Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Interactions between commensal obligate anaerobes
and human intestinal cells

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

Massey University
Manawatu, New Zealand

Dulantha Ulluwishewa
2013
ABSTRACT

The human intestinal epithelium is formed by a single layer of epithelial cells which regulates intestinal barrier permeability. Increased permeability can result in the entry of potentially harmful compounds into the body, and is implicated in autoimmune, inflammatory and atopic diseases. The intestinal tract is inhabited by an estimated 10^{14} microbes and it is increasingly evident that they affect intestinal barrier function. However, over 90% of commensal intestinal bacteria are obligate anaerobes, making it difficult to co-culture them with oxygen-requiring mammalian cells in vitro.

To investigate the interactions between obligate anaerobes and epithelial cells that regulate the intestinal barrier, an apical anaerobic model of the human intestinal epithelium, which utilises a dual-environment co-culture chamber, was developed and validated. The chamber allowed for polarised monolayers of the intestinal cell line Caco-2 to be grown such that the apical (luminal) side was exposed to an anaerobic environment, while maintaining an aerobic basal side. The cell viability and barrier function of Caco-2 monolayers was unaffected by culture in the apical anaerobic model for at least 12 hours. Global gene expression analysis predicted upregulation of cell survival and proliferation in Caco-2 cells cultured in the apical anaerobic model, compared to Caco-2 cells grown under conventional conditions, suggesting an adaptation of the Caco-2 cells to a lower supply of oxygen.

The apical anaerobic model was used to co-culture the commensal obligate anaerobe Faecalibacterium prausnitzii with Caco-2 cells. The survival of F. prausnitzii was improved in the anaerobic apical environment compared to when cultured in an aerobic atmosphere. Live F. prausnitzii, but not non-viable (UV-killed) F. prausnitzii, were shown to increase permeability across Caco-2 monolayers. Furthermore, global gene expression analysis suggested that live F. prausnitzii cells have more profound effects on Caco-2 cells than non-viable F. prausnitzii, illustrating the importance of maintaining viability of obligate anaerobes in an in vitro co-culture system.

The apical anaerobic model can be used to gain insights into the mechanisms of crosstalk between commensal obligate anaerobic bacteria and intestinal cells, and new knowledge generated using this model will assist in the development of strategies to improve intestinal barrier function.
Dedicated to aththamma, seeya, and 'big' aththamma.

My greatest inspirations. Love always.
ACKNOWLEDGEMENTS

It is with immense gratitude that I acknowledge the guidance and support of my supervisors: Prof Warren McNabb, Dr Nicole Roy, Dr Rachel Anderson, Prof Jerry Wells, and Prof Paul Moughan. To Warren and Paul, thank you for taking me under your wing and making me part of AgResearch and the Riddet Institute. Rachel, thank you for always being available to answer my questions; I have truly appreciated your help and advice. Jerry, thank you for sharing your wisdom and enthusiasm, and imparting some of your expertise to me, it was my privilege to have you as a supervisor. Nicole, it has been my pleasure to study under your guidance - thank you for your kindness and unwavering support. I also acknowledge AgResearch and the Riddet Institute, a Centre of Research Excellence, for funding this research and my PhD fellowship, and providing me with excellent research facilities.

I am indebted to many people for their support and assistance in the completion of this thesis. The co-culture chamber, instrumental for achieving the aims of this thesis, was designed based on the concept conceived by Prof Denise Kelly (University of Aberdeen), and built by Steve Gebbie, Scott Sevier, Hong Zhang, Russel McAuliffe, Paul Lovejoy and Jason Peters. I am most grateful for the technical assistance of Kelly Armstrong (microarrays), Eva Maier (co-culture experiments), Dr Dmitry Sokolov (from the Manawatu Microscopy and Imaging Centre, Massey University; confocal microscopy) and Cécile Mouret (model validation experiments). I share the credit for the microarray analysis with Dr Wayne Young who processed the raw microarray data and generated the heatmaps presented in this dissertation. The imaging of cells by transmission electron microscopy was carried out by Dr Duane Harland and James Vernon at AgResearch Lincoln Research Centre.

