Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Symmetric Parallel
Class Expression Learning

TRAN, Cong An

School of Engineering and Advanced Technology
Massey University
New Zealand

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Computer Science

June, 2013
For my grandparents, my parents, my wife and my son
Acknowledgements

I would like to take this opportunity to thank my supervisors, Prof. Hans W. Guesgen, Prof. Jens Dietrich and Prof. Stephen Marsland for their guidance and support. I am thankful that I could benefit from their combined research experience. Prof. Hans W. Guesgen introduced me the world of Ambient Intelligent with its humanistic ideas of helping the elderly to have a better life. Prof. Jens Dietrich attracted me to his colourful world of Software Engineering. His endless source of ideas impressed me that this is the world of the active and creative people. Prof. Stephen Marsland, a ’diverse’ professor with the excellent background in mathematics and computer science, encouraged me into his mysterious world of Machine Learning.

I also want to thank Jens Lehmann, the research group leader of Machine Learning and Ontology Engineering (MOLE) Group at the University of Leipzig, as well as the author of the DL-Learner framework, for his kindness to grant me permission to access his DL-Learner framework repository as well as for his valuable advice to evaluate learners. I also highly appreciate Prof. Adrian Paschke, Director of RuleML Inc., for his advice on my research direction.

I would like to thank the Ministry of Education and Training of Vietnam for awarding me the scholarship for my study. Thanks also go to the School of Engineering and Advanced Technology (SEAT) for the financial support that has enabled me to attend international conferences, which not only improved my research but also enriched my life.

Thanks to all members of Massey University Smart Home (MUSE) research group for their valuable discussions and feedbacks on my research. I also...
want to thank Michele Wagner for her administrative support throughout my degree.

This thesis would not be possible without the warm and support of my Palmy-based family, Mr. Vo The Truyen and his family, Mr. Nguyen Buu Huan and Mr. Nguyen Van Long, who give me a home away from home. In particular, my special thanks go to Mr. Truyen’s for treating me as their little brother and Mr. Huan for checking and giving me many helpful advices on my writing. I could not have asked for more warm and kind friends as them.

Finally, I would like to give all my deepest gratitude and respect to my family. To my grandparents and my parents for their continuous love, support and patience. To my parents-in-law for taking good care of my son in more than four years, which released me from family concerns to concentrate on my research. To my sister and brother for being with my parents during my study. To my beloved wife, Nguyen Thu Huong, and my son, Tran Cong Huan. It is my fortune to have them in my life. They are always by my side to share all the laughers and tears.
Abstract

The growth of both size and complexity of learning problems in description logic applications, such as the Semantic Web, requires fast and scalable description logic learning algorithms. This thesis proposes such algorithms using several related approaches and compares them with existing algorithms. Particular measures used for comparison include computation time and accuracy on a range of learning problems of different sizes and complexities.

The first step is to use parallelisation inspired by the map-reduce framework. The top-down learning approach, coupled with an implicit divide-and-conquer strategy, also facilitates the discovery of solutions for a certain class of complex learning problems. A reduction step aggregates the partial solutions and also provides additional flexibility to customise learnt results.

A symmetric class expression learning algorithm produces separate definitions of positive (true) examples and negative (false) examples (which can be computed in parallel). By treating these two sets of definitions ‘symmetrically’, it is sometimes possible to reduce the size of the search space significantly. The use of negative example denotations enhances learning problems with exceptions, where the negative examples (‘exceptions’) follow a few relatively simple patterns.

In general, correctness (true positives) and completeness (true negatives) of a learning algorithm are traded off against each other because these two criteria are normally conflicting. Particular learning algorithms have an inherent bias towards either correctness or completeness. The use of negative definitions enables an approach (called fortification in this thesis) to improve predictive correctness by applying an appropriate level of over-specialisation to the prediction model, while avoiding over-fitting.

The experiments presented in the thesis show that these algorithms have the potential to improve both the computation time and predictive accuracy of description logic learning when compared to existing algorithms.
Contents

Acknowledgement v

Abstract vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Introduction 1
1.2 Motivation 3
1.3 Scope of Study 8
1.4 Aims and Objectives 8
1.5 Thesis Overview 10

2 Preliminaries and Related Work 13

2.1 Description Logics and Web Ontology Language 13
 2.1.1 Description logic languages 13
 2.1.2 Description logic knowledge bases 17
 2.1.3 The Web Ontology Language (OWL) 23
2.2 Description Logic and OWL Learning 26
 2.2.1 Description logic learning problem 26
 2.2.2 Basic approaches in DL learning 29
2.3 Related Work 32
 2.3.1 Description logic learning 32
CONTENTS

2.3.2 Parallel description logic learning 34
2.3.3 Numerical data learning in description logics 35
2.3.4 Class Expression Learner for Ontology Engineering (CELOE) . . 36

3 Evaluation Methodology ... 39
3.1 Introduction ... 39
3.2 Evaluation Metrics .. 40
 3.2.1 Accuracy .. 40
 3.2.2 Learning time .. 41
 3.2.3 Definition length ... 42
 3.2.4 Search space size ... 42
3.3 Experimental Design ... 42
 3.3.1 Experimental framework 42
 3.3.2 Comparison algorithms 48
 3.3.3 Evaluation Datasets 50
3.4 Implementation and Running the Code 58

4 Adaptive Numerical Data Segmentation 61
4.1 Introduction ... 61
4.2 Motivation ... 62
4.3 Description of Our Method 65
4.4 The Algorithms .. 67
4.5 Evaluation Results .. 68
 4.5.1 Segmentation result 70
 4.5.2 Experimental results on the accuracy 71
4.6 Conclusion ... 75

5 Parallel Class Expression Learning 77
5.1 Parallelisation for Class Expression Learning 77
5.2 Description of Our Method 79
5.3 The Algorithms .. 83
5.4 Evaluation Result ... 88
7.5 Conclusion 176

8 Conclusions and Future Work 181
 8.1 Discussion and Contributions of the Thesis 181
 8.2 Threats to Validity of the Results 184
 8.2.1 Threats to internal validity 184
 8.2.2 Threats to external validity 186
 8.3 Future Work .. 187

A Accessing the Implementation 191
 A.1 Software Structure 191
 A.1.1 DL-Learner architecture 191
 A.1.2 Our algorithms packages 192
 A.2 Checking Out and Compiling Code 193
 A.2.1 Checking out the project 194
 A.2.2 Compiling code 195

B Reproducing the Experimental Results 197
 B.1 System Requirements 197
 B.2 Running the Experiments 198
 B.2.1 Syntax ... 198
 B.2.2 Learning configuration file naming conventions 199
 B.3 Learning Configuration 199
 B.4 Test Cases ... 202

C List of Publications 211

Glossary ... 213

References ... 217
List of Figures

1.1 A typical search tree produced by a top-down learning approach for the
 Tweety problem. .. 6

2.1 An example of the top-down approach in DL learning 31
2.2 An example of the bottom-up approach in DL learning 32

3.1 Data partition for a 10-fold cross-validation 44
3.2 An example of the inconsistency in parallel learning 45
3.3 Termination of learning algorithms 48
3.4 The MUSE dataset ontology visualised in Protege 55
3.5 RDF graph of an activity in the MUSE dataset 56
3.6 The concept hierarchy of the MUBus dataset visualised in Protege ... 57

4.1 Specialisation of numeric datatype properties 63
4.2 Segmentation of numeric datatype properties 64
4.3 Inappropriate segmentation of the data property values prevents the spe-
 cialisation of an overly general expression 64
4.4 A relation graph between examples and numeric values 66
4.5 Segmentation of data property values 67
4.6 Segmentation of the data property values in Figure 4.3 67

5.1 The specialisation using a downward refinement operator 81
5.2 Parallel exploration of the search tree using two workers 83
5.3 Reducer-Worker interaction. .. 84
LIST OF FIGURES

5.4 Accuracy against learning time of CELOE and ParCEL on the Carcino-
Genesis dataset using different number of workers. 96
5.5 Accuracy against learning time of CELOE and ParCEL on the UCA1
dataset using different number of workers. 97
5.6 Speed-up efficiency of ParCEL on the UCA1 dataset. 98
6.1 Exception patterns in learning 105
6.2 Different approaches to learning the definition for the extended Tweety
learning problem. ... 107
6.3 The top-down learning step aims to find both partial definitions and
counter-partial definitions .. 111
6.4 Top-down learning in SPaCEL with multiple workers. 112
7.1 The creation of a prediction model for a learning problem 137
7.2 A prediction scenario of the prediction model in Figure 7.1 138
7.3 Decrease of predictive accuracy caused by inappropriate fortification.. 139
7.4 Fortification candidates learning 141
7.5 Family concepts hierarchy. ... 150
A.1 DL-Learner architecture ... 193
B.1 Check required softwares in the system including JDK, Subversion and
Maven ... 206
B.2 Install required softwares for compilation the project: JDK, Subversion
and Maven ... 206
B.3 Check out the project from the repository 207
B.4 Compile the DL-Learner and ParCEL core components project. 207
B.5 Compile the interface project. .. 207
B.6 Compile the ParCEL CLI project. 207
B.7 Command line to learn the Forte-Uncle dataset using CELOE 208
B.8 Command line to learn the Forte-Uncle dataset using ParCEL 208
B.9 Command line to learn the Forte-Uncle dataset using SPaCEL 209
List of Tables

2.1 Basic concept constructors in description logics 15
2.2 Letters used to name description logic languages 16
2.3 The semantics of basic concept constructors in description logics 18
2.4 DLs notations and OWL notations 24
2.5 OWL constructors and the corresponding constructors in DLs 25

3.1 Size and complexity of the evaluation datasets 51
3.2 Properties of the evaluation datasets 52

4.1 Reduction of numeric data properties values resulting from the adaptive
 segmentation strategy ... 70
4.2 Training and predictive accuracies of CELOE on the ILDP dataset using
 for the two segmentation strategies 72
4.3 Training and predictive accuracies of ParCEL on the ILDP dataset using
 for the two segmentation strategies 73
4.4 Predictive accuracy of CELOE and ParCEL on the UCA1 dataset using
 for the two segmentation strategies 74

5.1 ParCEL and CELOE experimental results 90
5.2 Balanced accuracy of CELOE and ParCEL on unbalanced datasets 94
5.3 ParCEL and CELOE experimental results with one worker 95
5.4 Speed-up of ParCEL on the UCA1 dataset 98
5.5 Definition length comparison between three reduction strategies 99

6.1 Basic description learning algorithms and their usage of examples 108
LIST OF TABLES

6.2 SPaCEL experimental result – Combination strategies 119
6.3 SPaCEL experimental results – The search tree size 123
6.4 SPaCEL experimental result – Learning time and predictive accuracy . 124
6.5 Balanced predictive accuracy of unbalanced datasets 127
6.6 SPaCEL experimental result – Definition length of the learning problem 128

7.1 Fortification experimental result with CELOE 166
7.2 Fortification experimental result on ParCEL 170
7.3 Fortification experimental result with SPaCEL 173
7.4 Experimental results for new cut-off points 178

B.1 Common components in DL-Learner framework and their parameters . 200
B.2 Actions and expected result of the test case. 204
Chapter 1

Introduction

In this chapter, we first provide the research background of the thesis, particularly the description logic learning problem, and identify the problems to be addressed. Next, we describe the motivations and the aims and objectives of this thesis. Finally, we present an overview of the thesis.

1.1 Introduction

Description logic learning has its roots in Inductive Logic Programming (ILP), a symbolic approach in machine learning that aims to learn general rules from specific facts [76, 77, 102, 104]. Given a background knowledge and a set of observed facts represented in the form of logic programs [51, 86, 99], ILP aims to learn a set of rules that describe the given facts. Therefore, it can be used to derive new knowledge (the learnt rules) from the current knowledge and observed facts:

\[
\text{knowledge base} \xrightarrow{\text{observed facts}} \text{(learnt) rules.}
\]

In description logic learning, description logics (DLs) are employed to represent the knowledge bases and observed facts. DLs are a family of formal knowledge representation languages that emerged from earlier research on semantic networks and frame-based systems [4, 98, 109, 125]. Given a knowledge base and two sets of instances (called positive and negative example sets) represented in description logics,
1. Introduction

description logic learning aims to find a description such that all positive (true) examples are instances of the learnt description\(^1\) and none of the negative (false) examples is an instance of the learnt description (see Chapter 2 for basic concepts in description logics). The elements of the positive and negative example sets are called positive and negative examples respectively. The learnt description corresponds to the learnt rule in inductive logic programming and it is called the definition of the positive examples. It can be considered as the new knowledge derived from the observations (i.e. from positive and negative examples). Example 1.1 illustrates a simple description logic learning problem.

Example 1.1 (A simple example of description logic learning). Consider a knowledge base that contains four classes: Person, Male, Female and Uncle; three properties: married, hasSibling and hasChild; and some instances of these classes that relate to the description of the uncle relationship. A general description logic learning algorithm can produce description(s) that describe the uncle concept, for example (written in Manchester OWL syntax [62]):

\[
\text{Male AND (hasSibling SOME (hasChild SOME Person) OR (married SOME hasSibling SOME hasChild SOME Person))}
\]

The biggest benefits of symbolic over sub-symbolic approaches in machine learning are the interpretability and the rich hierarchical structure and semantics of the knowledge base. The interpretability of symbolic approaches is represented by two aspects. First, knowledge represented in logic-based languages is generally easier for humans to analyse and understand than the forms of knowledge representation used in sub-symbolic approaches as it is relatively close to human knowledge representation. Second, many logic reasoners, particularly web ontology language reasoners such as RacerPro [55] and Pellet [107], provide justifications of inferences [71]. Justifications, also called explanations or traces, are a (minimal) set of rules sufficient to produce an inference. They can be considered as explanations of an inference and can be used to justify a decision made by a decision support system. For example, the inference

\[\text{It is also said that the description \textit{covers} the instances.}\]
“John is a father” can be supported by an explanation, such as, ‘(because) John is man AND he has a child”. Therefore, justifications can help to increase the trust (in the inferences produced by systems) of systems that use this approach. This is an essential requirement for some types of application that require a high level of trust in the decisions of the system such as expert systems for human disease diagnosis, or decision support systems for elderly care.

Description logics are the underlying logic language of the Web Ontology Language (OWL), which was endorsed as a standard ontology language for the Semantic Web [14] by the World Wide Web Consortium (W3C)2 in 2004 [96]. With the advent of semantic technologies, particularly the Semantic Web, OWL has become a prominent paradigm for knowledge representation and reasoning.

Currently, the semantic web is growing steadily – it has developed from more than 10 million semantic web pages in 2010 to approximately 230.6 million in 2011 [24]. It contains knowledge from various areas such as biomedicine, science, social networks, and general (upper) ontologies [54, 94, 105, 119]. Coupled with the development of web ontology language and semantic web applications, the demand for techniques for automated schema acquisition is increasing [16, 83, 89, 90, 112, 143]. Consequently, many induction techniques for description logics have been proposed [32, 45, 80, 85, 114, 115] to meet this demand. They are used in various applications in domains including biology, medicine, cognitive systems and software engineering [35, 60, 125].

1.2 Motivation

Description logic learning problems are increasing in both size (the number of concepts and instances in the knowledge base) and complexity (the number of concepts and roles in the learnt description). This raises the need for faster learning algorithms to process the tasks faster by using system resources such as CPU and memory more effectively. More importantly, when the applications get bigger and more complex, scalability becomes a critical requirement. This property indicates the ability of the learning algorithm to deal with large and complex learning problems.

2http://www.w3.org/Consortium/
As an example, a decision support system in a bank often has only limited resources to perform maintenance works such as learning credit card fraud detection patterns from a day’s data to update its information system, e.g. within 1 hour from 1am everyday. This is a strict requirement regardless of how many transactions have been performed that day. As another example, consider an abnormal behaviour detection for elderly care in smart homes, in which a learning algorithm is called to update the definition of abnormal behaviour when new patterns in the inhabitant’s behaviour emerge. The normal/abnormal behaviour patterns may become more complicated over time. To ensure that the detection system does not miss any abnormal behaviours caused by long learning time, a learning algorithm is often required to run within a given duration regardless of the complexity of the learning problem. Therefore, the learning algorithms are required to deal with the various complexity levels of the learning problems so that they are usable in real-word applications.

Learning in description logics is essentially a search problem: it searches for a right description in the search space that consists of potential descriptions constructed from the vocabulary of the language. The potential descriptions in the search space are usually generated dynamically by an operator such as downward/upward refinement or the Most Specific Concepts (MSC) operator (see Section 2.2). Therefore, the speed of a description learning approach depends upon the number of computations (searches) per second and the number of computations per answer, i.e. the time to find the right answer. On the other hand, the scalability can be influenced by the learning strategy, i.e. how to construct the solution.

A popular technique for speeding up programs is parallelisation, which takes the advantage of multi-core processors and multi-processor systems. Multiple searches can run concurrently on multiple cores to increase the number of computations per second. While this technique has been applied to inductive logic programming to speed up the learning algorithms, it has not yet been used in description logic learning. In this thesis, we propose an approach to parallel description logic learning that uses the advantages of parallelisation to speed up the learning algorithm.

In addition, we also employ the implicit divide and conquer learning strategy to help

3Complete and correct description with respect to the sets of examples (c.f. Section 2.2)
our learning approach to handle complex learning problems more effectively. The basic idea behind this strategy is to allow the learning algorithm to learn the definitions for subsets of instances in the positive example set, i.e. partial solutions, and then combine them to construct a final solution. The subsets of instances are not explicitly divided, but they are implicitly defined depending on the definitions found by the learning algorithm. Intuitively, finding partial solutions is likely to be easier than finding a complete one. A similar learning strategy was reported in the literature (see Section 2.3). However, the combination of definitions in the approach in the literature simply creates the disjunction of all definitions and thus the solution is likely to contain redundancies. We address this problem by proposing a reduction before the combination step to select the best definitions for the combination.

The second method for speeding up the learning algorithm is to reduce the number of computations required to find a solution. In a learning approach based on search, the number of computations for finding the solution is basically affected by two factors: i) the search heuristics, and ii) the effectiveness of using the descriptions in the search space. The search heuristic controls the selection of the descriptions in the search space for further solution exploration. This factor can be adjusted according to particular learning problem.

The strategy for using descriptions in the search space suggests a more general approach to reduce the number of computations needed to find a solution. Existing description logic learning approaches reported in the literature (see Section 2.3) generate and search for descriptions that cover all positive and no negative examples. Descriptions that cover only negative examples are removed from the search space as they are said to be useless for learning the solution. A problem with this approach is that sometimes descriptions in the search space are not used effectively.

To illustrate this point, consider a classical example used in logic programming, Tweety, which can be used to learn the definition of flying birds. This problem comes with a knowledge base that contains a hierarchical structure of concepts, a set of positive examples that contains instances of flying birds, and a set of negative examples containing instances of birds and other objects that cannot fly (such as penguins). Then, the expected definition for positive examples is $\text{Bird} \cap \neg\text{Penguin}$. A typical
search space (tree) produced by a top-down learning approach for this problem is given in Figure 1.1. Popular description logic learning algorithms will ignore the description Penguin in the search tree as it does not cover any positive examples. However, this simple definition of the negative examples can be combined with another simple description Bird to construct the solution that is Bird AND not Penguin to describe the flying birds. This thesis addresses this problem by proposing a ‘symmetric’ description logic learning approach that uses definitions of both positive and negative examples in learning the solution. This approach uses the descriptions in the search tree more effectively, which can help to reduce the necessary search space size for learning a problem. As a consequence, this approach can improve the learning speed.

In description logic learning, the top-down approach, also called specialisation, is commonly used as it can facilitate the rich hierarchical structure of knowledge bases to construct the search space. Definitions learnt by this approach are likely to be shorter and more concise than those of other approaches [82]. For this reason, they are often more general than the learnt definitions of other approaches (see Section 2.2.2 for a discussion of the generality of a definition). Consequently, the learnt definitions of this approach favour completeness (the true positive) over correctness (the true negative) of the prediction. This bias may fit certain kinds of application. However, there are also applications that prefer correctness to completeness.

As an example, consider a surveillance system that learns the normal behaviour pattern of the elderly and use the patterns, coupled with the ‘negation as failure’ inference rule, for detecting abnormal behaviours. The learnt pattern is complete if it
can cover all normal behaviours and correct if it does not cover any abnormal behaviour. In such a system, correctness of the learnt definitions is favoured over completeness as misclassifying abnormal behaviours as normal ones may threaten the person’s safety.

The above scenarios, together with the symmetric approach in description logic learning, motivate us to propose a method that can provide a trade-off between completeness and correctness of the prediction for description logic learning algorithms. The basic idea of this approach is to fortify the learnt definitions by including redundant specialisations to improve the predictive correctness. The redundant specialisation is performed by using a set of negative example definitions. In addition, to prevent the over-specialisation of the learnt definition, the redundant specialisation is controlled by a fortification strategy. This strategy aims to estimate the level of specialisation that should be applied to the learnt definitions.

We also propose a method for numerical data refinement that will be the basis for algorithms to learn numerical data. This is motivated by the fact that the existing description logic learning algorithms mainly focus upon learning the concepts without having appropriate attention for learning numeric data. In fact, learning symbolic concepts is the ultimate purpose of the symbolic learning approach and thus it is reasonable for the existing learning algorithms to pay attention to this aspect. However, there is also the fact that there are certain circumstances in which the data needs to be represented numerically.

To learn the numeric datatype properties, we need to identify a set of values used for refinement and then define the refinement operator on the set. Most existing description logic learning approaches attempt to use a fixed-size segmentation method to identify the set of values for refinement. Given a set of all asserted values of a numeric datatype property, the fixed-size segmentation approach divides the values into a fixed number of segments. Then, values on the boundaries of the segments are used for the refinement operator. However, this method may produce redundant values or miss necessary values for refinement. Therefore, we propose a novel approach for the dynamic segmentation of numeric datatype properties values based on a relation graph. Our approach can eliminate the redundancy and the insufficiency of the refinement values.
1. Introduction

1.3 Scope of Study

The work of this thesis is mainly related to description logic learning, particularly the web ontology language. Specific limitations include:

- Symbolic approach: the learning technique used in our thesis is based on induction and the knowledge is represented using description logics, particularly the Web Ontology Language (OWL).
- Supervised learning: the learning is based on labelled datasets.
- Positive and negative learning setting: this thesis is restricted to the positive and negative examples learning setting where the training dataset must contain both positive and negative examples. In supervised learning, this learning setting is more general than the other one: the positive examples only learning setting.
- Numeric data learning: our approach supports the integer and real datatype, and two restrictions: maximal (≤) and minimal value (≥).

