Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Increasing the *Lactococcus lactis* Biomass through Aerobic Growth

A thesis presented in partial fulfilment of the requirement for the degree of

Master of Engineering

in

Biotechnology

at Massey University, Palmerston North,

New Zealand

Aravind Giridhar

2013
ABSTRACT

Starter cultures for dairy fermentations are commonly made by anaerobic fermentation in New Zealand. Anaerobic fermentation involves glycolysis and it is a very inefficient pathway due to the formation of energy rich products such as lactic acid. This pathway only produces 2 moles of ATP per glycolysis and to conserve energy, the amount of biomass produced is less. Aerobic fermentation on the other hand can produce up to 36 moles of ATP per cycle, and the amount of biomass produced will be higher compared to anaerobic fermentation. Lactic acid bacteria do not possess a functional electron transport chain for aerobic respiration to be efficient. It requires the addition of heme, for the electron transport chain to work. The heme addition is a patented process.

The aim of this study was to optimise the aerobic fermentation process for Lactococcus lactis for biomass production. An extensive literature search shows that there has been no study in optimising the heme concentration or using other alternatives for heme. Alternatives to heme, that are food grade, are an attractive option, as there is sourcing issues with heme in New Zealand.

A series of shake flask trials were carried out to identify a possible heme replacement. The shake flask trials showed that ammonium ferric citrate is a possible alternative heme replacement. More shake flask trials were then evaluated to optimise the concentration of ammonium ferric citrate. Following that, 1-L fermenter trials were evaluated to optimise heme concentration and to compare the effect of heme and ammonium ferric citrate addition on biomass and activity of the harvested biomass following a freeze and thaw cycle.

It was shown that 44 μg/mL ammonium ferric citrate resulted in the most biomass of the concentrations tested. For heme, the optimum concentration was 1 μg/mL. It was found
that fermentations using heme resulted in more biomass after 5 h compared to using ammonium ferric citrate. But, cells grown by adding ammonium ferric citrate was equally as active.
ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisor Associate Professor Pak-Lam Yu for all his help and encouragement throughout the duration of this project and for all the advice and answering my questions and being patient with me.

I would also like to thank Andrew Patrick at the Microbial Fermentation Unit (MFU) of Fonterra, Palmerston North for helping me with the cultures, fermentation runs, and activity testing. I would also like to thank all the members of the MFU, especially Vicki Lander for helping me with my experiments.

A special thank for all the members of the Microbiology lab, especially Ann-Marie and Julia for helping me with answering my questions and helping me with analysis.

This acknowledgement will not be complete without mentioning my wonderful friends who have helped me through thick and thin and encouraging me to complete this thesis. A very special thanks to Lutfi and Fatima. I would also like to thank Neilen and Daniel for all the encouragement and support.

A lot of gratitude towards my parents for helping me throughout the degree. My dad for giving me valuable advice. My mother for everything she has done for me from so far away. My brother for the energy drinks.

Last, but not least, a very special thanks to Krishneel and his family for looking after me during my stay in Palmy. I would have been totally lost without your support and encouragement.
TABLE OF CONTENTS

ABSTRACT .. iv
ACKNOWLEDGEMENTS .. vii
TABLE OF CONTENTS .. viii
LIST OF TABLES .. x
LIST OF FIGURES .. xi
1.0 INTRODUCTION .. 1
2.0 LITERATURE REVIEW .. 5
 2.1 Starter culture .. 5
 2.1.1 Lactic acid bacteria .. 6
 2.1.1.1 *Lactococcus lactis* ... 7
 2.1.2 Nutritional requirements of lactic acid bacteria ... 8
 2.2 Production of starter culture .. 8
 2.3 Respiration .. 12
 2.3.1 Respiration in LAB .. 14
 2.3.2 Heme .. 16
 2.3.3 The role of heme in respiration .. 17
 2.3.4 Impact of respiration on LAB .. 18
 2.4 Improving starter culture production by respiration technology 20
 2.5 Conclusion ... 22
3.0 MATERIALS AND METHODS .. 23
 3.1 *Lactococcus* strain ... 23
 3.2 M17 Media ... 23
 3.3 Heme .. 23
 3.4 Alternate heme ... 23
 3.5 Analytical techniques .. 24
 3.5.1 Biomass .. 24
 3.5.2 Glucose .. 24
 3.6 Fermentation .. 24
 3.6.1 Equipment ... 24
 3.6.2 Operational Procedure ... 24
 3.7.1 Activity testing .. 26
LIST OF TABLES

Table 4.1: The effect of various heme alternatives on aerobic growth of *L. lactis* in shake flasks..28

Table 4.2: Effect of ammonium ferric citrate concentration on aerobic growth of *L. lactis* in shake flasks..30

Table 4.3: Time taken to reach final pH of 4.605 for *L. lactis* cultures grown by adding ammonium ferric citrate and heme, and for control........36
LIST OF FIGURES

Figure 2.1: Lactococcus lactis (Todar, 2012)...7

Figure 2.2: Simplified fermentation pathway of lactic acid bacteria (Broojimans, 2008)...10

Figure 2.3: Conversion of pyruvate to lactate by the action of lactate dehydrogenase (Lechardeur et al. 2011) ..11

Figure 2.4: Electron transport chain of lactic acid bacteria..15

Figure 2.5: Structure of heme showing the iron centre..16

Figure 4.1: Effect of ammonium ferric citrate concentration on aerobic growth of L.lactis in shake flasks...30

Figure 4.2: Effect of ammonium ferric citrate concentration on aerobic growth of L.lactis in shake flasks...33

Figure 4.3: Effect of different concentrations of heme on biomass of L.lactis grown aerobically..33

Figure 4.4: The effect of 44 μg/mL ammonium ferric citrate and 1 μg/mL heme on aerobic growth of L.lactis in a 1-L fermenter...35