I owe my deepest gratitude to Dr John Koolaard for his invaluable advice on most of the statistical analysis carried out in this project. I would also like to acknowledge Dr Mark McCann (cell culture, flow cytometry, qPCR), Graham Naylor (anaerobic microbiology), Dr Adrian Cookson (microbiology), Dr Jurgen Karczewski (confocal microscopy and cell viability assay), Bruce Sinclair (dissolved oxygen assays), Dr Peter van Baarlen (microarray analysis) and Catherine Lloyd-West (statistical analysis) for their valuable advice and sharing their expertise. My thanks also
go to Dr Anna Russ for proof-reading this dissertation and providing me with valuable feedback.

I would also like to thank my many colleagues in AgResearch, especially the PhD students I shared an office with during the course of this project, for their friendship, support and help over the past few years. Thank you for listening and encouraging me through the triumphs and trouble of this study, and providing valuable and entertaining discussions on matter related (or not) to my research. Thank you also to the AgResearch support staff including Denise Martin and Information Services, whose help has been invaluable in carrying out many of the tasks and activities along the road to completing this thesis.

Finally, to my family and friends, especially my parents and sister, thank you for your love and support, and the sacrifices you made to create opportunities for me that you never had. To my wife Neranjala, thank you for your constant encouragement and making me see the positive in every situation - you have brightened up my life in a way I never knew possible. This dissertation is a testament to your unyielding faith in me during my PhD journey.
Table of Contents

Abstract .. i

Acknowledgements .. iii

Table of contents ... v

List of figures ... xiii

List of tables ... xviii

List of abbreviations .. xx

Introduction ... 1

Chapter 1: Review of literature ... 3

1.1 The human intestinal barrier ... 4

1.2 The intestinal epithelial barrier ... 6

1.2.1 Tight junction structure and regulation of intestinal permeability 7

1.2.2 Regulation of tight junctions ... 10

1.2.3 Effects of dietary components on tight junction integrity 12

1.3 The mucus layer ... 15

1.4 Immune cells and signalling in the intestinal barrier 16

1.4.1 Host recognition of bacteria ... 17

1.4.2 Pro-inflammatory pathways ... 18

1.4.3 Dendritic cells ... 20

1.5 Commensal intestinal microbiota .. 22

1.5.1 Establishment of intestinal microbiota.. 23

1.5.2 Distribution of microbiota in the intestinal tract 24

1.5.3 Diversity of the commensal bacteria ... 26

1.6 Functions of the commensal bacteria ... 27

1.7 Interactions between intestinal cells and bacteria ... 29

1.7.1 Barrier enhancement by commensals and probiotic bacteria................. 29
1.7.2 Modulation of intestinal epithelial cell function by commensal bacteria .. 32