1.4 Aims and Objectives

This thesis is about improving the speed and scalability of description logic learning, and providing a flexible trade-off between completeness and correctness of the predictions in description logic learning. First, our method for segmentation of numeric datatype provides a better strategy in learning numeric data for description logic learning algorithms. Then, two approaches to speed up and scale up the description logic learning are proposed to help the learning algorithm to deal with various types and complexity levels of learning problems. Finally, the fortification method supports a flexible and configurable balance between correctness and completeness to match the requirements of particular applications. The detailed objectives of this thesis are listed below.

1. The first objective is to provide a method to segment the values of datatype properties. It is expected to be able to compute a set of values used for refinement of the datatype properties in the learning problem such that:
1. Introduction

- none of the values needed to distinguish between positive and negative examples are missed, and
- redundant values that are unnecessary for distinguishing between positive and negative examples can be eliminated.

2. The second objective is to provide a parallel description learning algorithm that is able to:

- find a definition for a set of positive examples given sets of positive and negative examples and a knowledge base,
- utilise parallel computing to find the sub-solutions in parallel to increase the learning speed and ability to handle complex learning problems, and
- provide basic reduction strategies to aggregate sub-solutions into a final solution.

3. The third objective is to develop a description logic learning algorithm that can learn from labelled data symmetrically and is able to:

- learn definitions for both positive and negative examples,
- provide combination strategies for combining the descriptions that are neither the definitions of positive examples nor negative examples with the definitions of negative examples to create definitions for positive examples, and
- provide basic reduction strategies to aggregate definitions of positive examples into a final solution.

4. The final objective of this thesis is to provide a method for fortifying the predictive correctness in description logic learning that is able to:

- learn the negative examples definitions (called fortifying definitions) using a given description logic learning algorithm, and
- select the best fortifying definitions for fortification such that the predictive correctness can be increased without decreasing the predictive accuracy.
All the above objectives are evaluated using the cross-validation method on a set of datasets that vary in size, complexity (i.e. length of the target definition), noise (i.e. with and without noise) and field of application (e.g. biology, smart homes and transportation). The experimental results are compared with other description logic learning algorithms to assess the efficacy of our approaches.

1.5 Thesis Overview

This thesis is organised into 8 chapters, including this chapter, and 2 appendices. The contributions of this thesis are described in chapters 4-7. Other chapters provide supplementary background knowledge, description of the evaluation method as well as discussion on the results and findings of the thesis. An overview of the chapters is given below.

Chapter 2 (Preliminaries and Related Works) covers the background knowledge related to description logic learning, which helps with understanding the remaining chapters in the thesis. It briefly introduces the history of description logic learning and then some elementary concepts in this research area. Then, two basic approaches of description logic learning, the top-down and bottom-up approaches, are described along with a list of applications of description logic learning. This chapter ends with a literature review of this research.

Chapter 3 (Evaluation Methodology) describes the methodology used for the evaluation, which plays an important role in this research. This chapter first introduces some classic datasets used in the evaluation. These datasets have been widely used in the evaluations of other machine learning research. In addition, one novel smart home datasets and another dataset extracted from a bus service schedule are also presented.

Next, details of the evaluation methodology are described including the cross-validation methodology and a statistical significance test. Some details of the computer system and learning configuration used for the evaluations are also discussed. Finally, this chapter introduces the learning algorithms that are used as the comparators to evaluate the algorithms proposed in this thesis.
Chapter 4 (An Approach to Numeric Data Property Values Segmentation) proposes a method for computing the values used for refinement of numeric datatype properties. This chapter first describes current approaches to refinement of numeric datatype properties in description logic learning and identifies their limitations. Then, it describes an approach for dynamic segmentation of numeric datatype property values to address the problems of the existing approaches. Finally, an implementation is introduced and experimental results are shown to demonstrate the efficacy of the approach.

Chapter 5 (An Approach to Parallel Class Expression Learning) introduces a parallel description logic learning approach that combines the top-down method with an aggregation method to speed up the learning algorithm. It uses an explicit divide and conquer strategy to find the sub-solutions. This helps the learning algorithm to handle complex learning problems more easily. In addition, this approach also requires an aggregation to build the final solution. We introduce a reduction step before the aggregation to reduce the redundancy in the final solution. Some reduction strategies are proposed corresponding to certain properties of the learnt definitions such as the definition length, or the number of sub-solutions.

Chapter 6 (Symmetric Class Expression Learning) proposes a method that can reduce the search space by using sets of positive and negative examples symmetrically. This method learns definitions for both positive and negative examples simultaneously. Definitions of negative examples are then used to construct the definitions of positive examples. This approach uses the descriptions in the search space effectively and thus it can help to increase the learning speed. It is also shown that this approach is suitable for learning problems that contain exceptions.

Chapter 7 (Improving Predictive Correctness by Fortification) presents a method for improving the predictive correctness in description logic learning. It first describes an idea for learning the fortifying definitions given a description logic learning algorithm. Then, some strategies for selecting the best candidates for the fortification are described. We also introduce a method for estimating the cut-off point for the
fortification. The experimental results are compared with the original learning results (i.e., without fortification) to assess the impact of this technique.

Chapter 8 (Conclusions and Future Works) concludes the results and the findings of this thesis, and outlines the prospects for future work.

Appendix A (Accessing the Implementation) introduces the implementation of the methods proposed in this thesis. This chapter first introduces briefly the DL-Learner, an open source machine learning framework our implementations rely on. Then, the structure of the implementation is described. Finally, instructions to check-out and compile the implementation from its repository are provided.

Appendix B (Reproducing the Experimental Results) provides instructions for reproducing the experimental results reported in this thesis.
Chapter 2

Preliminaries and Related Work

This chapter provides the background of this thesis, description logic (DL) learning, and its related work. DLs and the web ontology languages, the representation languages used in the proposed algorithms, are first introduced. Then, DL learning is described including basic concepts, notations and approaches. This chapter ends with a summary of recent work in DL learning.

2.1 Description Logics and Web Ontology Language

This thesis is about the inductive learning for description logics, particularly the web ontology language. Therefore, this section first provides an overview of these languages.

Description logics (DLs) is a family of knowledge representation formalisms that emerged from earlier research on semantic networks and frame-based systems [3, 98, 109]. The earliest work on description logics is called ‘structured inheritance networks’ by Brachman [21]. They are essentially fragments of first order logic [118] with less expressive power. However, most variants of description logics are decidable, which is one of the desirable properties of a knowledge representation language [3].

2.1.1 Description logic languages

A description logic knowledge base is constructed based on a vocabulary, which consists of concept names (atomic concept), role names and objects (individuals), and a set of
2. Preliminaries and Related Work

language constructors. A concept name is a common name for a set of objects, e.g. Person, Mother, Father. Roles are used to describe relationships between objects, e.g. hasChild, daughterOf; and objects are constants that represent objects in the application domain, e.g. tom, jerry.

Language constructors are used to create complex concepts (or concepts in short, or descriptions). A concept in a description logic is a formal definition of a concept (or notation) in the application domain. For example, the complex concept Woman ⊓ ∃ hasChild.Person defines the concept Mother in the real world. The notations ⊓ and ∃ are the description logic constructors. Table 2.1, which is adopted from [3], lists the basic constructors in description logics.

Description logics is a family of languages. Each language supports a different set of constructors that represent its expressive power. Languages in description logics are named according to their expressive power. Each letter in their name describes the supported features. Table 2.2 provides a list of letters that are used to name the description logic languages. For example, the description logic \mathcal{ALC} is the attribute language with complement. This is an extension of the \mathcal{AL} language defined in Definition 2.1 that adds support of negation, i.e. if C is a concept, $\neg C$ is also a concept.

In this section, the syntax of two basic DL languages are provided: \mathcal{AL} and \mathcal{SROIQ}. \mathcal{AL} is the most basic language in description logics, which is the extension of all other languages. \mathcal{SROIQ} is an underlying logic for the most-up-to-date W3C recommendation for semantic web language OWL-DL [64]. Their syntaxes are defined below.

Definition 2.1 (Syntax of \mathcal{AL} language). Let N_C be a set of atomic concepts (concept names) and N_R be a set of roles names (N_C and N_R are disjoint). Concepts in the \mathcal{AL} language are defined as follows:

1. Every atomic concept $C \in N_C$ is a concept.
2. \top (top) and \bot (bottom) are concepts.
3. If C and D are concepts, and r is a role, the followings are also concepts:
 - $C \sqcup D$ (disjunction), $C \sqcap D$ (conjunction),
 - $\forall r.C$ (universal restriction), $\exists r.C$ (existential restriction).
Table 2.1: Basic concept constructors in description logics. A, C, D are atomic concepts, r is a role name and n denotes an integer number.

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic concept</td>
<td>concept name</td>
<td>$C, D, Person$</td>
</tr>
<tr>
<td>role</td>
<td>role name</td>
<td>$r, s, hasChild$</td>
</tr>
<tr>
<td>top (TOP) concept</td>
<td>\top</td>
<td>$-$</td>
</tr>
<tr>
<td>bottom (BOTTOM) concept</td>
<td>\bot</td>
<td>$-$</td>
</tr>
<tr>
<td>conjunction</td>
<td>\sqcap</td>
<td>$C \sqcap D$</td>
</tr>
<tr>
<td>disjunction</td>
<td>\sqcup</td>
<td>$C \sqcup D$</td>
</tr>
<tr>
<td>complement</td>
<td>\neg</td>
<td>$\neg C$</td>
</tr>
<tr>
<td>existential restriction</td>
<td>\exists</td>
<td>$\exists r.C$</td>
</tr>
<tr>
<td>universal restriction</td>
<td>\forall</td>
<td>$\forall r.C$</td>
</tr>
<tr>
<td>at-least restriction</td>
<td>\geq</td>
<td>$\geq n r$</td>
</tr>
<tr>
<td>at-most restriction</td>
<td>\leq</td>
<td>$\leq n r$</td>
</tr>
<tr>
<td>qualified at-least restriction</td>
<td>\geq</td>
<td>$\geq n r.C$</td>
</tr>
<tr>
<td>qualified at-most restriction</td>
<td>\leq</td>
<td>$\leq n r.C$</td>
</tr>
</tbody>
</table>

The SROIQ language is more expressive than AL, but is still decidable. This language is an extension of AL with more supported constructors including concept complement, role transitivity, role inversion, nominals, qualified number restrictions and complex role inclusions. Its syntax is defined as follows:

Definition 2.2 (Syntax of SROIQ language). Let N_C be a set of atomic concepts (concept names), N_R be a set of roles names and N_I be a set of individuals (N_C, N_R and N_I are disjoint). Concepts in SROIQ language are defined as follows:

1. Every atomic concept $C \in N_C$ is a concept.
2. \top (top) and \bot (bottom) are concepts.
3. If C and D are concepts, r is a role, the followings are also concepts:
 - $C \sqcup D$ (disjunction), $C \sqcap D$ (conjunction), $\neg C$;
 - $\forall r.C$ (universal restriction), $\exists r.C$ (existential restriction),
 - $\{a_1, \ldots, a_n\}$, with $a_i \in N_I$ (nominal),
 - $\geq n r.C$, $\leq n r.C$ (qualified number restrictions).
Table 2.2: Letters used to name description logic languages.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Abbreviation for</th>
<th>Features supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{A}</td>
<td>attribute</td>
<td>Basic constructors to describe attributes of concepts, roles and objects including conjunction, disjunction, universal restriction, limited existential restriction (support restriction of \top only).</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>complement</td>
<td>Complementarity (negation) of concepts.</td>
</tr>
<tr>
<td>\mathcal{S}</td>
<td>\mathcal{ALC} and transitive</td>
<td>All features of \mathcal{AL} language plus complement and transitivity for roles. Given a role r, role transitive defines that $r(a, b), r(b, c)$ implies $r(a, c)$.</td>
</tr>
<tr>
<td>\mathcal{H}</td>
<td>role hierarchy</td>
<td>Sub-roles. If r is a sub-role of s, $r(a, b)$ implies $s(a, b)$.</td>
</tr>
<tr>
<td>\mathcal{E}</td>
<td>full existential restriction</td>
<td>Full existential restriction: restriction that can be applied on any concepts, not restricted on \top.</td>
</tr>
<tr>
<td>\mathcal{I}</td>
<td>inverse role</td>
<td>inverse roles. If r is an inverse role of a role s, $r(a, b)$ iff $s(b, a)$.</td>
</tr>
<tr>
<td>\mathcal{O}</td>
<td>nominal</td>
<td>Transform object names into concept description. It can also be used to enumerate objects for value restrictions.</td>
</tr>
<tr>
<td>\mathcal{N}</td>
<td>number restriction</td>
<td>At-least and at-most restrictions.</td>
</tr>
<tr>
<td>\mathcal{Q}</td>
<td>quantified number restriction</td>
<td>Quantified at-least and at-most restrictions.</td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>functional role</td>
<td>Define functional roles</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>complex role inclusion</td>
<td>Complex role inclusions that have form of $r_1 \circ \ldots \circ r_n \subseteq r$.</td>
</tr>
<tr>
<td>\mathcal{D}</td>
<td>data types</td>
<td>Data types such as integer, string, etc.</td>
</tr>
</tbody>
</table>
Example 2.1 (AL and SRIOQ concepts). Given a set of concept names $N_C = \{\text{Person, Male, Female, Father, Mother}\}$ and a set of role names $N_R = \{\text{hasChild}\}$, the following first two concepts are both AL and SRIOQ concepts while the third concept is the SRIOQ concept only:

1. Father \sqcup Mother (Father or Mother)
2. Female \sqcap $\exists \text{hasChild.}\text{Person}$ (Definition of Mother)
3. Person \sqcap $\geq 2 \text{hasChild.Male}$ (People who have more than one sons)

The formal semantics of description logic concepts is defined by the interpretations. Definition of interpretation is adopted from [3] as follows:

Definition 2.3 (Interpretation). A description logic interpretation I consists of:

1. a non-empty interpretation domain Δ^I, which contains a set of objects or individuals in the application domain, and
2. an interpretation function \cdot^I, which assigns:
 (a) each individual name to an element $a^I \in \Delta^I$,
 (b) every atomic concept A to a set $A^I \subseteq \Delta^I$, and
 (c) every role r to a binary relation $r^I \subseteq \Delta^I \times \Delta^I$.

Table 2.3 defines the semantics of the constructors in Table 2.1 based on the above interpretation.

2.1.2 Description logic knowledge bases

A typical knowledge base in description logics consists of two parts: a **TBox** and an **ABox**. The TBox is also called a terminology, i.e. the vocabulary of the application domain, whereas, the ABox contains instances (assertions of concepts). In some systems, the knowledge base has one more part called the **RBox**. In this case, roles are separated from the TBox and then contained in the RBox. In this section, discussion is restricted to knowledge bases with TBox and ABox.
2. Preliminaries and Related Work

Table 2.3: The semantics of basic concept constructors in description logics.

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic concept</td>
<td>A</td>
<td>$A^3 \subseteq \Delta^3$</td>
</tr>
<tr>
<td>role</td>
<td>r</td>
<td>$r^3 \subseteq \Delta^3 \times \Delta^3$</td>
</tr>
<tr>
<td>top (TOP) concept</td>
<td>-</td>
<td>Δ^3</td>
</tr>
<tr>
<td>bottom (BOTTOM) concept</td>
<td>-</td>
<td>\emptyset</td>
</tr>
<tr>
<td>conjunction</td>
<td>$C \sqcap D$</td>
<td>$(C \sqcap D)^3 = C^3 \cap D^3$</td>
</tr>
<tr>
<td>disjunction</td>
<td>$C \sqcup D$</td>
<td>$(C \sqcup D)^3 = C^3 \cup D^3$</td>
</tr>
<tr>
<td>complement</td>
<td>$\neg C$</td>
<td>$(-C)^3 = \Delta^3 \setminus C^3$</td>
</tr>
<tr>
<td>existential restriction</td>
<td>$\exists r.C$</td>
<td>$(\exists r.C)^3 = {a \mid \exists b \ (a, b) \in r^3 \land b \in C^3}$</td>
</tr>
<tr>
<td>universal restriction</td>
<td>$\forall r.C$</td>
<td>$(\forall r.C)^3 = {a \mid \forall b \ (a, b) \in r^3 \Rightarrow b \in C^3}$</td>
</tr>
<tr>
<td>at-least restriction</td>
<td>$\geq n \ r$</td>
<td>$(\geq n \ r)^3 = {a \mid {b \mid (a, b) \in r^3} \geq n}$</td>
</tr>
<tr>
<td>at-most restriction</td>
<td>$\leq n \ r$</td>
<td>$(\leq n \ r)^3 = {a \mid {b \mid (a, b) \in r^3} \leq n}$</td>
</tr>
<tr>
<td>qualified at-least restriction</td>
<td>$\geq n \ r.C$</td>
<td>$(\geq n \ r.C)^3 = {a \mid {b \mid (a, b) \in r^3} \geq n}$</td>
</tr>
<tr>
<td>qualified at-most restriction</td>
<td>$\leq n \ r.C$</td>
<td>$(\leq n \ r.C)^3 = {a \mid {b \mid (a, b) \in r^3} \leq n}$</td>
</tr>
</tbody>
</table>
The TBox

The TBox of a knowledge base is usually stable. It contains a set of terminological axioms that are defined as follows:

Definition 2.4 (Terminological axiom). Given two concepts \(C \) and \(D \), a terminological axiom has the form of an inclusion axiom \(C \sqsubseteq D \) or an equality axiom \(C \equiv D \). ■

An inclusion axiom is also called a subsumption axiom (\(C \sqsubseteq D \) is read “\(C \) is subsumed by \(D \)”). Informally, this is an is-a relationship. An equality axiom is called a definition if its left hand side is an atomic concept. An example of terminological axioms is given below.

Example 2.2 (Axiom and definition). Given a set of concept names and role names defined in Example 2.1, the following are some terminological axioms. The last axiom is also a definition:

- Woman \(\subseteq \) Person
- \(\exists \text{hasChild}.\text{Person} \equiv \text{Mother} \sqcup \text{Father} \)
- Father \(\equiv \text{Male} \sqcap \exists \text{hasChild}.\text{Person} \)

The terminological axioms for roles are defined similarly, and can be found in [3].

The semantics (satisfaction) of inclusion and equality axioms are defined as follows:

Definition 2.5 (Satisfaction of axiom). Let \(\mathcal{I} \) be an interpretation. Then:

- An inclusion axiom \(C \sqsubseteq D \) is satisfied by \(\mathcal{I} \) if \(C^\mathcal{I} \subseteq D^\mathcal{I} \).
- An equality axiom \(C \equiv D \) is satisfied by \(\mathcal{I} \) if \(C^\mathcal{I} = D^\mathcal{I} \).

Informally, \(C \subseteq D \) holds if all instances of \(C \) are instances of \(D \), and \(C \equiv D \) if \(C \) and \(D \) have the same set of instances, i.e. \(C \subseteq D \) and \(D \subseteq C \). The above definition of the axiom satisfaction can be extended to sets of axioms: An interpretation \(\mathcal{I} \) satisfies a set of axiom \(\mathcal{T} \) if \(\mathcal{I} \) satisfies all axioms in \(\mathcal{T} \). This leads to the definition of the concept of a model.

Definition 2.6 (Model of a TBox). An interpretation \(\mathcal{I} \) is called a model of an axiom (respectively a set of axioms) \(A \), denoted by \(\mathcal{I} \models A \), if \(\mathcal{I} \) satisfies \(A \) (respectively all axioms in \(A \)). \(\mathcal{I} \) is called a model of a TBox if it satisfies all axioms in the TBox. ■
Knowledge representation systems provide means not only for knowledge representation, but also for reasoning. The basic reasoning tasks on a TBox includes terminology classification, logical implication and consistency checking. The first two tasks are essentially based on the problem of checking subsumption and equivalence relations between concepts. We introduce some basic concepts that support the above tasks as follows (adopted from [3] and [82]):

Definition 2.7 (Consistency). A TBox is consistent if it has a model.

Definition 2.8 (Satisfiability). A concept C is satisfiable with respect to a TBox T if there is a model I of T such that C^I is not empty. Otherwise, C is said to be unsatisfiable.

Definition 2.9 (Subsumption). A concept C is subsumed by a concept D with respect to the TBox T, denoted by $C \subseteq D$ if for any model I of T we have $C^I \subseteq D^I$.

Definition 2.10 (Equivalence). A concept C is equivalent to a concept D with respect to a TBox T, denoted by $C \equiv D$, if for any model I of T we have $C^I = D^I$.

Checking the satisfiability of a concept is the most is the most common task in TBox reasoning. Some other reasoning tasks such as checking equivalence, disjointness, or subsumption, can be reduced to the checking for satisfiability/unsatisfiability. For instance, a concept C is subsumed by a concept D if and only if $C \sqcap \neg D$ is unsatisfiable, or C and D are disjoint if and only if $C \sqcap D$ is unsatisfiable.

The ABox

An ABox contains assertions including concept assertions and role assertions. Concept assertions represent objects in the domain of discourse and role assertions represent relationships between objects. A concept assertion has the form $C(a)$ and a role assertion has the form $r(b, c)$, where a, b and c denote individual names, C is a concept and r is a role. Knowledge in an ABox usually depends upon particular circumstances and thus it is subject to change more often than the TBox.

Example 2.3 (Assertion in the ABox). Given a set of concept names N_C and role names N_R described in Example 2.1 and a set of individuals $N_I = \{john, mary, tom\}$, the following is an example of an ABox that contains concept and role assertions:
ABox $\mathcal{A} = \{
\text{Male(john)} \\
\text{Male(tom)} \\
\text{Female(mary)} \\
\text{hasChild(john, tom)} \\
\text{hasChild(mary, tom)}
\}$

Similar to the TBox, there are also some reasoning tasks on ABoxes. The most basic reasoning tasks on an ABox are consistency checking, instance checking and instance retrieval. Before describing these task, we introduce some related concepts:

Definition 2.11 (Assertions satisfaction). An interpretation \mathcal{I} is said to satisfy:

- a concept assertion $C(a)$ if $a^I \in C^I$,
- a role assertion $r(a, b)$ if $(a^I, b^I) \in r^I$, and
- an ABox \mathcal{A} if it satisfies all assertions in \mathcal{A}.

