Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An experimental challenge model in lactating dairy cows using *Streptococcus uberis* for antibiotic efficacy testing

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Philosophy

In

Veterinary Science

At Massey University, Palmerston North,

New Zealand

Shirli Notcovich

2013
Abstract

The aim of this project was to develop a challenge model to test the efficacy of novel intramammary antimicrobial treatments for clinical mastitis. The use of the model, can reduces the costs of testing efficacy and accelerate the process of registration of new products. It provides controlled conditions which safeguard animal welfare.

The experimental challenge model using *Streptococcus uberis* developed in this thesis can provide the pharmaceutical industry and animal health research groups with a cost-effective method to test the efficacy of new antimicrobial products for treatment of mastitis in a safe and controlled environment. Two Cloxacillin-based antimicrobials with different formulations and treatment frequency were tested for their efficacy to cure *S. uberis* infections after infections were induced using the challenge model developed as described in the third chapter of this thesis.

The objective of the first study presented in this thesis was to choose one suitable strain from four strains of *S. uberis*, to be used in future challenge studies. Four strains were tested for their virulence and susceptibility to antibiotic therapy. A further study objective was to determine the dose (number of pathogens infused, expressed as colony forming units (CFU)) required for the tested strains to produce an acceptable proportion of clinical mastitis cases to enable future studies. The strain which accomplished the desired characteristics was then chosen and was utilised for experimental challenge in further studies (Chapters 4 and 5). The overall incidence of clinical mastitis obtained in this study at a quarter level was 54% (26/48). This study showed significant differences in the ability of different strains of *S. uberis* to cause clinical mastitis when inoculated via the intramammary route. However, only one of the four strains tested demonstrated favourable characteristics as a strain to be used in experimentally induced clinical mastitis studies.

Chapters 4 and 5 describe two challenge studies conducted using the experimental challenge model (Chapter 3) to test the efficacy of different antimicrobial drug formulations. In Chapter 4, the cure rate of one cloxacillin based product applied every 24 hr. was compared with the cure rate of a penicillin-based product applied every 12 hr. During the observation period of this investigation all challenged cows developed clinical
mastitis in at least one quarter. The incidence of clinical mastitis at the quarter level was high, with 91.25% (73/80) of challenged quarters being affected. After diagnosis of infections, the cows were randomly allocated to two treatment groups and treated accordingly. Clinical cases in which the quarter did not respond to three applications of the allocated antimicrobial product received an extended treatment of the same product. As the allocation to the extended treatment was not random, clinical and bacteriological cures were statistically evaluated for the short treatment only. Clinical cure rates for the short treatment (3 syringes) were 52.63% and 43.75% for the cloxacillin- and penicillin-based products, respectively. There was no significant difference between the treatments (P = 0.8) in their efficacy for the treatment of experimentally induced *S. uberis* clinical mastitis.

In Chapter 5, two long-acting cloxacillin containing products were compared in their efficacy to cure experimentally induced *S. uberis* infections. One commercially available product was compared with a novel long acting product (applied every 48 hr.). Out of 80 challenged quarters, 41 quarters developed clinical mastitis after inoculation (51.25%). Treatment with the novel product resulted in a total treatment success rate of 93.1% based on clinical examination, and 96.0% based on the bacteriological cure rate. Treatment with the control product resulted in total treatment success rate of 100% based on clinical and bacteriological cure rate. There was no significant difference between the products (P=0.19) in their efficacy for the treatment of experimentally induced *S. uberis* clinical mastitis.

Results in this thesis showed that experimental challenge models can be a useful tool in animal research to test the efficacy of new products in a safe and cost effective manner.
Acknowledgements

This page is to thank to all the people who accompanied me on this exciting journey as a postgraduate student, and also to thank all the people that made my journey possible.

I would like to thank my supervisors, Professor Norman B. Williamson (Chief Supervisor), Kiro Petrovski, Gina deNicolo and Alex Grinberg, for their patience and support. Thank you for understanding me, interpreting my ideas and improving my writing. Thanks also to Nicolas Lopez-Villalobos for his help with the statistical analysis of the results.

Thanks to J I. Vet services director Jeremy Lind and his fantastic team: Sarah Poppleton, Steph Evans and Macey Waker for working so hard during the fields studies, for their great sense of humour and ability to transform hard work into an extremely enjoyable experience.

