *L. borgpetersenii* sv Hardjobovis by serovar and livestock species .. 68
Figure 3: Box plots of predicted tailing percentages (y-axis) of sheep flocks by low (left), medium (middle) and high (right) within-flock sero-prevalence of *Leptospira borgpetersenii* serovar Hardjobovis, where low is ≤25%, medium is 25-75% and high is >75% of sheep being positive 70

Chapter 4 .. 83
Figure 1: Schematic description of the various workplaces of workers in sheep abattoirs by category (colours) used in multivariable analysis .. 89
Figure 2: Frequency histogram showing the number of sero-positive study participants at each MAT titre to serovars *Leptospira interrogans* sv Pomona (Pom, black) and *Leptospira borgpetersenii* sv Hardjobovis (Har, grey) in sheep (top), deer (middle) and beef abattoirs (bottom) .. 94

Chapter 5 .. 117
Figure 1: Illustration of the transition of serum antibody titres against *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis between first and second samplings. 123
Figure 2: Occurrence of serological response to *Leptospira interrogans* sv Pomona (Pom) and/or *Leptospira borgpetersenii* sv Hardjobovis (Har) and of ‘flu-like’ symptoms among 384 sheep abattoir workers, including probable and possible clinical leptospirosis cases.*Four non-infected workers had missing data on ‘flu-like’ symptoms 135
List of Tables

Chapter 1

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Classification of Leptospira species endemic in New Zealand and host animals (‘maintenance hosts’) to which the serovars are adapted to (Marshall and Manktelow, 2002; Ayanegui-Alcerreca et al., 2007; Dorjee et al., 2008)</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Animal-level sero-prevalence (%) and 95% confidence intervals (CI) by species for Leptospira borgpetersenii serovar Hardjobovis (Har) and L. interrogans serovar Pomona (Pom) with a MAT titre cut-off of 1:48 in adult breeding stock sampled between June 2009 and July 2010. Vaccinated herds were included</td>
</tr>
<tr>
<td>2</td>
<td>Herd/flock-level sero-sero-prevalence (%) and 95% confidence intervals (CI) by species for Leptospira borgpetersenii serovar Hardjobovis (Har) and L. interrogans serovar Pomona (Pom) with a MAT titre cut-off of 1:48 in adult breeding stock sampled between June 2009 and July 2010. Vaccinated herds were included</td>
</tr>
<tr>
<td>3</td>
<td>Frequencies of risk factors (N tot), the distribution of sero-positive sheep against Leptospira interrogans sv Pomona (Pom) and Leptospira borgpetersenii sv Hardjobovis (Har) by risk factor (N positive, Prevalence (Prev %), 95% confidence interval (CI)) and unconditional associations of risk factors with sero-prevalence for Pom and Har in 162 sheep flocks and 3359 sheep (Odds Ratio (OR), 95% CI, p-value)) blood sampled between June 2009 and July 2010</td>
</tr>
<tr>
<td>4</td>
<td>Frequencies of risk factors (N tot), the distribution of sero-positive beef cattle against Leptospira interrogans sv Pomona (Pom) and Leptospira borgpetersenii sv Hardjobovis (Har) by risk factor (N positive, Prevalence (Prev %), 95% confidence interval (CI)) and the unconditional association of risk factors with sero-prevalence for Pom and Har in 116 beef herds and 2308 beef cattle (Odds Ratio (OR), 95% CI, p-value)) blood sampled between June 2009 and July 2010</td>
</tr>
<tr>
<td>5</td>
<td>Frequencies of risk factors (N tot), the distribution of sero-positive deer against Leptospira interrogans sv Pomona (Pom) and Leptospira borgpetersenii sv Hardjobovis (Har) by risk factor (N positive, Prevalence (Prev %), 95% confidence interval (CI)) and the unconditional association of risk factors with sero-prevalence for Pom and Har in 99 deer herds and 1992 deer blood sampled between June 2009 and July 2010</td>
</tr>
<tr>
<td>6</td>
<td>Clustering and confounder adjusted sero-prevalence (Prev %) of Leptospira interrogans sv Pomona and Leptospira borgpetersenii sv Hardjobovis and associated risk factors in sheep flocks (n=162) blood sampled between June 2009 and July 2010 calculated by multivariable binomial logistic regression using generalized estimating equations</td>
</tr>
<tr>
<td>7</td>
<td>Clustering and confounder adjusted sero-prevalence (Prev %) of Leptospira interrogans sv Pomona and Leptospira borgpetersenii sv Hardjobovis and associated risk factors in beef herds (n=116) blood sampled between June 2009 and July 2010 calculated by multivariable binomial logistic regression using generalized estimating equations</td>
</tr>
<tr>
<td>8</td>
<td>Clustering and confounder adjusted sero-prevalence (Prev %) of Leptospira interrogans sv Pomona and Leptospira borgpetersenii sv Hardjobovis and associated risk factors in deer herds (n=99) blood sampled between June 2009 and July 2010 calculated by multivariable binomial logistic regression using generalized estimating equations</td>
</tr>
</tbody>
</table>
Chapter 3 ...61