1.7.3 Modulation of intestinal-dendritic cell crosstalk ... 33

1.7.4 Modulation of intestinal function by dietary components and intestinal bacteria .. 37

1.8 In vitro epithelial models of the intestinal barrier ... 38

1.8.1 In vitro cell lines as models of the intestinal epithelium .. 38

1.8.2 Transepithelial models to study host-bacteria interactions ... 39

1.8.3 In vitro models to study interactions between obligate anaerobes and intestinal epithelial cells .. 41

1.9 Conclusions and future perspectives ... 43

1.10 Aims of work reported in dissertation ... 44

1.11 Approach and structure of the dissertation ... 45

Chapter 2: Development of an apical anaerobic model of the intestinal barrier 49

2.1 Introduction .. 50

2.2 Aim ... 51

2.3 Methods ... 51

2.3.1 Model concept .. 51

2.3.2 Culture of intestinal epithelial cells .. 52

2.3.2.1 Maintenance of Caco-2 cells ... 52

2.3.2.2 Harvesting Caco-2 cells .. 55

2.3.2.3 Passaging of Caco-2 cell line ... 55

2.3.2.4 Long term storage of Caco-2 cells .. 55

2.3.2.5 Cell counting .. 56

2.3.3 Growth of Caco-2 cells on microporous membranes .. 56

2.3.4 TEER measurements ... 58

2.3.4.1 STX-2 electrodes .. 61
3.3.1.1 Culture of Caco-2 cells ... 96
3.3.1.2 Co-culture chamber set up ... 96
3.3.1.3 Apical anaerobic model ... 96
3.3.1.4 Alternative cell culture environments 97
3.3.2 Measuring dissolved oxygen in the aerobic compartment 97
 3.3.2.1 Initial methods of measuring basal dissolved oxygen level .. 99
 3.3.2.2 Optimised method for measuring basal dissolved oxygen level ... 100
3.3.3 Measuring dissolved oxygen in the anaerobic compartment 100
3.3.4 Neutral red uptake assay ... 103
3.3.5 Transmission electron microscopy ... 104
3.3.6 DNA content analysis by flow cytometry 105
3.3.7 TEER assay ... 105
3.3.8 3H-mannitol bioassay ... 106
3.3.9 Confocal laser scanning microscopy .. 107
3.3.10 Analysis of abundance and localisation of tight junction proteins 107
3.3.11 Analysis of internalisation of tight junction proteins 109
3.4 Results .. 110
 3.4.1 Oxygen depletion in the aerobic compartment of the co-culture chamber .. 110
 3.4.2 Dissolved oxygen in the anaerobic compartment of the co-culture chamber .. 113
 3.4.3 Ultrastructural features of Caco-2 cells cultured in the apical anaerobic model .. 113
 3.4.4 Effect of anaerobic apical environment on Caco-2 cell viability 113
 3.4.5 Cell cycle analysis ... 116
3.4.6 Effect of apical anaerobic environment on the barrier function of the Caco-2 cell monolayer ... 116

3.4.7 Effect of apical anaerobic environment on the localisation of tight junction proteins ... 116

3.5 Discussion ... 128

Chapter 4: Global gene expression analysis of Caco-2 cells cultured in an anaerobic apical environment ... 133

4.1 Introduction ... 134

4.2 Hypothesis and aim ... 136

4.3 Methods ... 136

4.3.1 Overview .. 136

4.3.2 Cell culture .. 138

4.3.3 RNA isolation .. 138

4.3.4 Microarray experimental design ... 138

4.3.5 Global gene expression analysis ... 139

4.3.6 Validation of microarray results by qPCR 139

4.3.7 Ingenuity pathway and functional analysis 142

4.3.8 Gene ontology analysis ... 143

4.3.9 Generation of heatmaps ... 144

4.4 Results ... 144

4.4.1 Differentially expressed genes .. 144

4.4.2 Biological functions associated with differentially expressed genes ... 147

4.4.3 Biological interaction networks associated with differentially expressed genes ... 154

4.4.4 KEGG pathway clustering .. 154

4.4.5 Ingenuity pathway analysis ... 157
4.4.6 Ingenuity upstream regulator analysis .. 157
4.5 Discussion... 167

Chapter 5: Interactions between an obligate anaerobic bacterium and Caco-2 cells in an apical anaerobic model of the intestinal barrier............... 173

5.1 Introduction... 174
5.2 Hypothesis and aims .. 175
5.3 Methods .. 176
 5.3.1 Culture of epithelial cells ... 176
 5.3.2 Culture of bacteria... 176
 5.3.2.1 Faecalibacterium prausnitzii cell culture 176
 5.3.2.2 Lactobacillus rhamnosus cell culture .. 176
 5.3.3 Preparation of bacterial culture medium... 177
 5.3.3.1 Anaerobic BHI broth ... 177
 5.3.3.2 MRS broth... 177
 5.3.3.3 Anaerobic BHI agar .. 177
 5.3.3.4 MRS agar.. 179
 5.3.4 Long term storage of cultures .. 179
 5.3.4.1 Preservation with DMSO .. 179
 5.3.4.2 Preservation with glycerol .. 179
 5.3.5 Enumeration of bacteria.. 179
 5.3.5.1 Counting chamber... 179
 5.3.5.2 Colony-forming units.. 181
 5.3.6 16S rRNA gene sequencing.. 181
 5.3.6.1 DNA isolation... 181
 5.3.6.2 Polymerase chain reaction .. 182
 5.3.6.3 DNA sequencing... 183
5.3.7 Bacterial growth measurement .. 183
5.3.8 Epithelial and bacterial cell co-culture .. 185
 5.3.8.1 Preparation of bacterial cultures ... 185
 5.3.8.2 Preparation of epithelial cells ... 186
 5.3.8.3 Establishing co-culture .. 186
5.3.9 Estimating bacterial viability .. 186
5.3.10 TEER assay ... 186
5.3.11 ³H-mannitol bioassay .. 187
5.3.12 Global gene expression analysis .. 188
 5.3.12.1 Experimental design .. 188
 5.3.12.2 RNA isolation ... 190
 5.3.12.3 Gene expression analysis .. 190