Similarly, an interpretation \mathcal{I} is said to satisfy an assertion A (concept or role) with respect to a TBox \mathcal{T} if it is satisfies both \mathcal{A} and \mathcal{T}. Then, the concept model of an ABox is defined as follows:

Definition 2.12 (Model of an ABox). An interpretation is called a model of:

- an ABox \mathcal{A} if it satisfies all assertions in \mathcal{A}, and
- an ABox \mathcal{A} with respect to a TBox \mathcal{T} if it is a model of both \mathcal{A} and \mathcal{T}.

The consistency of an ABox and basic tasks in the ABox can now be defined as follows:

Definition 2.13 (Consistency). An ABox \mathcal{A} is consistent if it has a model and consistent with respect to a TBox \mathcal{T} if there exists an interpretation that is a model of both \mathcal{A} and \mathcal{T}.

Definition 2.14 (Instance check). Given a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a concept C and an individual name $a \in N_I$, a is an instance of C with respect to \mathcal{K}, denoted by $\mathcal{K} \models C(a)$, iff for any models \mathcal{I} of \mathcal{K} (i.e. model of both \mathcal{A} and \mathcal{T}), we have $a^I \in C^I$.

An instance check problem can be defined based on the definition of consistency: $\mathcal{K} \models C(a)$ if $\mathcal{K} \cup \{\neg C(a)\}$ is inconsistent. If a is not an instance of a concept C with respect to a knowledge base \mathcal{K}, it is denoted by $\mathcal{K} \not\models C(a)$.

Definition 2.15 (Instance retrieval). Given a concept C, an instance retrieval problem for C with respect to a knowledge base \mathcal{K} is to find all individuals a such that $\mathcal{K} \models C(a)$.

Example 2.4 (DL knowledge base and reasoning tasks). Given a set of concept names N_C and a set of role names N_R in Example 2.1; a set of individuals N_I in Example 2.3; and the knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ and an interpretation \mathcal{I} as follows:

TBox \mathcal{T}:

<table>
<thead>
<tr>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woman \sqsubseteq Person</td>
</tr>
<tr>
<td>$\exists \text{hasChild}.\text{Person} \equiv \text{Mother} \sqcup \text{Father}$</td>
</tr>
<tr>
<td>Father $\equiv \text{Male} \sqcap \exists \text{hasChild}.\text{Person}$</td>
</tr>
</tbody>
</table>

ABox \mathcal{A}:

<table>
<thead>
<tr>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Male}(john)$</td>
</tr>
<tr>
<td>$\text{Male}(tom)$</td>
</tr>
<tr>
<td>$\text{Female}(mary)$</td>
</tr>
<tr>
<td>$\text{hasChild}(john, tom)$</td>
</tr>
<tr>
<td>$\text{hasChild}(mary, tom)$</td>
</tr>
</tbody>
</table>

Interpretation \mathcal{I}:

<table>
<thead>
<tr>
<th>Domain Δ^I</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>${ \text{JOHN, MARY, TOM} }$</td>
<td>(objects in the application domain)</td>
</tr>
<tr>
<td>$\text{john}^I = \text{JOHN}$, $\text{tom}^I = \text{TOM}$, $\text{mary}^I = \text{MARY}$</td>
<td></td>
</tr>
<tr>
<td>$\text{Person}^I = { \text{JOHN, MARY, TOM} }$</td>
<td></td>
</tr>
<tr>
<td>$\text{Female}^I = { \text{MARY} }$</td>
<td></td>
</tr>
<tr>
<td>$\text{Male}^I = { \text{JOHN} }$</td>
<td></td>
</tr>
<tr>
<td>$\text{Father}^I = { \text{JOHN} }$</td>
<td></td>
</tr>
<tr>
<td>$\text{Mother}^I = \emptyset$</td>
<td></td>
</tr>
<tr>
<td>$\text{hasChild}^I = { (\text{JOHN, TOM}), (\text{MARY, TOM}) }$</td>
<td></td>
</tr>
</tbody>
</table>
Then, I does not satisfy the ABox A as it does not satisfy the assertion $\text{Male}(\text{tom})$ as $\text{tom} \notin \text{Male}^I (\text{TOM} \notin \{\text{JOHN}\})$. I also does not satisfy the TBox \mathcal{T} as it does not satisfy the following axiom:

$$\exists \text{hasChild}.\text{Person} \equiv \text{Mother} \sqcup \text{Father}$$

because:

$$\exists \text{hasChild}.\text{Person}^I = \{\text{JOHN}, \text{MARY}\} \neq (\text{Mother} \sqcup \text{Father})^I = \{\text{JOHN}\}.$$
Table 2.4: DLs notations in comparison with OWL notations. This table shows only notations that are different between two languages.

<table>
<thead>
<tr>
<th>DL notation</th>
<th>OWL notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic concept</td>
<td>class</td>
</tr>
<tr>
<td>concept assertion</td>
<td>class assertion</td>
</tr>
<tr>
<td>role</td>
<td>property</td>
</tr>
<tr>
<td>role assertion</td>
<td>property assertion</td>
</tr>
<tr>
<td>concept/description</td>
<td>class expression</td>
</tr>
<tr>
<td>axiom</td>
<td>axiom</td>
</tr>
<tr>
<td>object/individual</td>
<td>individual/assertion</td>
</tr>
<tr>
<td>subsumption</td>
<td>subclass/superclass</td>
</tr>
</tbody>
</table>

flavour has three profiles: OWL2 EL, OWL2 RL and OWL2 QL, that offer some flexibility to trade off between expressiveness and reasoning efficiency. OWL2 Full is compatible with RDFS. OWL2 Full is considered as the union of RDFS and OWL2 DL and is a semi-decidable language.

Amongst the various flavours of OWL, OWL DL is the most expressive that is still decidable. DL Lite is decidable, but less expressive than OWL DL while OWL Full is more expressive than OWL DL, but is not decidable (it is semi-decidable). More details on the OWL language can be found in [59] and on the W3C website\(^1\).

Similar to description logics, sub-languages of OWL have different expressive powers. Each of them supports a different number of OWL language constructors. In addition, there are also several syntaxes for OWL such as OWL/XML [100], RDF/XML [12], Turtle [13] and Manchester OWL Syntax [62]. Table 2.5, adopted from [82], shows basic OWL constructors in DL and Manchester OWL Syntax.

A knowledge base in OWL is called an ontology. In OWL, Thing (or TOP) is the superclass of all classes in an ontology. In addition, properties are distinguished into object and data properties. An object property describes a relation between two instances, whereas, a data property describes a relation between an instance and a literal (constant).

In addition to the development of the OWL language, several reasoners have been

\(^1\)http://www.w3.org/TR/owl2-overview/
2. Preliminaries and Related Work

Table 2.5: OWL constructors and the corresponding constructors in DLs. Upper case C, D denote concepts/classes; lower cases a, b denote objects/individuals; r denotes roles/properties; and n denotes an integer value.

<table>
<thead>
<tr>
<th>OWL constructor</th>
<th>DL notation</th>
<th>Example (DL)</th>
<th>Examples (Manchester OWL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thing</td>
<td>\top</td>
<td>-</td>
<td>Thing</td>
</tr>
<tr>
<td>Nothing</td>
<td>\bot</td>
<td>-</td>
<td>Nothing</td>
</tr>
<tr>
<td>complementOf</td>
<td>\neg</td>
<td>$\neg C$</td>
<td>not C</td>
</tr>
<tr>
<td>intersectionOf</td>
<td>\cap</td>
<td>$C \cap D$</td>
<td>C and D</td>
</tr>
<tr>
<td>unionOf</td>
<td>\cup</td>
<td>$C \cup D$</td>
<td>C or D</td>
</tr>
<tr>
<td>allValueFrom</td>
<td>\forall</td>
<td>$\forall r.C$</td>
<td>r only C</td>
</tr>
<tr>
<td>someValueFrom</td>
<td>\exists</td>
<td>$\exists r.C$</td>
<td>r some C</td>
</tr>
<tr>
<td>maxCardinality</td>
<td>\leq</td>
<td>$\leq n \ r$</td>
<td>r max n</td>
</tr>
<tr>
<td>minCardinality</td>
<td>\geq</td>
<td>$\geq n \ r$</td>
<td>r min n</td>
</tr>
<tr>
<td>cardinality</td>
<td>\leq, \cap, \geq</td>
<td>$(\leq n \ r) \cap (\geq r \ n)$</td>
<td>r exact n</td>
</tr>
<tr>
<td>oneOf</td>
<td>\sqcup</td>
<td>$a_1 \sqcup \ldots \sqcup a_n$</td>
<td>${a_1, \ldots, a_n}$</td>
</tr>
<tr>
<td>subClassOf</td>
<td>\sqsubseteq</td>
<td>$C \sqsubseteq D$</td>
<td>C SubClassOf D</td>
</tr>
<tr>
<td>equivalentClass</td>
<td>\equiv</td>
<td>$C \equiv D$</td>
<td>C EquivalentTo D</td>
</tr>
<tr>
<td>disjointWith</td>
<td>\equiv, \neg</td>
<td>$C \equiv \neg D$</td>
<td>C DisjointWith D</td>
</tr>
<tr>
<td>sameAs</td>
<td>\equiv</td>
<td>$a \equiv b$</td>
<td>a SameAs b</td>
</tr>
<tr>
<td>differentFrom</td>
<td>\equiv, \neg</td>
<td>$a \equiv \neg b$</td>
<td>a DifferentFrom b</td>
</tr>
<tr>
<td>domain</td>
<td>\forall, \sqsubseteq</td>
<td>$\forall r. \top \sqsubseteq C$</td>
<td>r Domain C</td>
</tr>
<tr>
<td>range</td>
<td>\forall, \sqsubseteq</td>
<td>$\top \sqsubseteq \forall r.C$</td>
<td>r Range C</td>
</tr>
<tr>
<td>subPropertyOf</td>
<td>\sqsubseteq</td>
<td>$r_1 \sqsubseteq r_2$</td>
<td>r_1 SubPropertyOf r_2</td>
</tr>
</tbody>
</table>
2. Preliminaries and Related Work

Developed to provide reasoning service for OWL knowledge bases. Similar to description logics, reasoning in OWL includes classification, checking for the consistency of knowledge bases, checking for the satisfiability of axioms (descriptions/concepts), checking for subsumption relationships and instance checking. Some popular OWL reasoners are RacerPro [56], Pellet [107], FaCT [63], and HerMiT [117]. Some of them, such as RacerPro and Pellet, also provide justification (or explanation/trace) for inferences or inconsistency checks [38, 71]. This feature is useful for debugging ontologies and to increase the trust in inferred knowledge.

2.2 Description Logic and OWL Learning

Description logic learning has its roots in inductive logic programming [101, 104]. In description logic learning, description logics are used as the knowledge representation language. The essential idea of induction is to obtain principles from experiences [8, 9]. The idea was employed in machine learning with different names before it was first named Inductive Logic Programming by Stephen Muggleton in 1990 [101]. Then, induction was employed in description logics [6, 31, 85] and it obtained more attention when the semantic web became widely used [79, 83, 143].

2.2.1 Description logic learning problem

Since OWL has its root in description logics, learning problem in OWL and DLs shares similar concepts and notations. Therefore, DL and OWL learning are used interchangeably. A description logic learning problem can be described as follows:

Definition 2.16 (Description logic learning). Given a knowledge base \mathcal{K} and a set of positive \mathcal{E}^+ and negative \mathcal{E}^- examples such that $\mathcal{E}^+ \cap \mathcal{E}^- = \emptyset$, description logic learning aims to find a concept C such that $\mathcal{K} \models C(e)$ for all $e \in \mathcal{E}^+$ (complete) and $\mathcal{K} \not\models C(e)$ for all $e \in \mathcal{E}^-$ (consistent/correct).

A description logic learning problem can be described as a structure $\langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$ where \mathcal{K} is a knowledge base (ontology), \mathcal{E}^+ is a set of positive examples and \mathcal{E}^- is a set of negative examples. A learnt concept is also called a hypothesis or definition.

Notation \models is defined in Definition 2.14 to denote an instance checking problem.
\(\mathcal{K} \models C(a) \) denotes \(a \) is an instance of class \(C \) with respect to the knowledge base \(\mathcal{K} \). If \(\mathcal{K} \models C(a) \) is satisfied, \(C \) is also said to cover \(a \) with respect to \(\mathcal{K} \).

The learning problem described in Definition 2.16 is called learning from positive and negative examples. It is distinguished from two other learning problems: learning from positive examples only, and concept learning. One of the approaches to learn from positive examples only is to transform it into learning from positive and negative examples problem by considering negative examples as the set of \(\{ e \in \mathcal{K} \mid e \notin \mathcal{E}^+ \} \) where \(\mathcal{E}^+ \) is a set of positive examples. In concept learning, a concept name is provided. All instances of the given concept are used as positive examples and instances of other classes in the knowledge base are used as negative examples.

In this thesis, the discussion is restricted to the positive and negative examples learning problem. An example of a description logic learning problem is given below.

Example 2.5 (Description logic learning problem). Given an ontology (in Manchester OWL syntax):

- TBox:

 | Class: Person | SubClassOf: Thing |
 | Class: Male | SubClassOf: Person |
 | Class: Female | SubClassOf: Person |
 | ObjectProperty: hasChild |
 | Domain: Person, Range: Person |

- ABox (assertions):

 | Individual: john | Types: Male |
 | Facts: hasChild tom |
 | Individual: mary | Types: Female |
 | Facts: hasChild tom |
 | Individual: tom | Types: Male |
 | Individual: eve | Types: Female |
 | Individual: peter | Types: Male |
 | Facts: hasChild mary |
2. Preliminaries and Related Work

and a set of positive examples $\mathcal{E}^+ = \{john, peter\}$ (who are fathers) and negative examples $\mathcal{E}^- = \{mary, tom, eve\}$ (who are not fathers). The following concept can be produced by a typical inductive description logic learning algorithm that describes the family relationship $Father$:

\[
\text{Male and hasChild some Person}
\]

Similarly, if $\mathcal{E}^+ = \{john, peter, mary\}$ (parents) and $\mathcal{E}^- = \{tom, eve\}$ (who are not parents), the following concept can be produced that describes the family relationship $Parent$:

\[
\text{hasChild some Person}
\]

Some properties of a learnt concept are defined below:

Definition 2.17 (Complete, correct and accurate concepts). Given a description logics learning problem $P = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$ and a concept C learnt from P, C is:

- **complete** with respect to P if $\mathcal{K} \models C(e)$ for all $e \in \mathcal{E}^+$,
- **correct** with respect to P if $\mathcal{K} \not\models C(e)$ for all $e \in \mathcal{E}^-$, and
- **accurate** if C is both complete and correct.

Definition 2.18 (Incomplete and incorrect concepts). Given a description logic learning problem $P = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$ and a concept C learnt from P, C is:

- **incomplete** with respect to P if $\exists e \in \mathcal{E}^+$ such that $\mathcal{K} \not\models C(e)$, and
- **incorrect** with respect to P if $\exists e \in \mathcal{E}^-$ such that $\mathcal{K} \models C(e)$

Definition 2.19 (Overly general and overly specific concepts). Given a description logic learning problem $P = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$ and a concept C learnt from P:

- C is **overly general** if it is complete but incorrect.
- C is **overly specific** if it is correct but incomplete.
2. Preliminaries and Related Work

Example 2.6 (Overly general and overly specific concept). Given a background as in Example 2.5, a set of positive examples $E^+ = \{john, peter, mary\}$ (parents) and $E^- = \{tom, eve\}$ (who are not parents). Then, the concept:

- **Person** is overly general as it is complete (covers all positive examples) and incorrect (covers some negative examples).

- **Male AND hasChild SOME Person** is overly specific as it correct (covers no negative examples) and incomplete (does not cover all positive examples).

2.2.2 Basic approaches in DL learning

Learning in description logics is essentially a search problem: it searches for an accurate\(^2\) concept in a search space that consists of a potential infinite set of concepts constructed from the vocabulary of language of a given knowledge base. Concepts in the search space are generated by refinement operators and they are organised in an ordering structure.

There are two types of refinement operator: downward and upward refinement operators. Given a concept, a downward refinement operator computes a set of concepts that are more specific than the given concept. An upward refinement operator computes a set of concepts that are more general than the given concept. In description logics and OWL, the generality and specificity relations between concepts are based on the inclusion (subclass/superclass) relationship. A description C subsumes a description D (or C is a superclass of D) if all instances of D are also instances of C. Therefore, C is said to be more general than D, or D is more specific than C. C is called a generalisation of D and D is a specialisation of C. A refinement operator based on these relations can be defined as follows:

Definition 2.20 (Refinement operator in description logics). Given a description logic language \mathcal{L} and a concept C in \mathcal{L}. A downward (respectively upward) refinement operator ρ is a mapping from C to a set of concepts \mathcal{D} in \mathcal{L} such that $\forall D \in \mathcal{D} : D \sqsubseteq C$ (respectively $C \sqsubseteq D$). \mathcal{D} is called refinement of C. □

\(^2\)Complete and correct
Definition 2.20 implies that the refinement process can be applied recursively and it may be infinite. Therefore, practically, a refinement task is often provided with a maximal length of the concepts in the refinement result to help the refinement become finite. There are several methods to define concept length. In this thesis, the concept length computation is adopted from [82] as follows:

Definition 2.21 (Length of a concept in description logics). The length of a concept in description logics is the total number of symbols in the concept including class names, role names, individual, and constructors.

In particular, the length of an \mathcal{ALC} concept is defined as follows:

Definition 2.22 (Length of an \mathcal{ALC} concept). The length of a concept C, denoted by $|C|$, is inductively defined as follows:

- $|A| = |\top| = |\bot| = 1$ (A is an atomic concept)
- $|\neg D| = 1 + |D|
- |D \cap E| = |D \cup E| = 1 + |D| + |E|
- $|\forall r.D| = |\exists r.D| = 2 + |D|

Corresponding to two types of refinement operator, there are two basic search directions: top-down and bottom-up. It results in the two basic inductive learning approaches: top-down and bottom-up approach respectively.

Top-down (specialisation) approach

In the top-down learning approach, the search starts from a general concept, usually the **Thing** (TOP), and uses a downward refinement operator to specialise concepts in the search space until a concept or set of concepts that cover all positive examples and no negative ones is found. The basic tasks of a downward refinement are:

- replacing primitive concepts and properties in the description by their sub-concepts or sub-properties, and
- specialising the range of properties, and
- adding more primitive concepts and properties into the description.
2. Preliminaries and Related Work

Figure 2.1: The top-down approach for learning concept Father described in Example 2.5. The search starts from the most general concept TOP and uses a refinement operator \(\rho \) to specialise the descriptions until it reaches the accurate concept Male AND hasChild SOME TOP.

An example of a top-down learning approach for learning the Father concept described in Examples 2.5 is shown in Figure 2.1.

Bottom-up (generalisation) approach

In the bottom-up learning approach, the search is in the reverse direction. It starts from a very specific concept and uses an upward refinement operator to generate more general concepts. Basic tasks of an upward refinement are:

- replacing examples with their most specific concepts using the Most Specific Concepts operator (MSC) [2, 5, 30, 74], and
- removing axioms from the concept.

MSC is the most popular upward refinement operator in description logics. However, it may not be available for some languages of description logics. Currently, the number of description logic languages supported by the MSC is limited. Figure 2.2 illustrates a bottom-up learning approach for learning the Parent concept described in Example 2.5.

It is important to note that a specialisation may produce overly specific concepts (too strong theories) and thus a generalisation may be needed to correct those concepts. Analogously, a bottom-up approach may also need to use specialisation to correct overly general concepts generated by the downward refinement operator [104].
2. Preliminaries and Related Work

Figure 2.2: The bottom-up approach for learning concept Parent described in Example 2.5. The search starts from an example and uses a the most specific concept (MSC) operator and removal of axioms to generalise the descriptions until it reaches an accurate concept hasChild SOME TOP.

In DL/OWL learning, the top-down approach is used more widely as it can facilitate the rich structural concept hierarchy in the ontology.

2.3 Related Work

This section discusses related work in description logic and OWL class expression learning, parallelisation, and numerical data learning approaches in symbolic machine learning. A detailed description on CELOE, a comparator algorithm used to evaluate approaches proposed in this thesis, is also provided.

2.3.1 Description logic learning

As has just been described, there are two fundamentally different strategies for description logic learning: the top-down and bottom-up learning approaches. One of the early works in description logic learning is [32]. This is a bottom-up approach that creates concepts by joining most specific concepts created for positive examples using disjunction. This is a very simplistic approach that creates large concept definitions that are not truly intentional.

An approach that is more closely related to the work in this thesis was introduced in [6]. This is a top-down learning approach that uses a refinement operator designed for \mathcal{ALC} description logic. However, as discussed in [82], this refinement operator cannot be extended to handle more expressive description logic language such as $\mathcal{SROIQ}(\mathcal{D})$, [32]
which is the language on which OWL2 is based.

Lisi [85] has proposed an alternative top-down approach based on the hybrid \mathcal{AL}-log language, which combines the \mathcal{ALC} description logic language and Datalog. An ideal downward refinement operator [104] for \mathcal{AL}-log language was proposed that is based on the notation of \mathcal{B}-subsumption. This is a generalisation of the generalised subsumption to the \mathcal{AL}-log language. This approach is suitable for the hybrid knowledge representation systems that are constituted by the relational and structural subsystems. This approach was implemented in the \mathcal{A}-QuIn (\mathcal{AL}-log Query Induction) system.

In [43, 66], a top-down refinement operator for the \mathcal{ALC} language is used in combination with a bottom-up MSC operator. The essential idea of these studies lies in the concept of counterfactual. This can be considered as the errors within candidate hypotheses. Therefore, for each candidate hypothesis, the learning algorithm uses a MSC operator to find the concept(s) representing errors and remove them from the candidate hypothesis. However, this approach has two disadvantages: i) the finding of concept(s) for counterfactuals may be repeated for a same set of errors, and ii) as a result, it tends to generate unnecessarily long concepts.