I really appreciate the help received from Liz Burrows and Tessie George from IVABS during my first steps in the laboratory.

This project would not have been possible without the financial support of Bayer Animal Health NZ.

To Massey University Dairy Farm Number 1 and 4 staff and managers for being there when needed, for taking care of the cows enrolled in the trials and for their smiles despite the extra work involved.

And finally, many thanks to my beloved husband Diego for his support and shared love, and my siblings Cintia and Fabio, without whose patience, effort and love in raising me up, I would not be here.

“Doing what you like is freedom,

Liking what you do is happiness”…

(Frank Tyger)
Contents

Abstract

Contents ..I

List of Tables ...XI

List of Abbreviations ..XIII

CHAPTER 1 .. XV
 1 General Introduction ... 1

CHAPTER 2 .. 3
 2 Literature review ... 5
 2.1 The New Zealand dairy farming system ... 5
 2.2 Definition of mastitis and somatic cell counts ... 6
 2.2.1 Mechanisms of infection and host response ... 7
 2.3 Mastitis-causing bacteria ... 8
 2.3.1 Classification of the clinical mastitis agents according to the source of infection8
 2.3.2 Classification of the clinical mastitis agents according to the damage induced to the tissue ... 9
 2.4 Major mastitis-causing agents ... 9
 2.4.1 Streptococcus uberis .. 10
 2.4.2 Staphylococcus aureus .. 16
 2.4.3 Escherichia coli ... 17
 2.5 Minor mastitis-causing agents .. 17
 2.5.1 Corynebacterium bovis .. 17
 2.5.2 Coagulase negative staphylococci .. 18
 2.6 Treatment of mastitis ... 18
 2.6.1 Knowing the infectious agents ... 19
2.6.2 Interaction between host and agent

2.6.3 Action mechanisms, pharmacokinetics and pharmacodynamics of intramammary antibiotics

2.6.4 Bacterial Susceptibility and Resistance

2.7 Experimental challenge model

2.7.1 Uses of Experimental challenge models

2.7.2 Challenge Methods

2.7.3 Advantages of experimental challenge models

2.7.4 Studies using natural infections

2.8 Summary

CHAPTER 3

3 Development of a bacterial challenge model for inducing *Streptococcus uberis* clinical mastitis in lactating cows

3.1 Abstract

3.2 Introduction

3.3 Materials and methods

3.3.1 Animal selection and husbandry

3.3.2 Culturing of milk specimens

3.3.3 Preparation of the challenge suspension

3.3.4 Challenge procedure

3.3.5 Clinical examination

3.3.6 Collection of Milk Specimens

3.3.7 Statistical analysis

3.4 Results

3.4.1 Clinical mastitis rates and bacteriological results

3.4.2 Udder Clinical Scores

3.4.3 Somatic cell count results and milk yields

CHAPTER 4

4 Efficacy of a cloxacillin based intramammary product in treating experimentally induced *Streptococcus uberis* clinical mastitis in lactating cows ... 61

4.1 Abstract.. 61

4.2 Introduction... 62

4.3 Materials and methods ... 63

4.3.1 Animal selection and husbandry .. 63

4.3.2 Culturing of milk samples ... 64

4.3.3 Challenge strain... 64

4.3.4 Challenge procedure .. 65

4.3.5 Clinical examination... 66

4.3.6 Sample Collection ... 67

4.3.7 Clinical mastitis treatment.. 67

4.3.8 Statistical analysis .. 68

4.4 Results .. 69

4.4.1 Clinical cure ... 69

4.4.2 Bacteriological cure ... 71

4.4.3 Somatic Cell Count ... 72

4.5 Discussion.. 75

4.6 Conclusion... 77

4.7 Acknowledgement.. 78
CHAPTER 5

5 Clinical and bacteriological response to treatment of experimentally induced Streptococcus uberis clinical mastitis in lactating cows with long acting cloxacillin-based products