5.4 Results ... 192
 5.4.1 Confirmation of bacterial strains ... 192
 5.4.2 Growth Curve .. 192
 5.4.3 Viability of bacteria in the apical anaerobic model 195
 5.4.4 Effect of bacteria on TEER ... 195
 5.4.5 Effect of bacteria on ³H-mannitol permeability 195
 5.4.6 Differentially expressed genes .. 199
 5.4.7 Biological interaction networks .. 203
 5.4.8 Biological functions associated with differentially expressed genes ... 210
 5.4.9 Ingenuity pathway analysis ... 216
 5.4.10 Ingenuity upstream regulator analysis .. 225

5.5 Discussion ... 232

Chapter 6: General discussion ... 239
6.1 Background ... 240
6.2 Summary of results .. 240
6.3 General discussion .. 242
 6.3.1 Development .. 242
 6.3.2 Validation ... 244
 6.3.3 Application .. 246
6.4 Future perspectives .. 248
 6.4.1 Improving the co-culture chamber design ... 248
 6.4.2 Creating a physiological intestinal environment 249
 6.4.3 Future applications of the apical anaerobic model 250
6.5 Conclusions .. 252
Appendices .. 254
 Appendix I Engineers’ drawings of the co-culture chamber 254
 Appendix II FACSCalibur instruments for DNA content analysis 257
 Appendix III Settings for confocal microscope ... 258
References .. 261
LIST OF FIGURES

Figure 1.1 Components of the intestinal barrier... 5
Figure 1.2 Structure of tight junctions. .. 9
Figure 1.3 TLR and NOD signalling in the NF-κB pathway. .. 19
Figure 1.4 Variation in numbers of bacteria along the intestinal tract 25
Figure 1.5 Modulation of the NF-κB pathway in epithelial cells by bacteria............. 34
Figure 1.6 Representation of transepithelial models.. 40
Figure 1.7 Structure of the dissertation ... 47
Figure 2.1 The apical anaerobic co-culture model.. 53
Figure 2.2 Cell culture insert configuration. ... 57
Figure 2.3 Methods of measuring TEER across Caco-2 cell monolayers............... 62
Figure 2.4 Design concept of co-culture chamber ... 64
Figure 2.5 Components of the prototype co-culture chamber................................. 65
Figure 2.6 TEER across Caco-2 cell monolayers grown on selected cell culture membranes .. 68
Figure 2.7 TEER across Caco-2 cell monolayers grown Transwell PET membranes .. 69
Figure 2.8 TEER over time across Caco-2 cell monolayers seeded on Transwell PET membranes with 0.4 μm pores.. 71
Figure 2.9 Alternative methods of setting up co-culture chamber............................ 72
Figure 2.10 Typical TEER profile for Caco-2 cells cultured in the co-culture chamber at 37°C in a 5% CO2 incubator ... 74
Figure 2.11 Process for the sealing of the sampling port in the co-culture chamber with the use of a needle .. 76
Figure 2.12 Effect of sealing the co-culture chamber sampling port on TEER across the Caco-2 cell monolayer... 77
Figure 2.13 TEER across Caco-2 cell monolayers when cultured in the co-culture chamber set up using the optimised method.............................. 78

Figure 2.14 Effect of copper electrode shavings on the TEER across Caco-2 cell monolayers cultured at 37°C in a 5% CO₂ incubator....................... 82

Figure 2.15 Effect of electrodes in the co-culture chamber on TEER across Caco-2 cell monolayers. .. 84

Figure 2.16 Pressure release valves in the co-culture chamber. 85

Figure 2.17 Final proposed method for setting up the apical anaerobic co-culture model. .. 87

Figure 3.1 Alternative cell culture environments used to compare and validate the apical anaerobic model. ... 98

Figure 3.2 Special chamber lid containing a port for the dissolved oxygen probe. .. 101

Figure 3.3 Measuring dissolved oxygen in the apical compartment of the co-culture chamber. .. 102

Figure 3.4 Analysing abundance and localisation of TJ proteins. 108

Figure 3.5 Preliminary data on depletion of dissolved oxygen in basal compartment of co-culture chamber... 111

Figure 3.6 Depletion of dissolved oxygen in the basal compartment of the co-culture chamber over 12 hours. .. 112

Figure 3.7 Transmission electron micrographs of Caco-2 cells cultured in the apical anaerobic model. ... 114