The most recent description logic learning algorithms have been proposed in [80]. Two top-down refinement operators have been proposed. One is for the \mathcal{EL} language and the other is for \mathcal{ALC} (although it can be extended to more expressive languages). The latter is the most expressive refinement operator proposed so far. In addition, several learning approaches based on the proposed refinement operators were also developed. Two interesting algorithms in this framework are Class Expression Learner for Ontology Engineering (CELOE) and OWL Class Expression Learner (OCEL). These algorithms are evaluated and compared very well with other learning approaches [57]. However, they are sequential algorithms and thus they cannot take advantages of parallel systems such as multi-core processors, or cloud computing platforms. In addition, these algorithms focus on generating short descriptions and thus they have another disadvantage: they cannot handle complex learning problems (see [57] and the evaluation in Chapter 5).

DL-FOIL [45] combines both top-down and bottom-up learning. The top-down step finds a set of correct concepts such that each of them correctly defines a subset of
the positive examples. Then, the bottom-up step computes a complete concept that
defines all positive examples. This approach handles complex concepts better than
the top-down or bottom-up approach alone. However, it produces longer concepts
in comparison with the approaches proposed in [80]. The unnecessarily long learnt
concepts are caused by the lack of optimisation in the aggregation step. In addition,
like other existing description logic learning algorithms, this approach is serial by nature
and thus it cannot take advantage of concurrency.

2.3.2 Parallel description logic learning

Parallel computing has a long history of development from the late 1950s, from multi-
processor computer systems, to multi-core processors. Parallelisation helps to use
the computer resources more effectively in order to: i) create fast and efficient algorithms, ii)
create highly scalable algorithms. Currently, parallelisation can be found in every area
of computing with many parallel frameworks developed such as Parallel Virtual Machine
(PVM) [126], Apache Hadoop [15] and applications/systems that use parallelisation.

In logics, parallelisation has been used to develop parallel logic programming lan-
guages such as PARLOG [53] and PEPSys [111]. These research relate to the paralleli-
sation for logic deduction.

In inductive logic programming, a parallel inductive logic programming approach
was proposed in [37]. The basic idea of this approach is to partition positive examples
into several sets depending on the parallel level of the system. Concepts for the par-
titioned sets are combined at the end. In [93], several parallelisation strategies were
implemented in FOIL, an inductive logic learning algorithm [108]. These strategies
mainly differ in the dividing strategies. The first strategy divides search space among
processors, i.e. the multiple refinements work in parallel. The second strategy is similar
to [37], i.e. examples are partitioned into several sets and they are learnt independently.
In the last strategy, examples are divided based on the background knowledge. Inde-
dependent examples are divided into different sets. Our parallel learning approach is
similar to the first strategy. We explore the search space in parallel. However, our
approach is different from this approach with respect to the learning strategy used:
we employ concepts for a subset of positive examples and use a reduction strategy to
construct the final concept. In addition, our learning approach uses description logic instead.

In description logics, parallelisation is also used. However, the use of parallelisation is limited in parallel description logic reasoning with some parallel description reasoners developed such as Deslog reasoner [141], or parallel inferencing algorithms for OWL [84, 122]. There is no parallel description logic learning algorithm proposed so far.

2.3.3 Numerical data learning in description logics

Amongst the existing description and class expression learning algorithms such as \(\mathcal{A} \mathcal{C}-\text{QuIN} \) [85], DL-FOIL [45], YinYang [66] and a set of learning algorithms in the DL-Learner framework such as CELOE, OCEL, ELTL [80], numeric data property learning strategy was only explicitly described and supported by the algorithms in DL-Learner framework. In these algorithms, a fixed-size segmentation strategy is used to compute a set of values used for refinement of numerical data. In this method, a maximal number of values for refining numerical data is assigned. Then, the numerical values are split into equal parts according to the maximal number of values allowed and the middle values of split parts are used for the refinement. This strategy can reduce the number of values used for refinement and therefore it can reduce the search space. However, this strategy may remove some meaningful values from the refinement.

In inductive logic programming, the root of description logic learning, many other strategies were proposed. For example, in Aleph, several strategies were supported such as guessing the values used for refinement or using lazy evaluation (this strategy has not been described in detail), etc. [123]. However, it was reported that these approaches do not always work. Fixed increment and decrement are also used in Aleph. This is used more commonly for integer datatypes. For example, the value of an attribute is increased or decreased by a fixed value, e.g. 1, 2, etc. in each refinement step. Closer to our approach, a modification of discretisation method proposed in [46] was used in the Inductive Constraint Logic (ILC) system [133]. The essential idea of discretisation of continuous data proposed in [46] is based on information entropy. Potential cut points (segmentations) are estimated using a class entropy function. However, when this approach was used in ILC, it was reported that very few subintervals were generated.
2. Preliminaries and Related Work

and therefore they combined discretisation approach with a fixed numbers of values
desired to be generated, e.g. 10 values or 20 values, etc.

2.3.4 Class Expression Learner for Ontology Engineering (CELOE)

CELOE is a top-down OWL class expression learning algorithm in the DL-Learner
framework, which is the most recently developed OWL class expression learning al-
gorithm [82]. This algorithm uses a downward refinement operator that supports the
\(\mathcal{ALC} \) description logic language to specialise the descriptions in the search space. The
implementation of this refinement operator was extended to support more expressive
power such as datatype (D) and number restrictions (N).

As a typical top-down description logic learning approach, this algorithm starts
from a general concept, the \textsc{Top} concept by default, and uses the refinement operator
to generate descriptions in the search space until an accurate description found. The
selection of descriptions in the search space for refinement (expansion) is based on the
score of a description, which is mainly based on the descriptions’ accuracy. The score
of a description \(C \) is defined as follows:

\[
score(C) = \text{accuracy}(C) + 0.2 \times \text{accuracy.gain}(C) - 0.05 \times n
\]

where \(\text{accuracy}(C) \) is the accuracy of description \(C \) (see Definition 3.2); \(\text{accuracy.gain}(C) \)
is the difference between accuracy of \(C \) and its parent; and \(n \) is the horizontal expansion
of \(C \).

The horizontal expansion of a description is the sum of its length and the number of
times it was refined. A description in the search space may be refined many times. The
refinement operator is only allowed to produce descriptions with a length that is shorter
or equal the horizontal expansion of the refined description. This is a mechanism used
to deal with the infinite property of the refinement operator. As this algorithm finds
single descriptions that describes all positive examples, overly specific descriptions are
ignored, i.e. they are not added into the search space for further refinement (expansion).

This algorithm was implemented and distributed with DL-Learner, an open source
machine learning framework. It was well evaluated and compared with popular de-
2. Preliminaries and Related Work

cription learning algorithms. The evaluation shows that this is a promising OWL class expression learning algorithm that produce very concise (short and readable) concepts [57]. However, as this algorithm only uses the top-down learning approach, it cannot deal well with complex learning problems that require long descriptions to describe the positive examples.
2. Preliminaries and Related Work
Chapter 3

Evaluation Methodology

This chapter describes the evaluation methodology of the proposed algorithms in this study. We first provide a description of evaluation metrics. Next, there is a detailed account of our experimental framework including a cross-validation procedure, a statistical significance test method. The control of the algorithm terminations is also discussed. The chapter ends with the introduction of comparison algorithms and evaluation datasets.

3.1 Introduction

As was described in the introductory chapter, this thesis proposes four new approaches to description logic learning. The aim of the approaches is to improve the learning speed, the capability to deal with complex learning problems, and the flexibility to trade off the predictive correctness and completeness.

In this chapter, we describe the evaluation methodology for our proposed algorithms. A thorough evaluation includes running the algorithms on selected datasets and gathering interested metrics that help to reflect achievements of the proposed algorithms. Then, the experimental results are compared with existing algorithms to assess the achievements of our algorithms. Therefore, the evaluation methodology includes the selections of: i) evaluation metrics (described in Section 3.2), ii) a method for measuring the evaluation metrics and comparison with existing algorithms (described in
3. Evaluation Methodology

Section 3.3.1, iii) some existing algorithms for comparison with our algorithms (described in Section 3.3.2), and iv) a set of evaluation datasets (described in Section 3.3.3).

3.2 Evaluation Metrics

Selected evaluation metrics must reflect the essential features of the evaluation algorithms. In machine learning, *predictive accuracy* is the most important metric. It represents the predictive power of the learnt concepts. However, it is useful to have a more thorough assessment of a learning algorithm. Based on the aims of this thesis we are also interested in *learning time*, *search space size* and *definition length*. The learning time represents the speed of an algorithm, whereas the search space size indicates the effectiveness of the memory usage. The last metric, definition length, provides a measure of the readability of the definition (in general, short definitions are more readable than long definitions). Computation of these metrics is defined below.

3.2.1 Accuracy

Accuracy is a combination of *completeness* and *correctness*. In Definition 2.17, complete, correct and accurate concepts were defined. However, that definition is used to assess these metrics qualitatively, i.e. whether a concept is complete or incomplete, correct or incorrect and accurate or inaccurate. We are defining these metrics in a different context: for measuring the *amount* of completeness, correctness and accuracy. Before introducing the calculation of these metrics, we restate the definition of instance retrieval (see Definition 2.15) in form of a formula to simplify the use of this task.

Definition 3.1 (Cover). Let \(P = \langle \mathcal{X}, (\mathcal{E}^+, \mathcal{E}^-) \rangle \) be a learning problem defined in Definition 2.16, \(\mathcal{E} = (\mathcal{E}^+, \mathcal{E}^-) \) and \(C \) be a concept. Then, \(\text{cover}(\mathcal{X}, C, \mathcal{E}) \) is a function that computes a set of examples covered by \(C \) with respect to \(\mathcal{X} \) and is defined as:

\[
\text{cover}(\mathcal{X}, C, \mathcal{E}) = \{ e \in \mathcal{E} \mid e \text{ is covered by } C \text{ with respect to } \mathcal{X} \}
\]

The calculation of the completeness, correctness and accuracy can now be defined.
Definition 3.2 (Completeness, correctness and accuracy). Let $P = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$ be a learning problem. Then,

- **completeness** is the ratio of positive examples covered by C to the total number of positive examples:

$$completeness(C, P) = \frac{|\text{cover}(\mathcal{K}, C, \mathcal{E}^+)|}{|\mathcal{E}^+|}$$

- **correctness** is the ratio of negative examples uncovered by C to the total numbers of negative examples:

$$correctness(C, P) = 1 - \frac{|\text{cover}(\mathcal{K}, C, \mathcal{E}^-)|}{|\mathcal{E}^-|} = \frac{|\mathcal{E}^- \setminus \text{cover}(\mathcal{K}, C, \mathcal{E}^-)|}{|\mathcal{E}^-|}$$

- **accuracy** is the ratio of number of positive examples covered by C and the number of negative examples uncovered by C to the total number of all examples:

$$accuracy(C, P) = \frac{|\text{cover}(\mathcal{K}, C, \mathcal{E}^+)\cup|\mathcal{E}^- \setminus \text{cover}(\mathcal{K}, C, \mathcal{E}^-)|}{|\mathcal{E}^+ \cup \mathcal{E}^-|}$$

Accuracy with respect to training data is called **training accuracy** and accuracy with respect to test data is called **predictive accuracy**.

3.2.2 Learning time

The **learning time** of a learning algorithm is counted from when it starts to search for a definition until the definition is found or the timeout is reached. The time for loading the knowledge base into the reasoner is not counted. There are two basic methods to measure learning time: using wall-clock time, the actual time that elapses from start to end of a learning task; and using CPU time, which measures only the actual time that the CPU works on the learning task. Technically, computation of CPU time is more complicated than wall-clock time. However, if the evaluation system has constant loads, wall-clock time is approximately equal to CPU time. Therefore, in our experiments,
we compute learning time using wall-clock time. To ensure the system has constant loads, we can manually observe then system loads while the learners is running.

3.2.3 Definition length

The calculation of this metric was defined in Definitions 2.21 and 2.22. It is the total number of symbols that appear within the definition excluding punctuations such as “(”, “)”, “.” and “,”. For example, the length of the following definition is 5:

\[\text{Male} \sqcap \exists \text{hasChild}.\text{Person} \]

(or in Manchester OWL syntax: Male AND hasChild SOME Person).

In our implementation, the normalisation procedure in the DL-Learner framework is used to normalise the learnt definition.

3.2.4 Search space size

Search space size is the total number of descriptions generated by the refinement operator(s). This metric is used to assess the memory consumption of the learning algorithms, also relates to learning time. Given the same learning problem, a learning algorithm that can find a solution with a smaller search space than others is considered to have a better search strategy. It also influences the scalability of a learning algorithm as using the memory more effectively allows the algorithm to deal better with bigger (knowledge base size, search tree size, etc.) learning problems.

3.3 Experimental Design

Our experimental design aims to produce reliable experimental results, fair comparisons and accurate assessments of the achievement of our algorithms. The following sections will describe methods to achieve these expectations.

3.3.1 Experimental framework

Evaluation of selected algorithms on a set of datasets includes running the experiment for each algorithm on each dataset and measuring the relevant evaluation metrics. The
experimental results of the selected algorithms will be compared with each other and
the statistically significant differences will be computed. Therefore, four questions need
to be addressed in designing the experimental framework:

Q1. How many runs are sufficient to help the measurement of the evaluation metrics
to be reliable?

Q2. How to deal with small datasets (i.e. that have small number of examples)?

Q3. How to compare the experimental results and test for statistical significance?

Q4. How to control the termination of the learning algorithms in the case that there
is no accurate solution for the learning algorithm with respect to the dataset?

In the following sections, we will describe appropriate methods that answer the
above questions.

K-fold cross-validation (Q1 + Q2)

K-fold cross-validation is a popular evaluation method in machine learning. The basic
idea of this method is to partition the evaluation dataset into \(k \) sub-datasets and
repeat the experiment for each sub-dataset and measure the evaluation metrics of the
algorithm. Performing a k-fold cross-validation for a learning algorithm on a dataset
includes the following steps:

1. Randomly shuffle positive and negative examples in the dataset.

2. Divide examples into \(k \) equal-size parts, called *sub-samples*. If the number of
example in each example set is not divisible by \(k \), size of the sub-samples may be
slightly different. Figure 3.1 demonstrates how to split examples into sub-samples
for a 10-fold cross-validation (\(k = 10 \)).

3. For each of the \(k \) folds of the data we use \((k - 1)\) parts for training and the
remaining part of each set for testing, and then calculate the interested metrics.
The final reported value of each metric is the average and standard deviation of
\(k \) folds.
3. Evaluation Methodology

Figure 3.1: Partitioning the set of examples for a 10-fold cross-validation. The set \(i^{th} \) is used for the \(i^{th} \) fold of the cross-validation. The shaded parts are used for training and upward diagonal patterned parts are used for testing.

The partition of the dataset helps to deal with the small datasets (addressing Q2), which do not have enough examples to separate into training and test sets. In addition, the repeat of the experiment helps the experimental results to be more reliable (addressing Q1).

We mainly used 10-fold cross-validation in our evaluation. However, one of the constraints for the k-fold cross-validation is that the number of folds must be smaller than or equal the number of positive examples and negative examples. Therefore, we sometimes use 5-fold cross-validation for small datasets to satisfy this constraint and also to prevent too small test sets. This is reported in the evaluation result if it happens.

In our evaluation, there are several parallel learning algorithms. A parallel learning algorithm may give different results on the same training set and the same system between different runs. This happens because the order of descriptions generated in search space may be different among runs due to the scheduling for threads in parallel systems. Figure 3.2 demonstrates this property of the parallel learning algorithms. Therefore, we also use a multi-run k-fold cross-validation for parallel learning algorithm. We repeat the k-fold cross-validation several times (mainly 3 times) and the reported results for each metric include the mean of the mean and the mean of the standard
Figure 3.2: Learning results from a parallel learning algorithm may be different between different runs. Letters, e.g. A, B, C, ... represent concepts, superscripts represent scores and subscripts represent generation orders of concepts. Arrows describe the specialisation relations, e.g. B, C and D are specialisation of A. In this example, the learning algorithm starts from node A and it can process 2 descriptions at the same time (represented by solid and dashed lines). Concepts that have the highest scores in the search space are chosen to process first. Concepts with score 1 (shaded) are the accurate concepts.

(a) E and F (order 2) are generated before G and H (order 3). Therefore, E is chosen for processing next and thus the learnt concept is I.

(b) G and H (order 2) are generated before E and F (order 3). Therefore, C is chosen for processing next and the concept is X.

Deviation of 3 runs.

Statistical significance test (Q3)

The experimental results can be used to compare between algorithms, e.g. faster or slower, more or less accurate, etc. However, it is useful to know that whether the differences between experimental results of the algorithms reflect a pattern or just occur by chance. Therefore, we measure the statistical significance to identify the differences between the experimental results reflecting a pattern or occurring by chance with respect to a threshold of probability (addressing Q3).

Essentially, a statistical significance test begins with a null hypothesis and an alternative hypothesis. A typical null hypothesis in a statistically significant difference test is that there is no difference in the observations\(^1\) and an alternative hypothesis is that there exists differences within the observations. Then, an appropriate test statistic is employed to calculate the sampling distribution under the null hypothesis, which is

\(^1\)In our case, the observations are the experimental results.
3. Evaluation Methodology

a function of the observations. There are a number of tests we can use to identify statistically significant difference between experimental results, such as z-test, t-test, chi-squared and F-test. The t-test is suitable for pairing tests of the mean of the two results and a small number of folds (less than 30 folds) [103, 127]. The z-test is similar to the t-test but it is used for a big number of folds (more than 30 folds). The F-test is used to compare the variances of the two results, and the chi-square is not suitable for pairing tests. Therefore, we use the t-test to identify the statistically significant difference between the experimental results.

The result of a test statistic is used to determine (usually through a p-value [135]) whether a null hypothesis can be rejected with respect to a significance level. If the null hypothesis can be rejected, the differences between the observations are statistically significant with respect to the given significance level. The significance level represents the confidence of the test conclusion. The lower significance level is selected, the higher the confidence in the test conclusion. The common significance levels are 1%, 5% and 10%.

Given experimental results of two learning algorithms on a dataset, the t-value of the t-test method for a metric (e.g. learning time, predictive accuracy or search space size) is calculated using the following formula:

\[t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2 + s_2^2}{k}}} \]

where:

- \(\overline{x}_1 \) and \(\overline{x}_2 \) are the means of the metric for the 2 sets,
- \(s_1 \) and \(s_2 \) are the standard deviations of the metric,
- \(k \) is the number of folds of the cross-validation.

Then, p-value with respect to \(t \) can be estimated using the t-distribution table [137] or using some p-value calculation utilities such as the TDIST(...) function in Excel\(^2\) or the pt(...) function in R\(^3\). If the p-value is smaller of equal statistical significance level, the difference between evaluation results is statistically significant. Otherwise, it

is not statistically significant.

Timeout for the learning algorithms (Q4)

A learning algorithm may not find a perfectly accurate definition. The basic reasons are:

- The learning algorithm is not complete, i.e. it cannot produce some types of concept, and the expected definition belongs to one of those types.

- The dataset contains noise and thus there is no accurate definition.

- There is not enough resource (e.g. memory) for the learning algorithm to find the definition.

In this case, the learning algorithm will run out of memory before it produces and returns the solution. As a result, some evaluation metrics cannot be computed.

Therefore, a *maximal learning time*, also called the *timeout*, for each learning algorithm is assigned with respect to a dataset. If a learning algorithm reaches the maximal learning time assigned before it produces an accurate solution, the algorithm will stop and return the best solution it has produced so far (addressing Q4). The timeout value assigned for an algorithm must ensure the learning algorithm stops and returns the solution without running out of memory. In addition, it must not be too short to avoid premature learning results.

To identify an appropriate timeout value for a learning algorithm with respect to a dataset, we first run the learning algorithm on the dataset until it terminates. There are two possible scenarios: i) the learning algorithm finds and returns a definition, and ii) it runs out of memory without returning a definition. Figure 3.3 demonstrates the above scenarios: the algorithm A can find a definition in around 10 minutes, whereas the algorithm B runs out of memory after more than 50 minutes without getting an accurate definition.

Based on the result of the investigation, the maximal learning time for a learning algorithm is estimated as follows:
Figure 3.3: Termination of learning algorithms: Algorithm A can find a definition and return the result while algorithm B runs out of memory before it finds a definition.

1. If the learning algorithm can find the definition (e.g., algorithm A in Figure 3.3), there is no need to control its termination. However, to prevent unforeseen circumstances (i.e., the termination of the algorithm on other training sets of the dataset), we also assign the maximal learning time for the algorithm based on its learning time in the investigation. It is around 1.5 times longer than the learning time.

2. If the learning algorithm runs out of memory (e.g., algorithm B in Figure 3.3), we need to control the termination of the algorithm. The maximal learning time is estimated using the trend of the learning accuracy. We first choose a point such that from that point, the learning accuracy almost stays flat or increases very slowly. For example, in Figure 3.3, this point is around the 18th to the 20th minute of the algorithm B. From that point, we extend the maximal learning time as in the above scenario, i.e., around 1.5 times longer than that point. For the algorithm B in Figure 3.3, we would choose the maximal learning time to be between 25 and 35 minutes.

3.3.2 Comparison algorithms

The typical description logic learning algorithms that have been proposed and implemented are DL-FOIL [45], YinYang [66], ALC-QUIN [85] and a set of algorithms in the DL-Learner framework such as CELOE (Class Expression Learning), OCEL (OWL
Class Expression Learner) and ELTL (E.L Tree Learner) [82]. Amongst the above algorithms, we chose CELOE and OCEL to compare with our algorithms because:

1. They were well tested. Some detailed evaluations and comparisons were conducted for these algorithms [57, 80]. They were compared with YinYang, ELTL, Generic Programming (developed within DL-Learner), etc. The experimental results were also analysed and discussed using the basic metrics such as predictive accuracy, learning time and definitions length. Therefore, it enables the implicit comparison with other algorithms.

2. Evaluations in [57, 80] suggest that, overall, these algorithms produced better results than other algorithms.

3. These algorithms and the DL-Learner framework are publicly available and they can be accessed at the Sourceforge repository\(^4\). They also have a big user and developer community.

4. They support expressive language. Although they were reported to support the \(\mathcal{ALC}\) language, the current implementation was extended to more expressive power, e.g. at-least restriction and at-most restriction, and they approach the support of the \(\mathcal{SHOIN}(\mathcal{D})\) language.

