Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Colonisation of the ovine respiratory tract by

Pasteurella (Mannheimia) haemolytica

Maftikhar Ahmed

A thesis presented in partial fulfilment of the requirements for the degree of *Master of Veterinary Studies (MVS)* at Massey University

2003
Abstract

Pasteurella (Mannheimia) haemolytica is a member of the normal bacterial flora of the nasopharyngeal, tonsillar and oral mucous membranes of sheep. The history, characteristics and pathogenicity of this organism are reviewed and the associated diseases of the ovine respiratory tract are discussed. In New Zealand, *P. haemolytica* is associated with two major disease entities; acute pneumonic pasteurellosis and chronic non-progressive pneumonia (CNP). Clinical or acute pneumonic pasteurellosis occurs as a sporadic disease with low prevalence on certain farms whereas CNP is very widespread and economically important as it causes poor growth rates and downgrading of carcasses during slaughter.

The epidemiological relationship between the nasal carriage of *P. haemolytica* in healthy ewes and their lambs was investigated and it was found that although lambs occasionally became infected from their dams they were more commonly infected from other sources. A very significant difference between the rate of nasal carriage on four farms in the Manawatu district was observed and a peak prevalence of *P. haemolytica* was seen in the February-March period. A close relationship between nasal carriage and pneumonia was found on one farm (Farm 4), which initially had a pure and vigorous growth of *P. haemolytica* from the nasal swabs obtained from young lambs. When 6 lambs were kept in close contact for a period on one farm, all developed a high rate of nasal carriage of *P. haemolytica* within 5 days.
DNA fingerprinting of the isolates from ewes and their offspring showed a variety of restriction endonuclease patterns using pulsed field gel electrophoresis (PFGE). The pulsed field profiles of isolates from the nasal cavity of ewes and their new-born lambs showed that lambs are more likely to obtain the first strain of *P. haemolytica* from in-contact ewes, lambs or the environment rather than from their mothers. The pattern of isolation of *P. haemolytica* in lambs on three farms without pneumonia showed that most strains of the organism were present on only one occasion and within two months the nasal cavity was occupied by other strains. On one farm (Farm 4), some strains of *P. haemolytica* were present throughout the whole life of the lambs and one these strains was later isolated from pneumonic lesions at slaughter.
Acknowledgements

I am particularly grateful to my chief supervisor, Associate Professor Maurice Rewi Alley for his patience, encouragement, invaluable contribution of ideas, advice and particularly for guiding and preparing me from farm to laboratory throughout the course of the study and in completion of my thesis.

I am also grateful to my co-supervisor Dr. Stan Fenwick for his great help, advice and scientific contribution to the microbiological studies and particularly pulsed field gel electrophoresis.

I greatly appreciate the considerable support from the four farm owners – Dr. Robert Bruce and family, Glen Oroua; Roger Voss and family, Mirawai Farms Ltd, Kopane; Assoc. Prof. M. R. Alley and Mrs. Dorothy Alley, Tikoke farm, Pahiatua Track and Tim Harvey, Alister MacDonald and Rodney Grubb, Tuapaka, Forest Hill Rd.

I would like to thank to the staff and veterinarians at Richmond Meat works, Oringi; Lambpackers, Fielding and AFFCO, Wanganui.

I gratefully acknowledge technical assistance from a number of technical staff and postgraduate students of IVABS particularly – Magda and Kylie Walker (Bacteriology lab.), Jan Schrama (Media lab.), Megan Leyland (PFGE lab.), Pam Slack, Pat Davey, Faris Sharpe (sample collection) and postgraduate students F. Ahmed and Naomi Boxal.

I want to thank to Duncan Hedderley, Statistics Dept. Massey University for his statistics advice.

I would like to specially thank my father and mother, my wife (Rukhshana) and my two lovely daughters (Nabila and Nazia) for their encouragement, patience and help during the course of the study.
TABLE OF CONTENTS

Abstract--i
Acknowledgements--iii
Table of Contents--iv
List of Tables---viii
List of Figures---ix

Chapter 1

Introduction--1

General Review of Literature--4

1.1 Classification, Nomenclature and early history of Pasteurella haemolytica-----------------------------------4

1.2 Biochemical characteristics, Biotyping and serotyping of P. haemolytica---7
 1.2.1 Biochemical characteristics--7
 1.2.2 Biotyping--8
 1.2.3 Serotyping---9

1.3 Virulence factors for P. haemolytica--11
 1.3.1 Extracellular P. haemolytica products--11
 1.3.1.1 Fimbriae and Glycocalyx---11
 1.3.1.2 Neuraminidase---11
 1.3.1.3 Sialo glycoprotease--12
 1.3.1.4 Cytotoxin (Leukotoxin A)---13
 1.3.2 Cell associated P. haemolytica products---14
 1.3.2.1 Capsular polysaccharide---14
 1.3.2.2 Lipopolysaccharide---15
 1.3.2.3 Membrane proteins and enzymes--16
1.4 Diseases associated with *Pasteurella haemolytica* in sheep