Figure 3.8 Neutral red uptake assay to determine viability of Caco-2 cells cultured in various cell culture environments.. 115

Figure 3.9 Representative dot plot of forward and side scatter of Caco-2 cells harvested for cell cycle analysis... 117

Figure 3.10 Cell cycle analysis for Caco-2 cells cultured in various cell culture environments... 118
Figure 3.11 TEER over time across Caco-2 cell monolayers cultured in the co-culture chamber..119

Figure 3.12 3H-mannitol permeability across Caco-2 cell monolayers cultured in the co-culture chamber. ...120

Figure 3.13 Caco-2 cell monolayers stained for TJ proteins and visualised using confocal microscopy...121

Figure 3.14 Abundance and localisation of TJ proteins in Caco-2 cell monolayers cultured in various cell culture environments.............123

Figure 3.15 Abundance of TJ proteins as measured by peak fluorescence intensity in Caco-2 cells cultured in various cell culture environments...124

Figure 3.16 Localisation of TJ proteins as measured by distance from TJ at which 50% (d_{50}) and 20% (d_{20}) of peak fluorescence intensity is reached in Caco-2 cells cultured in various cell culture environments...125

Figure 3.17 TJ staining within the cytoplasm of Caco-2 cells cultured in various cell culture environments..126

Figure 3.18 Number of cells with internalised TJ protein in Caco-2 monolayers cultured in various cell culture environments......................127

Figure 4.1 Intestinal epithelial cells receive oxygen from the underlying capillary bed..135

Figure 4.2 Microarray analysis workflow...137

Figure 4.3 Heatmap of gene expression levels in Caco-2 cells cultured in the apical anaerobic environment or the co-culture chamber in a 5% CO$_2$ incubator. ...145

Figure 4.4 Network of differentially expressed genes in Caco-2 cells in the apical anaerobic environment (compared to Caco-2 cells in the co-culture chamber in a 5% CO$_2$ incubator)..................................155
Figure 4.5 KEGG average expression heatmap for Caco-2 cells cultured in the apical anaerobic environment or the co-culture chamber in a 5% CO2 incubator. .. 156

Figure 4.6 Ingenuity pathway for NRF2-mediated oxidative stress response. 160

Figure 4.7 Ingenuity pathway for TJ signalling. .. 161

Figure 4.8 Ingenuity pathways for TNFR1 and TNFR2 signalling. 162

Figure 4.9 Ingenuity pathway for IL6. .. 163

Figure 4.10 Network of differentially expressed genes regulated by P53 and HIF1A in Caco-2 cells cultured in an apical anaerobic environment for 12 hours (compared to Caco-2 cells in the co-culture chamber in a 5% CO2 incubator). ... 166

Figure 5.1 Design choices for the microarray experiment. .. 189

Figure 5.2 Growth curves for *F. prausnitzii* and *L. rhamnosus*. 194

Figure 5.3 Viability of bacteria in the anaerobic cell culture medium 196

Figure 5.4 Bacterial viability in the apical anaerobic environment and standard atmospheric conditions. ... 197

Figure 5.5 Effect of bacteria on TEER across Caco-2 cell monolayers in the apical anaerobic model over time. ... 198

Figure 5.6 Effect of bacteria on permeability of Caco-2 cell monolayers in the apical anaerobic model. ... 200

Figure 5.7 Numbers of shared and unique differentially expressed genes by Caco-2 cells treated with various bacteria. ... 204

Figure 5.8 Heatmap of gene expression levels in Caco-2 cells treated with various bacteria. .. 205

Figure 5.9 Principal component analysis profile of gene expression by Caco-2 cells treated with various bacteria. .. 206

Figure 5.10 Network of differentially expressed genes in Caco-2 co-cultured with *F. prausnitzii* (compared to Caco-2 cells not treated with bacteria). ... 207
Figure 5.11 Network of differentially expressed genes in Caco-2 co-cultured with UV-killed *F. prausnitzii* (compared to Caco-2 cells not treated with bacteria). ...208

Figure 5.12 Network of differentially expressed genes in Caco-2 co-cultured with *F. prausnitzii* (compared to Caco-2 cells treated with UV-killed *F. prausnitzii*). ...209

Figure 5.13 Network of differentially expressed genes in Caco-2 co-cultured with *L. rhamnosus* (compared to Caco-2 cells not treated with bacteria). ...211