In addition, these algorithms are the most recently developed description logic learning algorithms (in 2010). They were implemented in Java, a favourite platform used best for web ontology language technologies and based on DL-Learner, an open source framework for learning in description logics and OWL. The DL-Learner framework provides core functionalities for implementation of description logic and OWL learning algorithms such as interfaces for different knowledge sources (e.g. OWL files and SPARQL endpoints [29]), reasoner interfaces (e.g. OWLAPI reasoner interfaces and DIG [10]), normalisation procedure, and implementation of some refinement operators. Therefore, it allows direct comparisons by using the same methods for some parts (e.g. refinement operator, reasoner interface and normalisation) of the implementation of our learning algorithms. This helps to accomplish fair comparisons.

\(^4\)http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/
3. Evaluation Methodology

3.3.3 Evaluation Datasets

To ensure that our evaluations cover as much as possible of the space of cases, which helps to achieve a thorough assessment of the algorithms involving in the evaluations, we chose datasets that vary in: i) size, both for knowledge base and set of examples, ii) the length of definitions, and iii) the noise property. In addition, datasets that are commonly used in evaluations of symbolic machine learning may provide implicit comparisons with other related approaches. Therefore, we also chose some datasets commonly used in evaluation of symbolic learning algorithms, particularly in inductive logic programming and description logic learning.

Based on the above criteria, we chose the following datasets for our evaluation. The summary of their basic characters are given in Table 3.1 and their properties are summarised in Table 3.2. In Table 3.1, we used CELOE, one of our comparison algorithms, as the reference algorithm for estimation of the definition length of the learning problems with respect to the datasets. We also assess the complexity of the learning problems. The definition length is used as a proxy for the complexity.

However, this assessment may not be accurate if the dataset is noisy or the expected definition for the learning problem with respect to the dataset is too long for CELOE to produce the definition under an evaluation condition (e.g. memory). For example, the average definition length for the CarcinoGenesis dataset produced by CELOE is 5 axioms. This is a short definition length and thus it is classified as a low complexity learning problem. However, this is not a plausible classification as this is a noisy dataset and the short definitions are caused by noisy data rather than a simple learning problem. The average predictive accuracy of CELOE on this dataset is around 56%.

Moral

This dataset was first introduced in [140] and is available at the University of California Irvine (UCI) machine learning repository\(^5\) [50]. This dataset contains concepts and observations that are related to classification of activities as ‘guilty’ and ‘not guilty’. It is intended to be used to learn definitions of harm-doing activities. This dataset

\(^5\)http://archive.ics.uci.edu/ml/datasets/Moral+Reasoner
3. Evaluation Methodology

Table 3.1: Basic characters of the evaluation datasets. Some datasets include several sub-datasets. Therefore, they may have more than one values for a characteristic.

<table>
<thead>
<tr>
<th>No</th>
<th>Dataset</th>
<th>TBox size(^a)</th>
<th>ABox size(^b)</th>
<th>Complexity(^c)</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Moral</td>
<td>Large</td>
<td>Large</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Forte Uncle</td>
<td>Small</td>
<td>Small</td>
<td>Medium</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Poker</td>
<td>Medium</td>
<td>Medium to Large</td>
<td>Medium to High</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Family</td>
<td>Small</td>
<td>Medium</td>
<td>Low to Very high</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>CarcinoGenesis</td>
<td>Large</td>
<td>Large</td>
<td>Low</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>UCA1 (MUSE)</td>
<td>Large</td>
<td>Medium</td>
<td>Medium</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>ILPD</td>
<td>Large</td>
<td>Large</td>
<td>Medium</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>MUBus</td>
<td>Medium</td>
<td>Large</td>
<td>Low to Medium</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^a\)Total number of classes and properties. Small: (0, 8]; Medium: (8, 15]; Large: (15, \(\infty\)).

\(^b\)Total number of assertions. Small: (0, 500]; Medium: (500, 1000]; Large: (1000, \(\infty\)).

\(^c\)The complexity is approximately estimated based on the definition length. Low: (0, 8]; Medium: (8, 15]; High: (15, 20]; Very High: above 20.

includes two sub-datasets in which one of them requires a simple definition for harm-doing activities, for example:

\[(\text{blameworthy OR vicarious_blame})\]

Another one requires more complex definition for harm-doing activities, e.g.:

\[(\text{NOT justified}) \text{ AND } (\text{responsible OR vicarious})\]

Forte uncle

This is used to learn the definition of the concept *Uncle*. It was modified from the Uncle dataset within the Family dataset by Lehmann [78]. A possible definition for this learning problem is:

\[\text{Male AND ((hasSibling SOME (hasChild some Person)))}\]

\[\text{OR (married SOME (hasSibling SOME (hasChild SOME Person)))}\]
3. Evaluation Methodology

Table 3.2: Properties of the evaluation datasets. OPs and DPs are short for Object Properties and Data Properties respectively. Number of examples is given in the form positive/negative examples.

<table>
<thead>
<tr>
<th>No</th>
<th>Dataset</th>
<th>Classes</th>
<th>OPs</th>
<th>DPs</th>
<th>Assertions Class</th>
<th>OP</th>
<th>DP</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moral</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>4646</td>
<td>0</td>
<td>0</td>
<td>102/100</td>
</tr>
<tr>
<td>2.</td>
<td>Forte uncle</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>86</td>
<td>251</td>
<td>0</td>
<td>23/163</td>
</tr>
<tr>
<td>3.</td>
<td>Poker</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>374</td>
<td>1080</td>
<td>0</td>
<td>4/151</td>
</tr>
<tr>
<td>4.</td>
<td>Carcinogenesis</td>
<td>142</td>
<td>4</td>
<td>15</td>
<td>22,372</td>
<td>40,666</td>
<td>11,185</td>
<td>182/155</td>
</tr>
<tr>
<td>5.</td>
<td>ILPD</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>976</td>
<td>0</td>
<td>1952</td>
<td>323/165</td>
</tr>
<tr>
<td>6.</td>
<td>UCA1 (MUSE) Family dataset</td>
<td>30</td>
<td>4</td>
<td>11</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>73/77</td>
</tr>
<tr>
<td>7.</td>
<td>Aunt</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>606</td>
<td>728</td>
<td>0</td>
<td>41/41</td>
</tr>
<tr>
<td>8.</td>
<td>Brother</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>606</td>
<td>728</td>
<td>0</td>
<td>43/30</td>
</tr>
<tr>
<td>9.</td>
<td>Cousin</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>606</td>
<td>728</td>
<td>0</td>
<td>71/71</td>
</tr>
<tr>
<td>10.</td>
<td>Daughter</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>606</td>
<td>728</td>
<td>0</td>
<td>52/52</td>
</tr>
<tr>
<td>11.</td>
<td>Father</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>606</td>
<td>728</td>
<td>0</td>
<td>60/60</td>
</tr>
<tr>
<td>12.</td>
<td>Grandson</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>606</td>
<td>728</td>
<td>0</td>
<td>30/30</td>
</tr>
<tr>
<td>13.</td>
<td>Uncle</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>606</td>
<td>728</td>
<td>0</td>
<td>38/38</td>
</tr>
<tr>
<td>14.</td>
<td>[07:00-09:10]</td>
<td>25</td>
<td>0</td>
<td>12</td>
<td>2675</td>
<td>0</td>
<td>32110</td>
<td>383/2292</td>
</tr>
<tr>
<td>15.</td>
<td>[07:00-12:00]</td>
<td>25</td>
<td>0</td>
<td>12</td>
<td>6314</td>
<td>0</td>
<td>75766</td>
<td>670/5643</td>
</tr>
<tr>
<td>16.</td>
<td>[07:00-21:30]</td>
<td>25</td>
<td>0</td>
<td>12</td>
<td>17128</td>
<td>0</td>
<td>205534</td>
<td>1250/15877</td>
</tr>
</tbody>
</table>
This dataset is available at the DL-Learner repository\(^6\).

Poker

This dataset contains description of poker hands. Each example in this dataset is a description of a poker hand that consists of 5 cards drawn from a standard deck of 52 cards. Each card has two properties: suit and rank. There are four different suits: Hearts, Spades, Diamonds and Clubs; and 13 different ranks: Ace, 2, 3, ..., Queen, King. There are totally 10 predictive attributes for a poker hand (i.e. suit of card 1, rank of card 1, ..., suit of card 5, rank of card 5).

A poker hand also has a Class attribute that describes its situation, e.g. one pair (one pair of equal rank within five cards), two pairs (two pairs of equal rank within five card), straight (five cards sequentially ranked with no gaps), etc. There are totally 10 poker hand classes. Therefore, this dataset can be used to learn the properties (or the definitions) of poker hand classes. This dataset can be customised into binary-class learning. It is available at the UCI repository\(^7\).

Family

This is a set of datasets that contains observations about the family relations such as aunt, brother, cousin, daughter, father, grandson and uncle \([113]\). Therefore, there are many learning problems in this dataset in which each of them is used to learn a definition of a family relation. For example, the aunt relation is possibly defined as follows:

\[
\text{Female AND ((hasSibling SOME hasChild SOME Thing) OR (married SOME hasSibling SOME hasChild SOME Thing))}
\]

Or the definition of “Brother” relation, for instance, is as follows:

\[
\text{Male AND hasSibling SOME Thing}
\]

This dataset can be found in many repositories. In our evaluation, we use the dataset distributed with the DL-Learner package (or can be found at the DL-Learner package\(^8\))

\(^6\)http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/forte/

\(^7\)http://archive.ics.uci.edu/ml/datasets/Poker+Hand

\(^8\)http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/forte/
3. Evaluation Methodology

Repository

CarcinoGenesis

This dataset is used to learn the structure of chemical compound and bio-essay that may cause cancer. Data of this dataset was obtained from US National Toxicology Program. It was transformed into logic programming and used for evaluation of ILP algorithms by many authors such as in [7, 124]. This dataset was transformed into OWL ontology format and used to evaluate the description logic learning algorithms in the DL-Learner framework [80]. This is a challenging problem in machine learning for both symbolic and sub-symbolic learning approaches, which is reported to contain noise [80]. Therefore, this dataset is useful for testing the capability of dealing with noise of the learning algorithms.

The OWL format of this dataset can be found in the DL-Learner distribution or the DL-Learner repository.

MUSE Dataset

This is a simulated smart home dataset created by the MUSE (Massey University Smart Environment) research group [88] and available at the DL-Learner repository. It is simulated based on a set of use cases that particularly focus on describing normal and abnormal behaviours of an inhabitant in a smart home. A major difference between this dataset and other smart home datasets is that this dataset has richer context awareness information. In most of the existing smart home datasets such as MIT [128], the only context information involved is the time. However, the time data in that dataset is only used to represent the order of the activities in the dataset. Other information of the time data is not used such as the day of week and the season.

In the MUSE dataset, context awareness is taken into consideration. More information is involved in the dataset than the existing home datasets such as seasons,
3. Evaluation Methodology

Figure 3.4: A part of the MUSE knowledge base visualised in Protege. It contains the basic concepts and properties for describing activities and the context information in smart home environment.

(a) Class hierarchy. (b) Object properties. (c) Data properties.

weekday/weekend, day of week, etc. Figure 3.4 shows a part of this dataset knowledge based, visualised by Protege [61], including the class hierarchy and properties. The smart home use cases suggest that behaviours of inhabitants in smart homes can be effected by many factors. Therefore, consideration of context information may help to describe the behaviours more precisely.

The knowledge base also contains some equivalent classes for reasoning about the season given the month of year. For example, following is the definition of the Winter concept (that applies to the Southern Hemisphere only):

\[
\text{Winter} \equiv \text{Timepoint} \land (\text{hasMonthValue SOME integer}[>5]) \land (\text{hasMonthValue SOME integer}[<9])
\]

In our experiments, only the use case UCA1 in [88], which describes normal and abnormal shower duration, is used. In this use case, shower duration is supposed to depend upon the seasons. Cool seasons may cause the showers to be shorter, whereas warm seasons may cause the showers to be longer. Figure 3.5 shows a showering activity and its context information represented in the form of RDF graph. In this dataset, only
3. Evaluation Methodology

Figure 3.5: An example of a shower activity `showering_001` in MUSE dataset and its context information represented in form of a RDF graph.

![RDF graph of showering activity](image)

The month value of a timepoint is currently used. The month and duration values are described by an integer value.

ILPD Dataset

This dataset contains liver function test records of patients collected from the North East of Andhra Pradesh, India (Indian Liver Patient Dataset). Each record comprises patient information such as age and gender and result of liver function tests including total Bilirubin, direct Bilirubin, Albumin, total protein, Albumin/Globulin ratio, Alanine, Aspartate and Alkaline Phosphatase. Based on the patient information and the test results, experts were asked to classify patients’ record into cancer patient (denoted by ‘1’) and non-cancer patient (denoted by ‘2’) classes. Therefore, this dataset can be used to identify the characters of liver and non-liver cancer patient groups. This dataset is also available in the UCI repository\(^{11}\).

The liver function test results are numeric values. In our evaluation, background knowledge of liver function test is also included in the knowledge base of the learning problem. This includes the definition of “normal” and “abnormal” value of the test results based on reference range \(^{[52]}\) collected and aggregated from several health labs and website such as MedlinePlus\(^{12}\), a service of the US National Library of Medicine, Virtual Medical Center\(^{13}\), a leading medical information website of Australia.

\(^{11}\)http://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)
\(^{13}\)http://www.virtualmedicalcentre.com/health-investigation/liver-function-tests-lfts
3. Evaluation Methodology

Figure 3.6: The concept hierarchy of the MUBus dataset visualised in Protege.

MUBus Dataset

This dataset is about the operation time of the route 12 of the Horizons bus service. This dataset was generated from the bus schedule in which the data was sampled every 5 minutes. Each record has the form record_id(day, month, year, hour, minute, bus/no bus). Operation time of this bus route depends upon several conditions such as weekday or weekend, holiday or normal day, type of holiday, and summer or school year. For simplicity, similar conditions are grouped accordingly to their influence on the bus schedule. For example, we created the concept Holiday1 to represent for the holidays: ANZAC Day, Christmas, Easter Sunday, and Good Friday. These holidays have the same characteristic that the bus does not operate on these days. The basic concepts used in the bus schedule and their hierarchical structure are given in Figure 3.6. The full description of this bus schedule including the criteria is provided on the Horizons bus website.

This dataset includes several sub-datasets. We perform our experiments on three datasets named “MUBus12 [07:00 - 09:20]” (shortened as MUBus-1), “MUBus12 [07:00 - 12:00]” (shortened as MUBus-2) and “MUBus12 [07:00 - 21:30]” (shortened as MUBus-3). Numbers inside the square brackets indicate time ranges used to generate sampling data. For example, “[07:00 - 21:30]” means that data were sampled from 07:00 to 21:30. In addition, we did the sampling around one week for each month. If there are holidays

3. Evaluation Methodology

in a month, the sampling is extended to cover the holidays. This ensures the dataset contains sufficient information for learning the patterns of bus operation time.

The learning problems with respect to this dataset are very complex learning problems. The bus operation schedule influences by many factors and thus the pattern to describe the bus schedule is very long. For example, to describe only the bus schedule in the weekend, the following description (or other equivalent descriptions) is required:

\[
\text{(NOT Holiday1) AND (hasMinute VALUE 0 and hasHour VALUE 9) OR}
\]
\[
\text{(hasMinute VALUE 20 AND}
\]
\[
\text{(hasHour VALUE 10 OR hasHour VALUE 14 OR hasHour VALUE 16)) OR}
\]
\[
\text{(hasMinute VALUE 40 AND}
\]
\[
\text{(hasHour VALUE 11 OR hasHour VALUE 13 OR hasHour VALUE 15)))}
\]

Or the criteria of the bus depart at 09:20 is as follows:

\[
\text{(hasHour VALUE 9 AND hasMinute VALUE 20) AND}
\]
\[
\text{Weekday AND (NOT Holiday1) AND (NOT MidYearBreak2) AND}
\]
\[
\text{(NOT MidYearBreak1) AND (NOT SemesterBreak) AND (NOT SummerSemester)}
\]

The full description of the bus schedule is very complex. Therefore, this dataset is used to assess the ability of the learning algorithms in handling the complex learning problems. This dataset is also suitable for evaluating the symmetric learning approach as the negative examples in this dataset can be described by simple description, e.g. NOT Holiday1. This dataset is available at the DL-Learner repository\(^{15}\).

3.4 Implementation and Running the Code

Our algorithms have been implemented in Java programming language. This is the favourite platform used best for web ontology language technologies such as OWL application programming interface (OWLAPI \cite{11}) and OWL reasoners (e.g. Pellet \cite{107}, Hermit \cite{117} and FaCT \cite{63}). Therefore, using this platform will facilitate our implementation and also help our work to be as close as possible to others.

Our evaluation is implemented and available online \(^{16}\). Scripts for reproducing

\(^{15}\)http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/

\(^{16}\)https://parcel-2013.googlecode.com/files/parcel-cli.zip
the experimental results are also included in this package. A detailed description of
the evaluation system configuration and instructions for running evaluation scripts are
provided in Appendix B.

Note that different evaluation system configurations may produce different experi-
mental results for some particular metrics. Learning time is the most sensitive metric to
the evaluation system configuration. Other metrics such as learnt concept, search space
size and accuracy are less dependent on the system configuration than learning time
and thus the evaluation usually produces the similar results for these metrics regardless
of the evaluation system.
3. Evaluation Methodology
Chapter 4

Adaptive Numerical Data Segmentation

This chapter describes an approach to segmentation of numeric data property values that will be useful in the rest of the thesis. We first present the standard approach to refinement of numeric data properties in description logic learning and discuss its limitations. Then, we propose an approach to segmentation of numeric data property values. Finally, we present experimental results to demonstrate the effectiveness of our approach.

4.1 Introduction

Refinement of a description is done by: i) adding (specialisation) or removing (generalisation) primitive concepts, roles and restrictions to/from the description, and ii) refining the primitive concepts, roles and restrictions in the description. The refinement of a primitive concept, role and restriction are based on a quasi-order space that consists of a set of values and a quasi-ordering [104]. They are basically a replacement of the concept, role or restriction by a more specific (downward refinement) or a more general (upward refinement) element in the quasi-order set.

The quasi-order space for primitive concept refinement consists of the set of primitive concepts in the TBox (N_C) and the sub-concept relation (\subseteq). Similarly, the
quasi-order space for role refinement consists of primitive roles in the TBox \((N_R)\) and the sub-role relation \((\sqsubseteq)\). Identifying quasi-order sets for primitive concepts and roles are straight forward, as all required information is available within the knowledge base. However, a quasi-order set for refinement of restrictions is not always available, particularly for numeric datatypes. The quasi-ordering for numbers is obviously available. For examples, we can use \(>, \geq, <, \) or \(\leq\) to define the generality and specificity between the numeric values. On the other hand, the set of elements of the quasi-order set for numeric datatype restriction refinement is not explicitly available in the knowledge base. A computation is often needed to identify this set.

In this chapter, a method for identifying the elements of the quasi-order set for refinement for numeric datatype properties is proposed. This is a pre-processing step, that only has to be done once, before the learning starts. This method will be used by all the learning algorithms developed in this thesis. To demonstrate the efficacy of the method, we will present experimental results of this method implemented in CELOE and one of our algorithms, the ParCEL algorithm, developed in Chapter 5.

4.2 Motivation

Learning symbolic concepts is the ultimate purpose of the symbolic learning approach. Therefore, most existing approaches in description logic learning focus upon learning symbolic concepts without appropriate attention to learning numeric datatypes. However, in many real-world applications, numeric data has an important role in knowledge representation and it cannot always be replaced by qualitative representations, i.e symbolic concepts.

In existing description logic learning approaches, the most common method for refining numeric datatype properties is to use the maximal \((\leq)\) and minimal \((\geq)\) value restriction (quasi-orderings) on a set of values, which are usually obtained from the range values of the datatype properties’ assertions. Figure 4.1 visualises the specialisation process for a numeric datatype property \(p\). Specialisation in Figure 4.1(a) uses either the maximal or minimal value restriction and the specialisation in Figure 4.1(b) uses both of them. With \(n\) possible values for refinement for a datatype property \(p\),
4. **Adaptive Numerical Data Segmentation**

Figure 4.1: Specialisation of numeric datatype properties.

(a) Either maximal or minimal value restriction is used by the specialisation.

(b) Both maximal and minimal value restrictions are used by the specialisation.

There are $2n$ possible combinations for one-sided specialisation and $\frac{n(n+1)}{2}$ combinations for two-sided specialisation of p, as illustrated in Figures 4.1(a) and 4.1(b) respectively.

To the best of our knowledge, amongst description logic learning algorithms developed, the only description logic learning algorithms that explicitly describe and implement the specification of the numeric datatype property refinement are the CELOE, OCEL and ELTL algorithms in the DL-Learner framework [82]. As the number of assertions of a datatype property may be very big, using all the values of the assertions may explode the search space due to the number of possible combinations. Therefore, in these algorithms, a fixed-size segmentation method is used to reduce the refinement space. In this method, a maximal number of values for refining a numeric datatype property is assigned. If k is the maximal number of values used for the refinement of a datatype property, the assertion values of the datatype property are split into k equal parts and the middle values of split parts are used for refinement (they are rounded for the integer datatype). Figure 4.2 describes a segmentation for a data property p that
4. Adaptive Numerical Data Segmentation

Figure 4.2: Segmentation of a datatype property assertion values to reduce the refinement space. The refinement space of this property decreases from 102 possible combinations (w.r.t 12 values) to 25 (w.r.t 5 values).

Figure 4.3: Overly general expression, $3.5 \leq p \leq 30$, cannot be further specialised due to an inappropriate segmentation of the data property values. Superscript $+$ indicates the value of positive examples and superscript $-$ indicates value of negative examples.

has 12 values into 4 parts.

However, fixed-size segmentation of the datatype properties may lead to a circumstance in which some meaningful values are ignored while unnecessary values are included in the set of values used for the refinement. For example, suppose that the datatype property p in Figure 4.2 describes an allowable range based on positive examples $\{5, 6, 10, 12, 16, 20\}$ and negative examples $\{1, 2, 3, 4, 28, 30\}$. The problem is demonstrated in Figure 4.3. It is obvious that the segmentation in Figure 4.2 is not appropriate and it prevents the specialisation from working correctly. The expression $3.5 \leq p \leq 30$ is overly general (complete but not correct) and it cannot be specialised as the next values for the specialisation (8 and 18) produce overly specific concepts.