Table 1: Reported reproduction percentages by species and age group (for pregnancy percentage), as a mean\(^1\) when normally distributed, otherwise as a median\(^2\) of all sampled herds or flocks69

Table 2: Results of a linear regression model of the effect of within-flock sero-prevalence of *Leptospira borgpetersenii* sv Hardjobovis (Har) and other risk factors on tailing percentage in sheep flocks (n=148)...71

Chapter 4 ..83

Table 1: Number of workers, proportion recruited for the study, the species and total number processed and the regional origin of animals slaughtered in participating slaughter plants.............92

Table 2: Sero-prevalence (%) and 95% confidence intervals (CI) of workers of eight abattoirs processing sheep, deer or beef with antibodies to *Leptospira interrogans* serovar Pomona (Pom), *Leptospira borgpetersenii* serovar Hardjobovis (Har) and to either serovar............................93

Table 3: Frequencies of work-related exposure variables and their unconditional association with sero-prevalence of *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis in sheep plant workers (n=325) blood sampled and interviewed from January - April 2010 97

Table 4: Frequencies of clinical, demographic and non-work related exposure variables and their unconditional association with sero-prevalence of *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis in sheep plant workers (n=325) blood sampled and interviewed from January - April 2010 ...98

Table 5: Frequencies of work related exposure variables and their unconditional association with sero-prevalence of *Leptospira interrogans* sv Pomona (Pom) and/or *Leptospira borgpetersenii* sv Hardjobovis (Har) in deer plant workers (n=57) blood sampled and interviewed in November 2009 99

Table 6: Frequencies of clinical, demographic and non-work related exposure variables and their unconditional association with sero-prevalence of *Leptospira interrogans* sv Pomona (Pom) and/or *Leptospira borgpetersenii* sv Hardjobovis (Har) in deer plant workers (n=57) blood sampled and interviewed in November 2009 ...100

Table 7: Frequencies of work related exposure variables and their unconditional association with sero-prevalence of *Leptospira interrogans* sv Pomona (Pom) and/or *Leptospira borgpetersenii* sv Hardjobovis (Har) in beef plant workers (n=185) blood sampled and interviewed from January - April 2010 102

Table 8: Frequencies of clinical, demographic and non-work related exposure variables and their unconditional association with sero-prevalence of *Leptospira interrogans* sv Pomona (Pom) and/or *Leptospira borgpetersenii* sv Hardjobovis in beef plant workers (n=185) blood sampled and interviewed from January - April 2010 ...103

Table 9: Joint multivariable analysis of data from all plants: significant effects on sero-prevalence of *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis in abattoir workers processing sheep (n=325), deer (n=56) and beef (n=185) (November 2009 – April 2010).....104

Chapter 5 ..117

Table 1: Frequency (% and no.) of workers in each work related risk factor variable category in deer and beef abattoir workers ..128

Table 2: Frequency (% and no.) of workers with clinical leptospirosis, demographic and non-work related risk factor variables in deer and beef abattoir workers ..129
Table 3: Proportion of workers from each abattoir type that had each category of antibody titre changes against *Leptospira interrogans* sv Pomona (Pom) and/or *Leptospira borgpetersenii* sv Hardjobovis (Har) or against either of these two serovars between first and second sampling130

Table 4: Plant-specific annual infection risk (or cumulative incidence) (%) with *Leptospira interrogans* sv Pomona (Pom) or *Leptospira borgpetersenii* sv Hardjobovis (Har) by abattoir131

Table 5: Frequencies of work related risk factors and their unconditional association with new infection with *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis in sheep abattoir workers (n=384) ..132

Table 6: Frequencies of clinical, demographic and non-work related risk factors and their unconditional association with new infection with *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis in sheep abattoir workers (n=384) ..133

Table 7: Multivariable logistic regression model: significant risk factors and statistical parameters for new infection with *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis in sheep abattoir workers (n=384) ..134

Table 8: The risk, relative risk and population attributable fraction (PAF) of sheep abattoir workers of having ‘flu-like’ illness when newly infected with *Leptospira interrogans* sv Pomona and/or *Leptospira borgpetersenii* sv Hardjobovis and the risk, relative risk and PAF of having a new infection when working at the slaughter board, yards or offal room (one category) or in other positions136
"The intuitive mind is a sacred gift, the rational mind a faithful servant, we have created a society that honours the servant and has forgotten the gift"

Albert Einstein