Figure 5.14 Ingenuity pathway for ‘Differential Regulation of Cytokine Production in Intestinal Epithelial Cells by IL-17A and IL-17F’.218

Figure 5.15 Ingenuity pathway for ‘TREM1 Signalling’.221

Figure 5.16 Ingenuity pathway for ‘Dendritic Cell Maturation’.223

Figure 5.17 Ingenuity pathway for ‘IL-8 Signalling’. ..224
LIST OF TABLES

Table 2.1 Composition of cell culture medium. .. 54
Table 2.3 Volume of medium and number of Caco-2 cells added to cell culture inserts. .. 60
Table 4.2 Genes selected for qPCR analysis. .. 141
Table 4.4 Key IPA biological functions predicted to be induced in Caco-2 cells in the apical anaerobic environment (compared to Caco-2 cells in the co-culture chamber in a 5% CO₂ incubator). 148
Table 4.5 Key IPA biological functions predicted to be suppressed in Caco-2 cells in the apical anaerobic environment (compared to Caco-2 cells in the co-culture chamber in a 5% CO₂ incubator). 150
Table 4.6 Gene ontology biological processes over-represented in differentially expressed genes from Caco-2 cells cultured in an apical anaerobic environment for 12 hours (compared to Caco-2 cells in the co-culture chamber in a 5% CO₂ incubator). 151
Table 4.7 IPA canonical pathways enriched with differentially expressed genes from Caco-2 cells cultured in an apical anaerobic environment for 12 hours (compared to Caco-2 cells in the co-culture chamber in a 5% CO₂ incubator). ... 158
Table 4.8 Predicted activation state of transcription factors in Caco-2 cells cultured in an apical anaerobic environment for 12 hours (compared to Caco-2 cells in the co-culture chamber in a 5% CO₂ incubator). ... 165
Table 5.2 Components of the 50% DMSO solution. ... 180
Table 5.3 Oligonucleotide sequences used for 16S sequence analysis............... 184
Table 5.5 Genes selected for qPCR analysis. ... 193
Table 5.7 Validation of microarray results by qPCR... 202
Table 5.9 Key biological functions predicted to be increased or decreased in Caco-2 cells co-cultured with UV-killed *F. prausnitzii* (compared to Caco-2 cells not treated with bacteria). .. 214

Table 5.10 Key biological functions predicted to be increased or decreased in Caco-2 cells co-cultured with *F. prausnitzii* (compared to Caco-2 treated with UV-killed *F. prausnitzii*). .. 215

Table 5.11 Canonical pathways enriched with differentially expressed genes from Caco-2 cells co-cultured with *F. prausnitzii* (compared to Caco-2 cells not treated with bacteria). ... 217

Table 5.13 Canonical pathways enriched with differentially expressed genes from Caco-2 cells co-cultured with UV-killed *F. prausnitzii* (compared to Caco-2 cells not treated with bacteria). 220

Table 5.15 Predicted activation state of transcription regulators in Caco-2 cells co-cultured with *F. prausnitzii* (compared to Caco-2 cells not treated with bacteria). ... 226

Table 5.16 Predicted activation state of transcription regulators in Caco-2 cells co-cultured with UV-killed *F. prausnitzii* (compared to Caco-2 cells not treated with bacteria). ... 228