Therefore, the fixed-size segmentation for data properties values may lead to inappropriate segmentations. Using all values of the data properties values can help to avoid the problem, but it may explode the refinement spaces with unnecessary values. For example, some values such as $\{2, 3, 6, 10, 12, 16\}$ in Figure 4.2 can be eliminated from
the segmentation without any problem. However, the relations between the values of data properties and the examples are not explicitly available. Therefore, we approach this problem by proposing an adaptive segmentation method that creates a relation graph between literals of data properties and examples, and segments the datatype property values based on the relation graph.

4.3 Description of Our Method

In this section, we describe our method to compute a set of values used for refinement of numeric data properties such that: i) the redundant values are eliminated to reduce the refinement space of the data properties, and ii) the set of values contains necessary values to construct the definitions for positive examples. The set of values computed depends upon the sets of examples and their relations to the property values. Therefore, it is called the adaptive segmentation method.

Figure 4.3 gives an example of an inappropriate segmentation that misses some necessary values for constructing the definitions. The set values for refinement of the property p in this segmentation method is $\{1, 3, 5, 8, 18, 30\}$. However, some values between 4 and 5, and 20 and 28 are needed to construct the definitions of positive examples. If the above values are segmented into 6 parts, the set of values for the segmentation is $\{1, 2, 5, 4, 5, 8, 14, 24, 30\}$ and thus we can get the necessary values. However, this segmentation produces redundant values, e.g. $\{2, 5, 8, 14\}$.

Therefore, to eliminate the redundancy and to avoid missing any necessary values, the approach to segmentation of data properties values requires the information about the relations between the values of the data properties and the examples. These relations are identified by using a relation graph. A relation graph is a directed graph that represents the relations between the individuals and the literals based on the assertions in the ABox. The nodes in a relation graph are the class assertions or literals of data properties and the edges are the property assertions that connect their domain value (individuals) to their range value (individuals or literals). Figure 4.4 shows a simple relation graph that describes the relations between some examples and the values of the datatype property p.
4. ADAPTIVE NUMERICAL DATA SEGMENTATION

Figure 4.4: A relation graph of examples and numeric values of the datatype property \(p \). Shaded ellipse nodes are examples, with solid lines representing positive examples and dashed lines representing negative examples. Unshaded ellipse nodes are instances. Rectangular nodes represent values (literals) of the datatype property \(p \). Superscripts \(+\), \(-\) or \(\pm\) of a value implies the value has relation with only positive example(s), only negative example(s), or both positive and negative examples respectively.

Given a relation graph, a value is said to be **related** to an example if there exists a path from the example to the value. Each value of a datatype property may be related only to the positive or negative example(s) or both types of example. For example, in Figure 4.4, the literals “1” and “2” of the datatype property \(p \) relate only to the positive examples (denoted by +), literal “10” relates only to the negative examples (denoted by –) and the literal “18” relates to both positive and negative examples (denoted by ±).

To segment the values of each datatype property, they are first sorted into a specified order. Then, it is obvious that for the values that have types “+” or “-”, jumping through the values with the same type in the specialisation does not affect the overly general or overly specific property of the refined concept. For example, given the values for the data property \(p \) in Figure 4.3 and an expression `p SOME double[\(\geq\) 1]`, then the specialisation of the expression by increasing 1 to 2, 3 and 4 will not result in an overly specific expression. This property may only be changed when we move to a value with another type, i.e. from 4 to 5. Therefore, these values can be considered as redundant values for specialisation. Only the values at the boundaries of each group are needed. For the values with “±” type, they cannot alone distinguish the positive examples. Therefore, no redundancy strategy is proposed for those values. They are segmented value by value.
4. Adaptive Numerical Data Segmentation

Figure 4.5: Segmentation of data property values. Values are sorted and then grouped by type. There are 6 segments from s1 to s6 and 7 values are computed for specialisation.

<table>
<thead>
<tr>
<th>Values for spec.</th>
<th>Values</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>v₁</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>v₂</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>v₃</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>v₄⁺</td>
<td>4⁺</td>
</tr>
<tr>
<td></td>
<td>v₅⁻</td>
<td>5⁻</td>
</tr>
<tr>
<td></td>
<td>v₆⁺</td>
<td>6⁺</td>
</tr>
<tr>
<td></td>
<td>v₇⁻</td>
<td>7⁻</td>
</tr>
<tr>
<td></td>
<td>v₈⁻</td>
<td>8⁻</td>
</tr>
<tr>
<td></td>
<td>v₉⁺</td>
<td>9⁺</td>
</tr>
<tr>
<td></td>
<td>v₁₀⁻</td>
<td>10⁻</td>
</tr>
<tr>
<td></td>
<td>v₁₁⁺</td>
<td>11⁺</td>
</tr>
<tr>
<td></td>
<td>v₁₂⁻</td>
<td>12⁻</td>
</tr>
<tr>
<td></td>
<td>v₁₃⁺</td>
<td>13⁺</td>
</tr>
</tbody>
</table>

Figure 4.6: Applying our segmentation method for segmenting the values in Figure 4.3 and computing the values for the specification. There are 3 segments and 4 values computed.

<table>
<thead>
<tr>
<th>Values for spec.</th>
<th>Values</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5⁺</td>
<td>5⁺</td>
</tr>
<tr>
<td></td>
<td>6⁺</td>
<td>6⁺</td>
</tr>
<tr>
<td></td>
<td>10⁺</td>
<td>10⁺</td>
</tr>
<tr>
<td></td>
<td>12⁺</td>
<td>12⁺</td>
</tr>
<tr>
<td></td>
<td>16⁺</td>
<td>16⁺</td>
</tr>
<tr>
<td></td>
<td>20⁺</td>
<td>20⁺</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>30⁻</td>
<td>30⁻</td>
</tr>
</tbody>
</table>

Finally, the set of values used for the specialisation of each data property is computed from the values at the boundary of the segments. They may be the average of the two values at the boundary. Rounding may be needed for integer datatype properties. Figure 4.5 demonstrates a segmentation and the computation of the values for specialisation with 7 values are computed for the specialisation. Figure 4.6 shows gives a particular example for segmenting the values in Figure 4.3. There are 3 segments and only 4 values are computed for the specialisation.

A disadvantage of this strategy in comparison with the fixed-size segmentation strategy is that it requires an extra computational cost for building the relation graph.

4.4 The Algorithms

Our datatype property values segmentation aims to reduce redundancy and avoid missing any necessary values in the refinement of numeric data properties. Our approach is based on the directed graph that represents relation between examples and values of the numeric data properties. Therefore, the first step in our algorithm is to build a relation graph. Then, we check if a value is connected with positive or negative examples or both of them. Finally, the values of numeric data properties using the above information are segmented.

The algorithm for building relation graphs is given in Algorithm 4.1. Each edge v
in the relation graph has the form of \((\text{startnode}, \text{endnode}, \text{label})\), in which \text{label} is the label of \(v\). Figure 4.4 is an example of a relation graph that describes relations between the examples and numerical values.

Algorithm 4.1: Relation graph node builder algorithm – NODEBUILDER\((T, A)\)

Input: an ontology \(\mathcal{O}\) including a TBox \(T\) (consisting of sets of concepts \(N_C\) and properties \(N_R\)) and an ABox \(A\).

Output: a labelled directed graph \(G = (V, E)\) such that for each property assertion \(\text{property}(a, b) \in ABox\): \(a \in V\), \(b \in V\) and there exists an edge \(e = (a, b, \text{property}) \in E\) such that \(a\) and \(b\) are two vertices of \(e\), and \text{property} is the label of \(e\).

1. \textbf{begin}
2. \hspace{1em} \(V = \emptyset\) /* set of vertices */
3. \hspace{1em} \(E = \emptyset\) /* set of edges */
4. \hspace{1em} \textbf{foreach} property \(\in N_R\) and \(\text{property}(a, b) \in A\) \textbf{do}
5. \hspace{2em} \textbf{if} \(a \notin V\) \textbf{then} \(V = V \cup a\)
6. \hspace{2em} \textbf{if} \(b \notin V\) \textbf{then} \(V = V \cup b\)
7. \hspace{2em} \textbf{if} \((a, b, \text{property}) \notin E\) \textbf{then}
8. \hspace{3em} \(E = E \cup (a, b, \text{property})\) /* see text */
9. \textbf{return} \(G = (V, E)\)

Algorithm 4.2 is our proposed algorithm for segmenting the values of a numerical data property. In this algorithm, the function \textsc{ExistPath} checks for the existence of a path between two nodes in the relation graph such that one of the vertices must have a given label. In addition, a function \textsc{Average} calculates the average of values depending on the datatype of those values.

4.5 Evaluation Results

To investigate the effect of the adaptive segmentation strategy on the refinement space for numeric datatype properties and predictive accuracy of the learning algorithms, two experiments were conducted. CELÖE [82] and ParCEL, one of our new learners (which will be explained more detail in Chapter 5), were chosen as the learners to implement the segmentation strategies. The ILDP and UCA1 datasets described in the previous chapter were also selected for our experiments as these datasets contain numeric datatype properties.
Algorithm 4.2: Numeric data property values segmentation algorithm –
\text{AdaptSegments}(\mathcal{O}, \mathcal{E}^+, \mathcal{E}^-, \text{pro}).

\begin{algorithm}
\begin{algorithmic}[1]
\State \textbf{Input}: an ontology \mathcal{O} consists of a TBox \mathcal{T} and an ABox \mathcal{A}, sets of positive \mathcal{E}^+ and negative \mathcal{E}^- examples, and a numeric data property pro.
\State \textbf{Output}: a set of values \{\(v_1, v_2, \ldots, v_n\)\} for refinement of the data property pro.
\begin{algorithmic}
\State \begin{algorithmic}
\State \begin{align*}
(V, E) &= \text{NodeBuilder}(\mathcal{T}, \mathcal{A}) \quad /* \text{cf. Algorithm 4.1} */ \\
G &= (V, E) \\
\text{values} &= \emptyset \\
\end{align*}
\State \textbf{foreach} \begin{align*}
\text{(domain, range, property)} &\in \mathcal{E} \\
\end{align*} \textbf{do}
\State \begin{algorithmic}
\State \begin{algorithmic}
\State \textbf{if} $\text{property} = \text{pro}$ \textbf{then} \\
\State \begin{align*}
\text{create a structure } &\text{val: val.value} = \text{range} \text{ and val.type} = \text{nil} \\
\text{values} &= \text{values} \cup \{\text{val}\} \\
\end{align*}
\State \textbf{end if}
\State \textbf{foreach} \begin{align*}
\text{val} &\in \text{values} \\
\end{align*} \textbf{do}
\State \begin{algorithmic}
\State \textbf{if} $\exists e \in \mathcal{E}^+$ \text{s.t. } \text{ExistPath}(e, \text{val.value}, \text{pro}, G) = \text{true} \text{ then} \\
\text{val.type} &= \text{pos} \\
\textbf{end if}$
\State \begin{algorithmic}
\State \textbf{if} $\exists e \in \mathcal{E}^-$ \text{s.t. } \text{ExistPath}(e, \text{val.x}, \text{pro}, G) = \text{true} \text{ then}$
\State \begin{algorithmic}
\State \textbf{if} $\text{val.type} = \text{nil}$ \textbf{then} $\text{val.type} = \text{neg}$
\State \textbf{else} $\text{val.type} = \text{both}$
\end{align*}
\State \begin{algorithmic}
\State \textbf{end if}
\State \begin{algorithmic}
\State $\text{seg.values} = \emptyset$ \quad /* segmented values */
\State $\text{seg.values} = \emptyset$ \quad /* segmented values */
\State $\text{values} \text{ by its elements’ value }$
\State $\text{for } i=1 \text{ to } \text{values.length-1} \text{ do} \quad /* \text{segment the values } */$
\State $\text{if } \text{values}[i].\text{type} \neq \text{values}[i+1].\text{type} \text{ or } \text{values}[i].\text{type} = \text{both} \text{ then}$
\State \begin{algorithmic}
\State $\text{seg.values} = \text{seg.values} \cup \{\text{Average(values}[i].\text{value},$
\State $\text{values}[i+1].\text{value})\}$
\end{algorithmic}
\State \begin{algorithmic}
\State \textbf{return} \text{seg.values}
\end{algorithmic}
\end{algorithmic}
\end{algorithmic}
\end{algorithmic}
\end{algorithmic}
\end{algorithm}
\end{algorithm}

4. Adaptive Numerical Data Segmentation
4. Adaptive Numerical Data Segmentation

Table 4.1: Reduction of numeric data properties values resulting from the adaptive segmentation strategy.

<table>
<thead>
<tr>
<th>Property</th>
<th>No of values</th>
<th>No of segmented values</th>
</tr>
</thead>
<tbody>
<tr>
<td>The UCA1 dataset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hasDurationValue</td>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td>hasMonthValue</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>The ILPD dataset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hasAlbumin</td>
<td>142</td>
<td>67</td>
</tr>
<tr>
<td>hasTotalBilirubin</td>
<td>102</td>
<td>33</td>
</tr>
<tr>
<td>hasDirectBilirubin</td>
<td>74</td>
<td>24</td>
</tr>
<tr>
<td>hasAGRatio</td>
<td>163</td>
<td>81</td>
</tr>
</tbody>
</table>

In the first experiment, the segmentation strategy was used to compute the number of segmented values for the datatype properties in the two learning problems. This result illustrates the reduction of the number of values caused by our strategy. This result was also used to select the number of segments used in fixed-size segmentation strategy to compare with the adaptive strategy.

The second experiment was used to measure the predictive accuracy of the two learning algorithms on the selected datasets using the two segmentation strategies. This experiment was repeated several times with different timeout values to demonstrate the influence of the segmentation strategies on the predictive accuracy. The experimental results are shown in the following sections.

4.5.1 Segmentation result

Table 4.1 summarises the number of values of the numeric datatype properties in UCA1 and ILPD datasets before and after the segmentation. Overall, the number of values computed by the adaptive segmentation strategy is significantly smaller than the original values. The number of the segmented values will be used to refine the datatype properties if the adaptive segmentation is used. Therefore, for fair comparison, these values were used as reference segmentation sizes for some of fixed-size segmentation strategy experiments.
4.5.2 Experimental results on the accuracy

In this experiment, the predictive accuracy of CELOE and ParCEL on the two datasets were measured using both the fixed-size and adaptive segmentation methods. Therefore, there are 4 experimental results reported in this section.

The experimental result on the IDLP dataset

CELOE over-fits on the ILDP datasets: the higher the training accuracy, the lower the predictive accuracy. Therefore, the training accuracy is needed to demonstrate the effect of the segmentation on learning results.

In CELOE, a number of segmentations are used for all datatype properties, i.e. different numbers of segmentations for each property cannot be selected. Therefore, the number of segmentations used in this experiment was selected based on: i) the default number of segmentations used by CELOE (10 segments), ii) the minimal number of segmented values computed by the adaptive segmentation (24) for the given dataset (see Table 4.1), iii) the maximal number of segmented values computed by the adaptive segmentation (81), and iv) the maximal number of values of all properties (163). The experimental result of CELOE on the ILDP datasets is shown in Table 4.2.

Both CELOE and ParCEL were first used to learn this problem but both these algorithms could not find solutions in more than 10 minutes. Therefore, several timeouts for the experiment were assigned: 60s, 90s, 120s and 180s. The experimental results show that CELOE always got highest training accuracy with the adaptive segmentation strategy for each timeout value. The accuracy of the fixed-size segmentation with 10 segments at 108s is still lower than that of the adaptive strategy at 60s. The highest accuracy of the largest segmentation (i.e. segment size 163) is equal to that of the adaptive strategy at 60s. Further investigation with the largest segmentations shown that this strategy was able to achieve the same accuracy with that of the adaptive strategy at 120s, at 600s. This is attributed by the bigger search space of the (largest) fixed-size segmentation in comparison with the adaptive segmentation.

Therefore, it can be concluded that the adaptive segmentation can help the learning to achieve higher accuracy faster than the fixed-size segmentation. In addition, it can avoid the inappropriate segmentation problem found by the fixed-size strategy.
Table 4.2: Predictive accuracy of CELOE on the ILDP dataset for the two segmentation strategies (means ± standard deviations of 10 folds). Italic values are statistically significantly lower than the corresponding adaptive segmentation strategy results at the 95% confidence level.

<table>
<thead>
<tr>
<th>Learning time (s)</th>
<th>Accuracy (%)</th>
<th>Segmentation size</th>
<th>10</th>
<th>24</th>
<th>81</th>
<th>163</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>76.457 ± 0.332</td>
<td>76.48 ± 0.291</td>
<td>76.662 ± 0.329</td>
<td>76.662 ± 0.329</td>
<td>76.685 ± 0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76.016 ± 2.609</td>
<td>76.016 ± 3.431</td>
<td>76.012 ± 3.431</td>
<td>76.012 ± 3.431</td>
<td>75.808 ± 3.105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>76.457 ± 0.332</td>
<td>76.48 ± 0.291</td>
<td>76.685 ± 0.329</td>
<td>76.662 ± 0.329</td>
<td>76.913 ± 0.403</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76.016 ± 2.609</td>
<td>76.016 ± 3.105</td>
<td>76.012 ± 3.431</td>
<td>76.012 ± 3.431</td>
<td>75.608 ± 2.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>76.457 ± 0.332</td>
<td>76.48 ± 0.291</td>
<td>76.685 ± 0.329</td>
<td>76.662 ± 0.329</td>
<td>77.072 ± 0.439</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76.016 ± 2.609</td>
<td>76.016 ± 3.105</td>
<td>76.012 ± 3.431</td>
<td>76.012 ± 3.431</td>
<td>75.191 ± 2.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>76.457 ± 0.332</td>
<td>76.48 ± 0.291</td>
<td>76.685 ± 0.329</td>
<td>76.685 ± 0.329</td>
<td>77.072 ± 0.439</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76.016 ± 2.609</td>
<td>76.016 ± 3.105</td>
<td>75.808 ± 3.105</td>
<td>75.808 ± 3.105</td>
<td>75.191 ± 2.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The t-test on the experimental results at the 95% confidence level shows that the predictive accuracies of CELOE achieved with the adaptive segmentation strategy were not statistically significantly higher than those with the fixed-size segmentation strategy. However, there were 10/16 cases where the training accuracy of CELOE achieved with the adaptive strategy were statistically significantly higher than those with the fixed-size strategy.

A similar experiment was conducted for ParCEL and it was also over-fitting on this dataset. The results in Table 4.3 show that ParCEL got higher accuracy with the adaptive segmentation strategy than those with the fixed-size segmentation strategy. Both training and predictive accuracies produced by ParCEL when it used the adaptive strategy at 60s were higher than those produced with the largest fixed-size segmentation (163 segments) at 180s. When the number of segments is small (i.e. the segments’ size are big), some necessary values used to distinguish the positive and negative examples may be segmented in the same group. Therefore, they are ignored in the refinement.
Table 4.3: Predictive accuracy of ParCEL on the ILDP dataset for the two segmentation strategies (means ± standard deviations of 10 folds). The statistical significance test results are presented using the same conventions as in Table 4.2.

<table>
<thead>
<tr>
<th>Learning time (s)</th>
<th>Accuracy (%)</th>
<th>Segmentation size</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>60</td>
<td>Training</td>
<td>58.583 ± 1.679</td>
<td>66.984 ± 1.391</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>54.278 ± 9.907</td>
<td>62.477 ± 7.818</td>
</tr>
<tr>
<td>90</td>
<td>Training</td>
<td>58.583 ± 1.679</td>
<td>66.984 ± 1.391</td>
</tr>
<tr>
<td>120</td>
<td>Training</td>
<td>58.583 ± 1.679</td>
<td>66.984 ± 1.391</td>
</tr>
<tr>
<td>180</td>
<td>Training</td>
<td>58.583 ± 1.679</td>
<td>66.984 ± 1.391</td>
</tr>
</tbody>
</table>

that resulted in the low learning accuracy. The learning accuracy of the fixed-size segmentation strategy was also lower than the adaptive segmentation even when the number of segmentations was set to the maximal numbers of possibles values in the domain. This can also be attributed to the bigger search space of this strategy in comparison with the adaptive segmentation strategy.

The t-test on the training and predictive accuracies at 95% confidence shows that the training accuracies of the adaptive segmentation strategy on UCA1 dataset were statistically significantly higher than those of the fixed-size strategy for all segment sizes and learning times. On the other hand, the predictive accuracies of the adaptive strategy were statistically significantly higher than the fixed-size strategy when the segment sizes are 10 and 24.

The experimental result on the UCA1 dataset

The number of segments used for the fixed-size segmentation strategy was selected similarly for the UCA1 dataset. Both CELOE and ParCEL were not over-fitting on
Table 4.4: Predictive accuracy of CELOE and ParCEL on the UCA1 dataset for the two segmentation strategies (means ± standard deviations of 10 folds). The statistical significance test results are presented using the same conventions as in Table 4.2. The actual learning times are reported when the learning algorithms found accurate solution on training set, prefixed by @.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Learning time (s)</th>
<th>6</th>
<th>12</th>
<th>37</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELOE</td>
<td>180</td>
<td>76.208</td>
<td>±11.677</td>
<td>88.167</td>
<td>±10.075</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>76.208</td>
<td>±11.677</td>
<td>88.167</td>
<td>±10.075</td>
</tr>
<tr>
<td>ParCEL</td>
<td>180</td>
<td>80.03</td>
<td>±8.825</td>
<td>94.708</td>
<td>±5.249</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>80.03</td>
<td>±8.825</td>
<td>94.708</td>
<td>@63.458</td>
</tr>
</tbody>
</table>

This dataset. Therefore, only the predictive accuracy is presented. The experimental result of CELOE and ParCEL on this dataset are shown in Table 4.4.

Similar to the ILDP dataset, the predictive accuracy increased when the number of segments was increased. The predictive accuracy of the fixed-size segmentation strategy was equal to the adaptive strategy when the largest segmentation was used, i.e. all values were used for the refinement. On this dataset, as CELOE did not found an accurate solution and it was terminated by timeout, the learning times between the two strategies could not be compared. It is worth noting that the length of all definitions produced by CELOE in this experiment were equal (9 axioms). However, they have different accuracies.