5.1 Abstract

5.2 Introduction

5.3 Materials and methods

5.3.1 Animal selection and husbandry

5.3.2 Challenge strain

5.3.3 Challenge procedure

5.3.4 Clinical examination

5.3.5 Sample Collection

5.3.6 Culturing

5.3.7 Clinical mastitis treatment

5.3.8 Statistical analysis

5.4 Results

5.4.1 Clinical cure

5.4.2 Somatic Cell Count

5.5 Discussion

5.6 Conclusion

5.7 Acknowledgment

CHAPTER 6

6 General Discussion

6.1 Limitations of the studies

6.2 Recommendations for future research

List of References
List of Figures

Figure 2-1: Mastitis Infection mechanisms ... 8
Figure 2-2 Percentage of glands diagnosed with clinical mastitis by month of lactation.... 15
Figure 2-3 Kirby-Bauer sensitivity tests .. 24
Figure 3-1 Kaplan-Meier survival analysis showing the cumulative per cent of quarters not affected by clinical mastitis over time post-challenge ... 49
Figure 3-2 Mean clinical scores of challenged quarters ... 50
Figure 3-3 Mean Clinical Score of the challenged quarters by bacterial concentration..... 51
Figure 3-4 Mean somatic cell score (SCS) of the milk specimens taken every morning during from three days before the challenge (m3) to Day 8 after challenge 52
Figure 4-1 Diagram of the allocation to treatment for cloxacillin and penicillin groups 68
Figure 4-2 Diagram of the treatment group allocation and results after treatment 70
Figure 4-3 Patterns of Somatic Cell Scores (SCS= log2 SCC/1000) for cows since the first day after treatment ... 73
Figure 5-1 Somatic Cell Scores (SCS= log2 SCC/1000) for cows from the first day after treatment to Day 18 ... 90
List of Tables

Table 2-1: Surveys carried out in New Zealand reporting the relative prevalence of mastitis agents in different regions as a percentage of all clinical cases.. 20

Table 2-2 Antimicrobial drug classification grouped by its distribution in the udder after intramammary treatments .. 22

Table 2-3 Summary of experimental challenge models carried out by different authors....29

Table 3-1 Clinical scoring criteria applied for the challenged quarters during the examination period... 44

Table 3-2 Comparison between the strains in the ability to cause clinical mastitis......... 47

Table 3-3 Number of cases of CM obtained after challenge per strain and concentration; and the number of samples from which *Streptococcus uberis* was isolated after culture of the samples from CM... 48

Table 3-4 Geometric mean of the SCC (95% CI) per strain, from Day 0 to Day 8...........53

Table 4-1 Clinical scoring criteria applied for the challenged quarters during the examination period... 66

Table 4-2 Clinical cure rates for short, and extended treatments in percentages.......... 70

Table 4-3 Culture results from the non-clinical cases in Day 4 and 13 of the study 71

Table 4-4 Culture results of the samples, taken before and after treatment (short or extended treatments are shown together)... 72

Table 4-5 Somatic cell scores, SE, geometric means and 95% confidence intervals for the somatic cell count (SCC) for cows treated with Cloxacillin and Penicillin group from 1 milking after positive diagnosis with clinical mastitis... 74

Table 5-1 Clinical scoring criteria applied for the challenged quarters during the examination period... 86

Table 5-2 Quarter level clinical cure rates according to treatment groups 89

Table 5-3 Somatic cell scores, SE, geometric means and 95% confidence intervals for the somatic cell count (SCC) for cows treated with Cloxacillin 48 and Control group from 1 milking after positive diagnosis with clinical mastitis... 91

Table 6-1 Comparison between different parameters observed in Chapters 4 and 5........99
List of Abbreviations

ATB: Antibiotic
BA: Blood Agar plates
BAGG: Buffered Azide Glucose Glycerol Broth
BSCC: Bulk somatic cell count
CAMP: Christie Atkins and Munch Petersen
CFU: Colony forming units
CI: Confidence interval
CLSI: Clinical Laboratory standards Institute
CM: Clinical Mastitis
CNS: *Coagulase Negative Staphylococci*
CO₂: Carbon Dioxide
DCT: Dry cow therapy
FR/RL or FL/RR: Front-Right and Rear-Left or Front-Left and Rear-Right
Hr.: Hours
IVABS: Institute of Veterinary, Animal and Biomedical Sciences
MIC: Minimum inhibition concentrations
NEB: Negative energy balance
NMC: National Mastitis Council
PBS: Phosphate buffered saline
PEB: Positive energy balance
PFGE: Pulsed-field gel electrophoresis
PMN: Polymorphonuclear cells
rm ANOVA: Repeated measures analysis of variance
RR: Relative risk
SCC: Somatic cell count
SCS: somatic cell scores
S. uberis: Streptococcus uberis
Staph. aureus: Staphylococcus aureus
TS: time of sampling