Table 5.17 Predicted activation state of transcription regulators in Caco-2 cells co-cultured with *F. prausnitzii* (compared to Caco-2 treated with UV-killed *F. prausnitzii*). ... 230
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain-heart infusion</td>
</tr>
<tr>
<td>BLASTN</td>
<td>NCBI nucleotide Basic Local Alignment Search</td>
</tr>
<tr>
<td>CAR</td>
<td>Coxsackie and adenovirus receptor</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-forming units</td>
</tr>
<tr>
<td>cIAP</td>
<td>Cellular inhibitor of apoptosis protein</td>
</tr>
<tr>
<td>CLA</td>
<td>Conjugated linoleic acids</td>
</tr>
<tr>
<td>CRE</td>
<td>cAMP response element</td>
</tr>
<tr>
<td>CREB</td>
<td>CRE-binding protein</td>
</tr>
<tr>
<td>cRNA</td>
<td>Complementary RNA</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cells</td>
</tr>
<tr>
<td>ddNTPs</td>
<td>Dideoxynucleotides</td>
</tr>
<tr>
<td>DGGE</td>
<td>Denaturing gradient gel electrophoresis</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Deutsche Sammlung von Mikroorganismen und Zellkulturen (German Collection of Microorganisms and Cell Cultures)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>EGCG</td>
<td>Epigallocatechin gallate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EHEC</td>
<td>Enterohemorrhagic Escherichia coli</td>
</tr>
<tr>
<td>EIEC</td>
<td>Enteroinvasive Escherichia coli</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropathogenic Escherichia coli</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal regulated kinases</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GLA</td>
<td>γ-linolenic acid</td>
</tr>
<tr>
<td>GO</td>
<td>Gene ontology</td>
</tr>
<tr>
<td>hCGΔ</td>
<td>Choriogonadotropin</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxia-inducible factor</td>
</tr>
<tr>
<td>IBD</td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td>IEC6</td>
<td>Intestinal epithelial cell line 6</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IKK</td>
<td>IκB kinase</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IPA</td>
<td>Ingenuity Pathway Analysis</td>
</tr>
<tr>
<td>IRAK</td>
<td>IL-1-receptor-associated kinase</td>
</tr>
<tr>
<td>IRF</td>
<td>IFN-regulatory factor</td>
</tr>
<tr>
<td>IκB</td>
<td>Inhibitor of NF-κB</td>
</tr>
<tr>
<td>JAM</td>
<td>Junctional adhesion molecules</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopaedia of Genes and Genomes</td>
</tr>
<tr>
<td>Lh</td>
<td>Luteinising hormone</td>
</tr>
<tr>
<td>LOESS</td>
<td>Locally weighted smoothing spline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>M199</td>
<td>Medium 199</td>
</tr>
<tr>
<td>MAMPs</td>
<td>Microbe-associated molecular patterns</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinases</td>
</tr>
<tr>
<td>MDCK</td>
<td>Madin Darby canine kidney</td>
</tr>
<tr>
<td>MLC</td>
<td>Myosin II regulatory light chain</td>
</tr>
<tr>
<td>MLCK</td>
<td>Myosin light chain kinase</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MRS</td>
<td>Man, Rogosa and Sharpe</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid differentiation primary response gene</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NEAA</td>
<td>Non-essential amino acids</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide-binding and oligomerisation-domain</td>
</tr>
<tr>
<td>NRF2</td>
<td>NF-E2-Related Factor 2</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PAMPs</td>
<td>Pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>pamr</td>
<td>Prediction Analysis for Microarrays</td>
</tr>
<tr>
<td>PC</td>
<td>Polycarbonate (Transwell® cell culture inserts)</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDZ</td>
<td>PSD95–DlgA–ZO-1 homology</td>
</tr>
<tr>
<td>PEPT1</td>
<td>H+/di-tripeptide transporter</td>
</tr>
<tr>
<td>PET</td>
<td>Polyester (Transwell® cell culture inserts)</td>
</tr>
<tr>
<td>PGE2</td>
<td>Prostaglandin E2</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PLA2</td>
<td>Group IIA phospholipase A2</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome-proliferator-activated receptor</td>
</tr>
<tr>
<td>PRRs</td>
<td>Pathogen recognition receptors</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene (Transwell® cell culture inserts)</td>
</tr>
<tr>
<td>q</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>REML</td>
<td>Restricted maximum likelihood</td>
</tr>
<tr>
<td>RICK</td>
<td>Receptor-interacting serine/threonine kinase</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease A</td>
</tr>
<tr>
<td>ROCK</td>
<td>Rho kinases</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal RNA</td>
</tr>
<tr>
<td>SCFAs</td>
<td>Short chain fatty acids</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SULTs</td>
<td>Sulphotransferases</td>
</tr>
<tr>
<td>TAK-1</td>
<td>Transforming growth factor-β-activated kinase-1</td>
</tr>
<tr>
<td>TEER</td>
<td>Transepithelial electrical resistance</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight junction</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TNFR</td>
<td>Tumour necrosis factor receptor</td>
</tr>
<tr>
<td>TRAF6</td>
<td>TNF-receptor-associated factor 6</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>TREM</td>
<td>Triggering receptor expressed on myeloid cells</td>
</tr>
<tr>
<td>TSLP</td>
<td>Thymic stromal lymphopoietin</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VegF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>ZO</td>
<td>Zonula occludens</td>
</tr>
</tbody>
</table>