ParCEL also got higher accuracy when the higher number of segments was used. It found accurate definitions with the adaptive segmentation and the largest fixed-size segmentation strategies. In this case, the learning time of ParCEL using the adaptive segmentation strategy was significantly smaller than the finest fixed-size segmentation.

The t-test at 95% confidence shows that the predictive accuracies of CELOE achieved with the adaptive strategy were statistically significantly higher than the predictive accuracy CELOE achieved with 6 segments. For ParCEL, the result produced with the adaptive strategy was statistically significantly higher than those produced with the 6 and 12 segments size. When ParCEL got 100% accuracy with both strategies, the
learning time with the adaptive strategy was statistically significantly smaller than those resulted by the largest fixed-size segmentation strategy.

4.6 Conclusion

The approach to segmentation of the numeric data property produced promising results. It helped to reduce the number of values used in refinement of numeric data properties significantly. More importantly, the experimental results showed that decrease of the refinement values did not lessen the predictive accuracy. Moreover, it increased the predictive accuracy for some learning problems by avoid missing of any necessary values in the refinements.
4. Adaptive Numerical Data Segmentation
Chapter 5

Parallel Class Expression Learning

This chapter proposes a Parallel Class Expression Learning approach to learning Web Ontology Language (OWL) class expressions. We first describe the class learning problem and some existing approaches in the literature. Then, we present an approach to class expression learning that combines the top-down approach with a reduction strategy, and uses parallelisation to improve the learning speed. Finally, evaluations of our proposed approach, together with comparisons with other algorithms, are presented.

5.1 Parallelisation for Class Expression Learning

Parallelisation is a popular technique to speed up the processing of an application. It has been used in many application domains, particularly following the introduction of multi-core processors, as are currently used in most computer systems. In logic programming, this technique is used to create parallel logic programming or parallel inference algorithms such as [28, 53, 84, 129]. In inductive logic programming, the root of description logic learning, some parallel inductive logic learning algorithms have also been proposed [37, 49, 93, 106]. However, in description logics, particularly
in Web Ontology Language, parallelisation is being mainly used only in the OWL inference algorithms [122]. In description logic learning, to the best of our knowledge, there is no parallel description logic learner. Therefore, the main objective of this chapter is to propose a Parallel Class Expression Learning algorithm that employs parallelisation to utilise the power of multi-core computers or that can be developed for cloud computing platforms such as Amazon EC2. The name Class Expression Learning is used instead of Description Logic Learning to focus on the Web Ontology Language (OWL) representation languages, related techniques and applications.

Class expression learning

As defined in Definition 2.16, the description logic learning problem is to find a concept (class expression) that covers a set of examples. Given a knowledge base \(K \) and sets of positive \(E^+ \) and negative \(E^- \) examples such that \(E^+ \cap E^- = \emptyset \), description logic learning aims to find a class expression \(C \) such that \(K |\models C(e) \) for all \(e \in E^+ \) and \(K \not\models C(e) \) for all \(e \in E^- \).

There are two basic approaches to class expression logic learning. The top-down approach is preferred as it can utilise the sub-concept (subclass) semantics provided within the knowledge base for performing specialisation in its downward refinement operator [6, 43, 66]. Most existing description logic learning algorithms use this approach, as reported in the literature, such as [43, 45, 66, 85]. On the other hand, the bottom-up approach cannot inherit the concept hierarchy structure of the knowledge base. The upward refinement operators used in this approach mainly use the most specific concepts (MSC) calculation based on the set of positive examples [31, 72]. The most specific concept of an individual is the most specific class expression such that the individual is an instance of that expression.

Empirically, the top-down learning algorithms tend to produce short and readable definitions. Contrarily, bottom-up learning algorithms tend to generate (unnecessarily) long concepts. In addition, MSC have only been used with \(\mathcal{FL} \) and \(\mathcal{FL}E \) languages [39]. MSC for more expressive languages have not yet been investigated and hence they can only be approximated [3, 34, 75]. Therefore, the top-down approach is preferred to the bottom-up approach in description logic learning. However, this approach does not suit
5. Parallel Class Expression Learning

well for learning long definitions.

A combination of the top-down and bottom-up approaches was proposed in DL-FOIL [45]. In this approach, top-down (specialisation) is the main task in the learning process to find definitions for positive examples and disjunction is used to generalise the set of definitions. A combination of downward refinement and the MSC operator for specialisation and disjunction for generalisation is introduced in YinYang [66]. A major advantage of this approach over the top-down approach is that it can deal well with complex learning problems, i.e. learning problems that need a long definition. However, the experimental results show that YinYang still produces unnecessarily long concepts [80]. Similarly, the current greedy partial solutions disjunction strategy of DL-FOIL is not an optimal strategy for short definitions.

Amongst the existing class expression learning approaches, the combination of the top-down and bottom-up approaches is the most suitable for parallelisation as the partial solutions can be learnt simultaneously. Therefore, a three-step class expression learning approach, which is based on the above approach, is proposed to benefit parallelisation for class expression learning and address the problem of unnecessarily long learnt definitions. In this approach, the generalisation is separated from the specialisation by a reduction step. It allows the creation of the final definition according to the specific requirements, such as short final definition and small number of definitions involved in the final definition.

5.2 Description of Our Method

In this section, a Parallel Class Expression Learning algorithm (ParCEL) is proposed that combines both the top-down and bottom-up approaches to handle learning problems that require long definitions. In addition, a reduction operation between the top-down and bottom-up steps is also introduced to reduce the definition length. This operation can be customised to achieve other criteria instead of short definition length such as a smaller number of partial definitions (see Definition 5.2).

The learning process is separated into three steps: specialisation, reduction and generalisation (aggregation). First, the specialisation is used to generate correct, but
not necessarily complete, class expressions (i.e. each expression must cover some positive examples and no negative ones). Then, the class expressions produced in the first step are reduced to select the best candidates for building the final definition. Finally, the best candidates are aggregated to form the final definition. In this approach, the aggregation simply creates the disjunction of the best candidates.

Before describing the approach in detail, we introduce some related concepts.

Definition 5.1 (Irrelevant concept). Given a description logic learning problem \(LP = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle\) as defined in Definition 2.16, a concept \(C\) is called irrelevant if \(\mathcal{K} \not\models C(e)\) for all \(e \in \mathcal{E}^+\), i.e. it covers none of the positive examples.

Definition 5.2 (Partial definition). Given a learning problem \(LP = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle\), a concept is called a partial definition if it is correct (i.e. covers no negative example) and not irrelevant (covers some positive examples) with respect to \(LP\). It is also called the definition of the covered positive examples.

Therefore, the first step of the approach aims to find partial definitions for the positive examples. Formally, given a learning problem \(LP = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle\), this step is to find a set of partial definitions \(\mathcal{P}\) such that \(\bigcup_{p \in \mathcal{P}} \text{cover}(\mathcal{K}, p, \mathcal{E}^+) = \mathcal{E}^+\). The finding of partial definitions uses the top-down approach, which starts from the most general concept \(\text{TOP}\). Then, the downward refinement operator proposed by Lehmann et al. [82] is adopted to specialise the concepts until all positive examples are covered by the partial definitions. Figure 5.1 demonstrates the specialisation process. The expressions are organised as a tree of expressions called the search tree. The children of a node are the refinement result of their parent node. Therefore, the learning problem is a search for partial definitions in a search tree.

The downward refinement operator used in CELOE [82] is modified to make it suitable for our approach. The top-down step of our algorithm aims to find the partial definitions instead of a complete definition. In addition, since the disjunction is used in the generalisation step to combine the partial definitions, it is not necessary to use disjunction in the top-down step. The downward refinement operator used in our approach can now be defined:

Definition 5.3 (ParCEL downward refinement operator \(\rho_{\gamma}\)). Given an expres-
5. Parallel Class Expression Learning

Figure 5.1: The specialisation process. \(\rho \) is a downward refinement operator. \(C_i \) are class expressions. The children of a node are the refinement results of that node.

\[
\rho(\text{TOP})
\]

\[
C_1 \quad C_2 \quad C_3 \quad C_4
\]

\[
\rho(C_1) \quad \rho(C_4)
\]

\[
C_{11} \quad C_{12} \quad C_{31} \quad C_{41}
\]

Specialisation \(C \), a set of concept names \(N_C \) and a set of property (role) names \(N_R \) in which \(N_{RO} \) is a set of object properties and \(N_{RD} \) is a set of data properties, then \(\rho(C) \) is defined as follows:

1. if \(C \in N_C \) (\(C \) is an atomic concept):
 \[
 \rho(C) = \{ C' | \text{\(C' \subseteq C \) and } \exists C'' \in N_C : C' \sqcap C'' \subseteq C \} \cup \{ C \cap C' | C' \in \rho(\top) \}
 \]
 (if \(C \) is an atomic concept, it is specialised by its proper sub-concepts or creating a conjunction with the refinements of the \(\text{TOP} \) concept).

2. if \(C = \top \) (\(C \) is the \(\text{TOP} \) concept):
 \[
 \rho(C) = \{ C' | C' \in N_C, \exists C'' \in N_C : C' \sqcap C'' \subseteq C \}
 \]
 \[
 \cup \{ \neg C' | C' \in N_C, \exists C'' \in N_C : C'' \subseteq C' \}
 \]
 \[
 \cup \{ \exists r. \top | r \in N_{RO} \} \cup \{ \forall r. \top | r \in N_{RO} \}
 \]
 \[
 \cup \{ \exists r.V | r \in N_{RD}, V \in \text{mgdr}(r) \} \cup \{ \forall r.V | r \in N_{RD}, V \in \text{mgdr}(r) \}
 \]
 (if \(C \) is the \(\text{TOP} \) concept, specialise it by using its proper sub-concepts or property restrictions)

3. if \(C = \neg D, D \in N_C \) (\(C \) is a negation of an atomic concept):
 \[
 \rho(C) = \{ \neg D' | D \sqsubseteq D' \text{ and } \exists D'' : D \cap D'' \subseteq D' \} \cup \{ C \cap C' | C' \in \rho(\top) \}
 \]
 (if \(C \) is a negation of a concept, specialise it by the \textit{upward} refinement of the negated concept)

4. if \(\{ C = C_1 \sqcap ... \sqcap C_n \} \) (\(C \) is a conjunctive of descriptions):
 \[
 \rho(C) = \{ C' | C' \in \rho(C_i), 1 \leq i \leq n \}
 \]
 (if \(C \) is a conjunction, it is specialised by refinements of its conjuncts)
5. Parallel Class Expression Learning

5. if \(C = \forall r.D, r \in N_{RO} : \rho_\forall(C) = \{ \forall r.D' | D' \in \rho_\forall(D) \} \)

(if \(C \) is a ‘for all’ object property restriction, it is specialised by refinements of its range)

6. if \(C = \exists r.D, r \in N_{RO} : \rho_\exists(C) = \{ \exists r.D' | D' \in \rho_\exists(D) \} \)

(this rule is for the ‘exists’ object property restriction, similar to the 5th rule.)

7. if \(C = \forall r.V, r \in N_{RD} : \rho_\forall(C) = \{ \forall r.V' | V' = \text{next}(r, V) \} \)

(if \(C \) is ‘for all’ datatype property restriction, it is specialised by using the next value in its segments (see Section 4.3))

8. if \(C = \exists r.V, r \in N_{RD} : \rho_\exists(C) = \{ \exists r.V' | V' = \text{next}(r, V) \} \)

(similar to the 7th rule, applied for ‘exists’ datatype property restriction)

where \(mgdr(r) \) is the most general data range value for the property \(r \) and \(\text{next}(r, V) \) is the next value of \(V \) in \(r \). Here, the scope of the refinement is restricted to the numeric data properties and they are defined as:

\[
mgdr(r) = \{ \geq \min(\text{AdaptSegments}(r)), \leq \max(\text{AdaptSegments}(r)) \}
\]

\[
\text{next}(r, V) = \begin{cases}
\geq u' & | & u' \in \text{AdaptSegments}(r) \text{ and } u' > u \text{ and } \not\exists u'' \in \text{AdaptSegments}(r) : u'' > u' > u, \text{ if } V \in \geq u \\
\leq u' & | & u' \in \text{AdaptSegments}(r) \text{ and } u' < u \text{ and } \not\exists u'' \in \text{AdaptSegments}(r) : u'' < u' < u, \text{ if } V \in \leq u
\end{cases}
\]

where \(\text{AdaptSegments}(r) \) is the set of segmented values for the property \(r \). A method for computation of this set is described in Section 4.3 and Algorithm 4.2.

The selection of nodes (expressions) in the search tree is controlled by the score of the nodes that are calculated by a search heuristic. In addition, parallelisation is employed to find the partial definitions in parallel. In particular, multiple branches within the tree can be traversed by multiple workers to find the partial definitions. A central reducer monitors the finding of the partial definitions of the workers until the partial definitions cover all positive examples. Then, it aggregates the partial definitions to the overall definition. The reducer also has the responsibility of removing redundant partial definitions that cover overlapping sets of positive examples. The parallel exploration of the search tree by two workers is demonstrated in Figure 5.2.
5. Parallel Class Expression Learning

Figure 5.2: Parallel exploration of the search tree by two workers. Double-lined nodes are partial definitions. Dotted lines from partial definitions to positive examples represent coverage relation, e.g. expression C_3 covers $\{p_1, p_3, p_4\}$. C_2 has not been refined as it is assumed to have lower score than other nodes.

This approach follows the general idea of the map-reduce architecture [15, 26, 36] and therefore it lends itself to parallelisation using either multiple threads that can take advantage of multi-core processors, or it may be developed for a cloud computing platform such as Amazon EC2 in the future. It also has an advantage that the resulting system shows anytime characteristic [144], which mean that: i) it can return a correct solution even if it is interrupted before a complete solution is computed, and ii) the solution is expected to improve (i.e. the completeness is higher) with increasing runtime of the system.

5.3 The Algorithms

The parallelisation architecture of the learning algorithm is inspired by the map-reduce framework. An informal illustration of the algorithm is given in Figure 5.3. It shows the interaction between the two part of the algorithm: i) the workers that receive the assigned class expression from the reducer and then produce the refinements of the class expression and find the partial definitions within the refinement result, and ii) the reducer that monitors the workers and then compacts and aggregates the partial definitions when the learning is finished.

The coordination is done using an agenda, which contains the class expression to
be refined (search tree), and ordering of the expressions within the agenda is controlled by the expansion scores computed by an expansion heuristic. The expansion score of a class expression is computed as follows:

Definition 5.4 (ParCEL class expression score). Let \(LP = (K, (E^+, E^-)) \) be a learning problem as defined in Definition 2.16, \(C \) be a class expression and \(C' \) be parent expression of \(C \). Then, score of \(C \) is computed by the following formulae:

\[
\text{score}(C) = \text{correctness}(C, LP) + \alpha \times \text{gain}(C, LP) + \beta \times \text{completeness}(C, LP) - \gamma \times \text{length}(C, LP)
\]

\((\alpha \geq 0, \beta \geq 0, \gamma \geq 0)\)

where \(\text{gain}(C, LP) = \text{accuracy}(C, LP) - \text{accuracy}(C', LP) \)

The scoring idea is adopted from [82]. However, the factors involving in the scoring function and their weights are redefined accordingly to our learning strategy. The
Parallel Class Expression Learning

5. Parallel Class Expression Learning

heuristic is mainly based on correctness of the class expression ([82] is based on accuracy). Then, a penalty is applied for long definitions to avoid infinite deep search because the refinement operator used in our learning algorithm is infinite. On the other hand, a level of bonus for accuracy gained by an expression is also applied. The intuition behind the bonus for accuracy gained by expressions is that those expressions are more likely to be close to the solution. In addition, a bonus is given for the completeness of expressions.

We chose $\alpha = 0.2$, $\beta = 0.01$, $\gamma = 0.05$. The choice of these values is based on experimental investigations in [82]. These values can be adjusted based on the characteristics of the learning problem. For instance, we can decrease the penalty level for learning problems that have been reported to have long definitions so that the search will give bias towards deep search.

Our algorithm can now be defined in two parts. The computationally heavy part is done by the multiple workers: this is the refinement and the evaluation of class expressions. In particular, the evaluation of (complex) concepts (i.e. checking whether a given example is an instance of a concept) requires an ontology reasoner. By default, Pellet [107] is used for this purpose.

The reducer creates a worker pool, which manages a number of workers, assigns new tasks (class expressions for refinement and evaluation) to the worker pool, and updates the agenda and the set of cumulative partial definitions based on the refinement result returned from workers until the completeness of the combined partial definitions is sufficient. Then the reducer tries to reduce the number of partial definitions in order to remove redundancies using a reduction function REDUCE (see Algorithm 5.3). While the reducer computes sets of concepts, these sets can be easily aggregated into a single concept using disjunction. Before introducing the complete learning problem, a function cover to compute a set of instances covered by a set of class expressions is introduced as below.

Definition 5.5 (Cover function). Given a knowledge base \mathcal{K}, a set of individuals \mathcal{E} and a set of class expressions \mathcal{X}, then function cover is defined as follows:

$$cover(\mathcal{K}, \mathcal{X}, \mathcal{E}) = \{ e \in \mathcal{E} \mid \exists C \in \mathcal{X} \text{ such that } \mathcal{K} \models C(e)\}$$
Algorithm 5.1: Reducer Algorithm

Input: a learning problem \(LP = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle \) as defined in Definition 2.16, and a noise value \(\varepsilon \in [0, 1]\) (0 means no noise).

Output: a set of partial definitions \(\mathcal{X}\) s.t. \(|\text{cover}(\mathcal{K}, \mathcal{X}, \mathcal{E}^+)| \geq (|\mathcal{E}^+| \times (1 - \varepsilon))\) and \(\text{cover}(\mathcal{K}, \mathcal{X}, \mathcal{E}^-) = \emptyset\) (empty set).

```
1 begin
2 initialise an agenda = \{\top\} /* \top: the TOP concept */
3 \textit{cum}\_pdefs = \emptyset /* cumulative partial definitions */
4 \textit{cum}\_upos = \mathcal{E}^+ /* cumulative uncovered positive examples */
5 initialise a worker\_pool
6 while |\textit{cum}\_upos| > (|\mathcal{E}^+| \times \varepsilon) do
7 execute the following tasks in parallel:
8 begin [task: submit tasks to the worker\_pool]
9 if worker\_pool is not full then
10 select the highest score expression \(C\) in agenda
11 submit new task \((C, \mathcal{E}^+, \mathcal{E}^-)\) to worker\_pool
12 begin [task: receive result from workers]
13 wait for sets of (expressions, pdefs) from workers
14 agenda = agenda \cup expressions
15 \textit{cum}\_pdefs = \textit{cum}\_pdefs \cup pdefs
16 /* remove positive examples covered by pdefs from \textit{cum}\_upos */
17 \textit{cum}\_upos = \textit{cum}\_upos \setminus \text{cover}(\mathcal{K}, pdefs, \mathcal{E}^+)
18 return \text{REDUCE}(\textit{cum}\_pdefs) /* cf. Algorithm 5.3 */
```

The complete algorithm of the Reducer is given in Algorithm 5.1.

The worker algorithm refines an expression and evaluates the refinement results. It will first check whether concepts are irrelevant. If this is the case, the concepts can be safely removed from the computation as no partial definition can be computed through specialisation. If an expression is a partial definition (i.e., correct and not irrelevant), it is added to the partial definitions set. If a concept is not irrelevant, but also not correct (i.e., if it covers some positive and some negative examples), it is added to the set of new expressions. Then, the worker returns these sets back to the reducer. The complete algorithm for workers is defined in Algorithm 5.2.
ment. This is necessary as each refinement step computes only a finite (and usually small) number of new concepts, usually constrained by a complexity constraint. For example, a concept of a given size \(N \) could first be refined to compute new concepts of a length \(N + 1 \), and later it could be revisited to compute more concepts of length \(N + 2 \), etc. This technique is used in the original DL-Learner and discussed in detail in [82]. When implementing workers, an additional redundancy check takes place to make sure that the same concept computed from different branches in the search tree is not added twice to the agenda.

Algorithm 5.2: Worker Algorithm

Input: a class expression \(C \), a set of positive examples \(E^+ \) and a set of negative examples \(E^- \)

Output: a set of partial definitions \(pdefs \subseteq \rho_\cap(C) \); a set of new expressions \(\in \rho_\cap(C) \) such that \(\forall D \in \text{expressions} : D \) is not irrelevant and \(D \notin pdefs \); in which \(\rho_\cap \) is the downward refinement operator defined in Definition 5.3.

1 begin
2 refinements = \(\rho_\cap(C) \) /* refine \(C \) */
3 expressions = \(\emptyset \) /* set of new expressions */
4 pdefs = \(\emptyset \) /* set of partial definitions */
5 foreach exp \(\in \text{refinements} \) do
6 evaluate(exp) /* calculate correctness and completeness of exp */
7 if exp is not irrelevant then
8 if exp is correct then
9 pdefs = pdefs \cup exp
10 else
11 expressions = expressions \cup exp
12 return \((\text{expressions}, pdefs)\)

For the actual reduction step, we have investigated three simple algorithms:

- GMPC (greedy minimise partial definition count)
- GMPL (greedy minimise partial definition length)
- GOLR (greedy online algorithm - first in first out)

As the names suggest, they are all greedy optimisation algorithms that are based on
5. Parallel Class Expression Learning

sorting the partial definitions. Once the partial definitions are sorted, a new solution
set (called the reduction set) is created and solutions are added to this set in descending
order. A definition is added only if it covers at least one positive example not yet covered
by any other solution in the reduction set. A formal generic reduction algorithm based
on a sort function is defined in Algorithm 5.3.

Different sort criteria have been used, resulting in the different algorithms. In
GMPC, partial definitions are sorted according to the number of positive examples
they cover, preferring definitions that cover more positive examples. If two definitions
cover the same number of positive examples, the lexicographical order of the respective
string representations is used as a tiebreaker. This is important to make the results
repeatable. Otherwise, the order that is used when iterating over definitions could
depend on internal system hash codes, which the application does not control.

In GMPL, definitions are sorted according to their expression lengths, preferring
definitions with a shorter length. If two definitions have the same expression length,
we again use the lexicographical order.