1.4.1 Pneumonic pasteurellosis

1.4.1.1 Epidemiology

1.4.1.2 Source of *P. haemolytica* infection

1.4.1.3 Gross pathology

1.4.1.4 Histopathology

1.4.1.5 Experimental transmission

1.4.1.6 Pathogenesis of pasteurellosis

1.4.1.6.1 Muco-ciliary clearance

1.4.1.6.2 Mucosal immunoglobulins

1.4.1.6.3 Pulmonary surfactant

1.4.1.6.4 Alveolar macrophages

1.4.1.6.5 Antimicrobial peptides

1.4.1.6.6 Summary of pathogenesis

1.4.2 Chronic non-progressive pneumonia

1.4.2.1 Epidemiology

1.4.2.2 Experimental transmission

1.4.2.3 Gross pathology

1.4.2.4 Histopathology

1.4.3 Systemic pasteurellosis
Chapter 2

Prevalence of *P. haemolytica* in ewes and their lambs---42

2.1 Introduction--42

2.2 Materials and Methods--43

2.2.1 Selection of farms and animals-------------------------------43

2.2.2 Collection of specimens on the farm------------------------43

2.2.2.1 Times of sample collection-------------------------------45

2.2.2.2 Microbiological analysis of the nasal samples-----------46

2.2.2.1.1 Plating of nasal swabs-------------------------------46

2.2.2.2.2 Isolation and identification-------------------------46

2.2.3 Collection of specimens at slaughter-----------------------47

2.2.4 Statistical methods--47

2.3 Results---48

2.3.1 Prevalence of *P. haemolytica* in ewes and their lambs-----48

2.3.1.1 Prevalence of *P. haemolytica* in ewes------------------48

2.3.1.2 Prevalence of *P. haemolytica* in lambs-----------------49

2.3.1.3 Prevalence of *P. haemolytica* in lambs after slaughter--50

2.3.2 Seasonal distribution of *P. haemolytica* carriage---------51

2.3.3 The transmission of *P. haemolytica* from mother to offspring53

2.4 Discussion--54

2.4.1 Prevalence of *P. haemolytica* in ewes and their lambs------54

2.4.2 Seasonal distribution of *P. haemolytica* carriage---------56

2.4.3 The transmission of *P. haemolytica* from mother to offspring59
Chapter 3
A study of *Pasteurella haemolytica* isolates using pulsed field gel electrophoresis

3.1 Introduction

3.2 Materials and Methods

3.2.1 Selection of isolates

3.2.2 Preparation of DNA plugs from *P. haemolytica* strains

3.2.3 Restriction endonuclease digestion of DNA embedded in agarose plugs

3.2.4 Pulsed field gel electrophoresis of digested DNA

3.2.5 Staining, photographing and interpretation of pulsotype patterns

3.3 Results

3.3.1 Pulsed field profiles of isolates from ewes and their lambs

3.3.2 The similarity of *Pasteurella haemolytica* strains recovered from lambs from birth until slaughter

3.3.3 The consistency of recovery of *P. haemolytica* and effect of close contact on the lambs

3.4 Discussion

Chapter 4
General discussion

Appendices

References
LIST OF TABLES

Table 1: Four Manawatu farms from which *P. haemolytica* samples were collected from the naso-pharynx of ewes and lambs.-----------------44

Table 2: Times of sample collection from four Manawatu Farms-----------------45

Table 3: Prevalence of *P. haemolytica* in the nasal swabs of ewes from four Manawatu Farms-- 48

Table 4: Monthly prevalence of *P. haemolytica* in the nasal swabs of lambs from four Manawatu Farms-- 49

Table 5: Prevalence of *P. haemolytica* in the respiratory tract after slaughter of lambs on four Manawatu Farms-- 50

Table 6: Seasonal distribution of *P. haemolytica* in lambs on Farm 3-- 51

Table 7: Seasonal distribution of *P. haemolytica* in lambs on Farm 4-- 51

Table 8: Presence of *P. haemolytica* in the nasal cavity of mother and offspring at 1 to 2 weeks after birth-- 53

Table 9: Consistency of recovery and effect of close contact on nasal carriage in Lambs from Farm 4:

a. Before daily swabbing-- 82

b. Daily swabbing-- 82
LIST OF FIGURES

Figure 1: Photograph of a PFGE gel containing isolates from ewes and their lambs from Farm # 1 ...69

Figure 2: Photograph of a PFGE gel containing isolates from ewes and their lambs from Farm # 2 ...71

Figure 3: Photograph of a PFGE gel containing isolates from ewes and their lambs from Farm # 4 ...73

Figure 4: Photograph of a PFGE gel containing isolates recovered from lambs from Farm # 2 ...76

Figure 5: Photograph of a PFGE gel containing isolates recovered from lambs from Farm # 3 ...78

Figure 6: Photograph of a PFGE gel containing isolates recovered from lambs from Farm # 4 ...80

Figure 7: Photograph of a PFGE gel containing isolates recovered from both nostrils of two lambs from Farm # 4 ...84