In GOLR, we use time stamps assigned to definitions when they are added to the
solutions, preferring definitions that were added earlier. While the other two heuristics
have to be run in batch mode after a complete set of definitions has been computed, this
algorithm can be employed just-in-time: the reduction can take place whenever a new
definition is found and added. This algorithm is therefore very space efficient compared
to the other two. On the other hand, how timestamps are assigned in an application
may depend on thread scheduling. This again cannot be controlled completely by the
application, causing variations in the results between runs.

5.4 Evaluation Result

To evaluate the proposed algorithms, three experiments were conducted using the eval-
uation methodology described in Chapter 3. For the experiments, we used a Linux
server with a 2 x Intel Quad-core Xeon E5440 @2.83GHz processor, 32GB memory
and the Redhat 4.1.2 (Linux version 2.6.18) operating system with a JRE 1.6.0 (64-bit)
Java Virtual Machine (JVM). The default heap size of the JVM in our experiments was
5. Parallel Class Expression Learning

Algorithm 5.3: Generic greedy reduction algorithm based on sorting

Input: a set of class expression D, a SORT function that provides a strategy for sorting a set of class expressions, and a learning problem $\langle K, (E^+, E^-) \rangle$.

Output: a set of class expressions $D' \subseteq D$ such that

$$\bigcup_{d \in D} cover(K, d, E^+) = \bigcup_{d \in D'} cover(K, d, E^+) = E^+,$$

in which function $cover$ is defined in Definition 3.1.

1. \textbf{begin}
2. \hspace{1em} $D' = \emptyset$ (empty set)
3. \hspace{1em} $cpos = \emptyset$ /* covered positive examples */
4. \hspace{1em} \textbf{while} D is not empty and $cpos \subset E^+$ \textbf{do}
5. \hspace{2em} Sort(D) /* sort class expressions in D */
6. \hspace{2em} $d = \text{poll}(D)$ /* remove and assign the top element in D to d */
7. \hspace{2em} \textbf{if} $cover(K, d, E^+) \not\subseteq cpos$ \textbf{then}
8. \hspace{2em} \hspace{1em} $D' = D' \cup d$
9. \hspace{2em} \hspace{1em} $cpos = cpos \cup cover(K, d, E^+)$
10. \hspace{1em} \textbf{return} D'

8GB. The computer used in the experiments has 8 cores. The number of workers used for ParCEL is 6 workers as we wanted to reserve 1 core for the learner (main thread) and 1 core for the system tasks.

The first experiment aims to investigate the predictive accuracy and learning time of our learning algorithm and compare the experimental results with CELOE, our selected comparison algorithm (Section 5.4.1). The second experiment observes the affect of parallelisation on the learning process (Section 5.4.2). The third experiment is to demonstrate the effect of the reduction strategy on the length of the learnt definitions (Section 5.4.3).

5.4.1 Experiment 1 - Comparison between ParCEL and CELOE

In this experiment, both CELOE and ParCEL were executed on the same system for the selected datasets and the predictive accuracy, learning time and description length produced by these algorithms on each dataset were then measured. Timeouts were also assigned for these algorithms based on the strategy described in Chapter 3. The length of definition reported is the length of the best expression learnt so far. Table 5.1 shows a summary of the experimental results. In this table, the definition length of
ParCEL is reported by the number of partial definitions and the average length of the partial definitions. Therefore, the average length of ParCEL definitions are the product of those numbers. The reduction mechanism used in our experiments is GMPC (see Section 5.2).

Table 5.1: Experiment result summary (means ± standard deviations of 10 folds). Bold values are statistically significantly better than the unformatted values in the statistical significance test at the 95% confidence level. There was no significance test for the definition length.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Learning time (s)</th>
<th>Accuracy (%)</th>
<th>(Avg. partial)* def. length</th>
<th>No. of partial def.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>Moral</td>
<td>0.15</td>
<td>0.02</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.03</td>
<td>±0.01</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Forte</td>
<td>2.60</td>
<td>0.23</td>
<td>98.86</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±1.64</td>
<td>±0.17</td>
<td>±2.27</td>
<td>±0.00</td>
</tr>
<tr>
<td>Poker-Straight</td>
<td>0.36</td>
<td>0.59</td>
<td>100.00</td>
<td>96.43</td>
</tr>
<tr>
<td></td>
<td>±0.71</td>
<td>±0.08</td>
<td>±0.00</td>
<td>±4.12</td>
</tr>
<tr>
<td>Aunt</td>
<td>30.01</td>
<td>0.26</td>
<td>96.5</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.02</td>
<td>±0.15</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Brother</td>
<td>0.19</td>
<td>0.03</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.16</td>
<td>±0.02</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Cousin</td>
<td>3.79</td>
<td>0.54</td>
<td>99.29</td>
<td>99.29</td>
</tr>
<tr>
<td></td>
<td>±0.54</td>
<td>±0.20</td>
<td>±0.00</td>
<td>±2.26</td>
</tr>
<tr>
<td>Daughter</td>
<td>0.2</td>
<td>0.03</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.02</td>
<td>±0.03</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Father</td>
<td>0.02</td>
<td>0.03</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.10</td>
<td>±0.03</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Grandson</td>
<td>0.08</td>
<td>0.19</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.07</td>
<td>±0.79</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Uncle</td>
<td>34.13</td>
<td>0.29</td>
<td>95.83</td>
<td>98.75</td>
</tr>
<tr>
<td></td>
<td>±14.94</td>
<td>±0.18</td>
<td>±6.80</td>
<td>±3.95</td>
</tr>
</tbody>
</table>

Continued on next page
Table 5.1 – continued

<table>
<thead>
<tr>
<th>Problem</th>
<th>Learning time (s)</th>
<th>Accuracy (%)</th>
<th>(Avg. partial)* def. length</th>
<th>No. of partial def.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>Carcino-Genesis</td>
<td>int.**</td>
<td>int.**</td>
<td>53.73</td>
<td>56.05</td>
</tr>
<tr>
<td>@2000s</td>
<td>±4.79</td>
<td>±4.30</td>
<td>±0.42</td>
<td>±9.52</td>
</tr>
<tr>
<td>UCA1</td>
<td>int.**</td>
<td>29.75</td>
<td>91.42</td>
<td>100.00</td>
</tr>
<tr>
<td>@2000s</td>
<td>±5.77</td>
<td>±7.01</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>MUBus-1</td>
<td>int.**</td>
<td>395.33</td>
<td>53.61</td>
<td>99.63</td>
</tr>
<tr>
<td>@600s</td>
<td>±11.82</td>
<td>±2.45</td>
<td>±0.48</td>
<td>±0.42</td>
</tr>
<tr>
<td>MUBus-2</td>
<td>int.**</td>
<td>int.**</td>
<td>14.35</td>
<td>97.91</td>
</tr>
<tr>
<td>@600s</td>
<td>±1.10</td>
<td>±0.50</td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>MUBus-3</td>
<td>int.**</td>
<td>int.**</td>
<td>11.34</td>
<td>95.85</td>
</tr>
<tr>
<td>@900s</td>
<td>±0.06</td>
<td>±0.31</td>
<td>±0.00</td>
<td>±0.13</td>
</tr>
<tr>
<td>ILPD</td>
<td>int.**</td>
<td>int.**</td>
<td>76.02</td>
<td>71.12</td>
</tr>
<tr>
<td>@120s</td>
<td>±2.61</td>
<td>±5.36</td>
<td>±1.69</td>
<td>±0.12</td>
</tr>
</tbody>
</table>

Note: *: For ParCEL. The average definition length of ParCEL is the product of this value and the number of partial definitions.

**: Interrupted

In general, there is no statistically significantly different between CELOE and ParCEL on small datasets with simple definitions such as Father and Grandson in the Family dataset. This can be attributed to the more complex runtime architecture of ParCEL that required additional overhead for thread creation and synchronisation. However, when either the data or the queries became more complex, ParCEL outperformed CELOE. This was apparent in the Family dataset: CELOE was much better at answering simple queries that require less reasoning, while ParCEL performed better on complex queries on derived relationships. There were two reasons for this: (i) ParCEL obviously better utilises the multi-core processor(s) due to its parallel architecture, and (ii) different ParCEL workers explore different branches of the search tree at the same time, while CELOE may spend longer exploring branches that in the end do not yield results, (iii) ParCEL offers a trade-off between the readability of the learning
result and the accuracy and learning time using the combination of specialisation and generalisation.

Amongst the datasets, the UCA1 dataset (see Section 3.3.3) was chosen to investigate the capability of the evaluation algorithms in learning long definitions. This is a noiseless dataset with expected definition length from 30 to more than 50 axioms. For this dataset, ParCEL outperformed CELOE on both learning time and accuracy. Although the length of the definition produced by ParCEL was longer than CELOE, it was readable and described the scenario accurately (positive examples’ definition). For example, the learnt definition produced by ParCEL for the normal showering was the disjunction of the following partial definitions:

1. activityHasDuration SOME (hasDurationValue \geq 4.5 AND hasDurationValue \leq 15.5)

2. activityHasDuration SOME (hasDurationValue \geq 15.5 AND hasDurationValue \leq 19.5) AND activityHasStarttime SOME Spring

3. activityHasDuration SOME (hasDurationValue \geq 15.5 AND \leq 19.5) AND activityHasStarttime SOME Summer

4. activityHasStarttime SOME Autumn AND activityHasDuration SOME (hasDurationValue \geq 4.5 AND hasDurationValue \leq 19.5)

while CELOE can only generate a definition with length 9 as follows:

activityHasDuration SOME (hasDurationValue \geq 4.5 AND hasDurationValue \leq 19.5)

which does not describe the scenario accurately.

One of the most difficult learning problems in the experiment was the CarcinoGenesis dataset. Learning results for this dataset reported in [45, 142] shown that CELOE gave the best accuracy in comparison with other learners with a certain learning configuration. In the experiment, neither CELOE nor ParCEL could find an accurate definition on the training dataset before they ran out of memory. CELOE ran out of memory in around 2,100 seconds and ParCEL was be able to run for approximately
15,800 seconds with the same JVM heap size. The predictive accuracy of CELOE and ParCEL on this dataset with 2000s timeout were 54.62% ± 2.71% for CELOE and 55.60% ± 9.52% respectively. The difference between these results was not statistically significant. The accuracies in Table 5.1 were obtained at 2,000 seconds when CELOE was approaching the out of memory exception. Although ParCEL was be able to run for more than 15,800 seconds, we only let it run the same amount of time as CELOE. Our experiments demonstrated that the accuracy did not improve significantly for longer runs. Note that this result was generated by the default learning configuration and it might be different for the refined learning configuration. For example, the predictive accuracy can be improved by allowing a level of noise in the training dataset. However, default learning configurations were used for all algorithms and datasets in the experiments for fair comparisons.

Another noisy dataset is ILPD. For this dataset, CELOE has better predictive accuracy than ParCEL. However, this is an unbalanced dataset with the number of positive examples being more than two times bigger than the number of negative examples: 323 positive examples and 155 negative examples. Therefore, there may be an inflated performance estimate for CELOE, which favours short definitions. The balanced accuracy is reported to work better in this case [87, 121, 134] to avoid inflated performance estimation. The balanced predictive accuracy is defined as follows:

Definition 5.6 (Balanced accuracy). Given a learning problem $LP = (\mathcal{X}, (\mathcal{E}^+, \mathcal{E}^-))$, C is an expression, then:

$$ balanced\ accuracy(C, LP) = \frac{1}{2} \times (completeness(C, LP) + correctness(C, LP)) $$

$$ = \frac{1}{2} \times \left(\frac{|\text{cover}(\mathcal{X}, C, \mathcal{E}^+)|}{|\mathcal{E}^+|} + \frac{|\mathcal{E}^- \setminus \text{cover}(\mathcal{X}, C, \mathcal{E}^-)|}{|\mathcal{E}^-|} \right) $$

Using the above calculation, the balanced predictive accuracy of CELOE was 64.62% ± 4.83 and that of ParCEL was 70.94 ± 10.87. With this result, CELOE is not statistically significantly more accurate than ParCEL on this dataset.

MUBus-1, MUBus-2 and MUBus-3 are also unbalanced datasets. However, the number of negative examples is larger than the number of positive examples in these
datasets. The balanced predictive accuracy of ParCEL and CELOE on these datasets were also computed to get a fairer comparison. Originally, predictive accuracy of ParCEL on these datasets were much higher than CELOE, e.g. 99.63% ± 0.31% in comparison with 53.61% ± 2.45% on MUBus-1 dataset, or 95.85% ± 0.31% in comparison with 11.34% ± 0.60% on MUBus-3. Using the calculation in Definition 5.6, the balanced accuracies of ParCEL and CELOE on these datasets are given in Table 5.2. The balanced predictive accuracy of ParCEL on these datasets was still statistically significantly higher than that of CELOE.

The t-test was used to check the statistical significance of the difference between learning times of the two algorithms. There were 12 datasets where both the algorithms finished (i.e. without timeout). In those 12 datasets, the t-test rejects the null hypothesis of 9 of them at the 99% confidence level and one of them at 95% confidence level. ParCEL had small learning time in all these 9 datasets. Three datasets where the learning times of CELOE and ParCEL were not statistically significantly different are Poker-Straight, Father and Grandson, which are the simple datasets with short definition lengths.

The t-test was also used to check the statistical significant difference of the predictive accuracy in the experimental results. CELOE and ParCEL achieved 100% predictive accuracy on 5 datasets. Therefore, they were not tested. In the remaining 11 datasets, CELOE was statistically significantly more accurate than ParCEL in 1 dataset, ILPD, and ParCEL was statistically significantly more accurate than CELOE in 5 datasets. However, CELOE was not statistically significantly more accurate than ParCEL on
Table 5.3: Comparison between CELOE and ParCEL learning time with one worker (means ± standard deviations of 10 folds). Bold values are statistically significantly faster than the unformatted values in the statistical significance test at the 95% confidence level. Highlights denote the changes in the t-test results in comparison with the results presented in Table 5.1.

<table>
<thead>
<tr>
<th>Problem</th>
<th>CELOE</th>
<th>ParCEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moral</td>
<td>0.15 ± 0.03</td>
<td>0.02 ± 0.03</td>
</tr>
<tr>
<td>Forte</td>
<td>2.60 ± 1.64</td>
<td>0.21 ± 0.15</td>
</tr>
<tr>
<td>Poker-Straight</td>
<td>0.36 ± 0.71</td>
<td>1.72 ± 0.27</td>
</tr>
<tr>
<td>Aunt</td>
<td>30.01 ± 0.02</td>
<td>2.27 ± 0.31</td>
</tr>
<tr>
<td>Brother</td>
<td>0.19 ± 0.16</td>
<td>0.07 ± 0.09</td>
</tr>
<tr>
<td>Cousin</td>
<td>3.79 ± 0.54</td>
<td>2.67 ± 0.32</td>
</tr>
<tr>
<td>Daughter</td>
<td>0.2 ± 0.02</td>
<td>0.08 ± 0.08</td>
</tr>
<tr>
<td>Father</td>
<td>0.02 ± 0.10</td>
<td>0.08 ± 0.09</td>
</tr>
<tr>
<td>Grandson</td>
<td>0.08 ± 0.07</td>
<td>0.50 ± 0.12</td>
</tr>
<tr>
<td>Uncle</td>
<td>34.13 ± 14.94</td>
<td>2.04 ± 0.34</td>
</tr>
<tr>
<td>UCA1</td>
<td>interrupted @2000s</td>
<td>59.18 ± 21.61</td>
</tr>
<tr>
<td>MUBus-1</td>
<td>interrupted @3000s</td>
<td>2,003.77 ± 65.84</td>
</tr>
</tbody>
</table>

Although ParCEL aims to take advantage of multi-core processors, a further experiment was also conducted to measure the learning time of ParCEL with one worker to compare with the learning time of CELOE. The experimental results are presented in Table 5.3. The learning problems where both ParCEL and CELOE timed out are not shown. There was only one change in the t-test results: CELOE was statistically significantly faster than ParCEL on the Poker-Straight dataset while it was not in the previous experiment where ParCEL ran with 6 workers (in Table 5.1). In this experiment, as ParCEL took more than 2000 seconds to learn the MUBus-1 dataset, CELOE was also reran on this dataset with 3000s timeout, but it still could not get an accurate solution.
5.4.2 Experiment 2 - Effect of parallelisation on learning speed

This experiment is to demonstrate the effect of parallelisation on the learning speed. The CarcinoGenesis and UCA1 datasets were used for this experiment. Various number of workers (1, 2, 4, 6, 8, 10 and 12) were chosen for ParCEL to assess the speed-up of this algorithm. In addition, a monitoring thread was also used to investigate the level of approximation that the learners can achieve by time. A background watcher took frequent probes from learner thread(s) and recorded them. This thread represented some overhead, so the net computation times were in fact slightly less than the values given below.

Figures 5.4 and 5.5 show the level of approximation that the learners can achieve by two algorithms on the CarcinoGenesis and UCA1 datasets respectively. In the experimental result of the CarcinoGenesis dataset (Figure 5.4), the slightly odd values on the time-axis were caused by the fact that they were taken from the timestamps when the monitoring thread returns data. CELOE computed a solution of about 55% accuracy very quickly (the first probe already returns this value), but then it stayed flat. On the other hand, ParCEL almost reached maximum accuracy, i.e., a level of completeness of more than 95%. The figure illustrates the impact of the number of threads: adding more threads can speed up the computation.

For the UCA1 dataset (Figure 5.5), CELOE could not compute an accurate result
before it has timed out (600s), whereas ParCEL succeeds. Similar to the Carcino-
Genesis experimental result, adding more threads can again speed up the computation
significantly on the UCA1 dataset.

Table 5.4 provides the speed-up computation of the ParCEL on the UCA1 dataset.
UCA1 was chosen for speed-up computation as: i) ParCEL can find solution for this
dataset, and ii) the learning time of ParCEL on this dataset is long enough to demon-
strate the effect of different number of workers. Speed-up is defined as follows:

$$\text{Speedup}(n) = \frac{T_1}{T_n}$$ \hspace{1cm} (5.1)

where \(n \) is the number of workers, \(T_1 \) is the learning time with 1 worker (i.e. sequential
execution of the algorithm) and \(T_n \) is the learning time with \(n \) workers.

Computation of the speed-up efficiency is also provided in Table 5.4 and the result
was also plotted in Figure 5.6. Speed-up efficiency is computed by the following formula:

$$\text{Efficiency}(n) = \frac{\text{Speedup}(n)}{n}$$ \hspace{1cm} (5.2)

where \(n \) is the number of workers and \(\text{Speedup}(n) \) is the speed-up computation defined
in Equation (5.1).
5. Parallel Class Expression Learning

Table 5.4: Speed-up of ParCEL on the UCA1 dataset. The learning time of CELOE is included for comparison. CELOE was timeout after 600 seconds.

<table>
<thead>
<tr>
<th>Workers</th>
<th>CELOE</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning time (s)</td>
<td>600.00</td>
<td>86.48</td>
<td>46.23</td>
<td>27.00</td>
<td>20.11</td>
<td>16.52</td>
<td>19.40</td>
<td>19.15</td>
</tr>
<tr>
<td>Speedup</td>
<td>1.00</td>
<td>1.00</td>
<td>1.87</td>
<td>3.20</td>
<td>4.30</td>
<td>5.24</td>
<td>4.46</td>
<td>4.62</td>
</tr>
<tr>
<td>Efficiency</td>
<td>1.00</td>
<td>1.00</td>
<td>0.94</td>
<td>0.80</td>
<td>0.72</td>
<td>0.65</td>
<td>0.45</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Figure 5.6: Speed-up efficiency of ParCEL on the UCA1 dataset.

5.4.3 Experiment 3 - Definition reduction strategy

This experiment is to compare the three reduction algorithms discussed earlier. Here, the length of descriptions was measured and the number of descriptions produced was counted. To compare the description length, the method defined above was used, i.e., the lengths of the virtual disjunction we could create from the set of partial definitions were measured. To keep the result concise, we used only some of datasets in this experiment that cover sufficient space of cases, i.e. simple to complex, short to long definition. A comparison between reduction strategies is given in Table 5.5.

The results shows that GMPC gave the shortest definition in most of the experiments and thus the definitions are more readable, while GORL produced the longest definitions in all the experiments. However, GMPC requires all partial definitions to be kept until the learning finishes, while GORL can perform the reduction on-the-fly while the learning algorithm is running. This may offer a trade-off between the readability of the learnt definition and the memory used by the learner as well as the learning time.
In all experiments, GMPC was used as the default reduction strategy as it produced shorter definitions than the other strategies. The GORL strategy is similar to the generalisation process in DL-FOIL.

Table 5.5: Definition length comparison between three reduction strategies (means ± standard deviations of 10 folds). The bold values are statistically significantly better than the other values; the unformatted values are statistically significantly worse than the other values; the bold and italic values are statistically significantly better than the unformatted values and statistically significantly worse than the bold values in the statistical significance test at 95% confidence.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GMPC</th>
<th>GORL</th>
<th>GMPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg. partial def. length</td>
<td>no. of partial def.</td>
<td>avg. partial def. length</td>
</tr>
<tr>
<td>Moral</td>
<td>1.52 ± 0.05</td>
<td>2.10 ± 0.32</td>
<td>2.15 ± 1.26</td>
</tr>
<tr>
<td>Forte</td>
<td>7.75 ± 0.50</td>
<td>2.00 ± 0.00</td>
<td>7.71 ± 0.43</td>
</tr>
<tr>
<td>Poker-straight</td>
<td>10.90 ± 1.31</td>
<td>1.70 ± 0.68</td>
<td>9.88 ± 1.46</td>
</tr>
<tr>
<td>Aunt</td>
<td>8.80 ± 0.48</td>
<td>2.00 ± 0.00</td>
<td>7.75 ± 0.29</td>
</tr>
<tr>
<td>Brother</td>
<td>6.00 ± 1.83</td>
<td>1.00 ± 0.00</td>
<td>5.60 ± 0.52</td>
</tr>
<tr>
<td>Cousin</td>
<td>8.50 ± 0.00</td>
<td>2.00 ± 0.00</td>
<td>8.50 ± 0.58</td>
</tr>
<tr>
<td>Daughter</td>
<td>5.25 ± 1.09</td>
<td>1.10 ± 0.32</td>
<td>7.55 ± 2.41</td>
</tr>
<tr>
<td>Father</td>
<td>5.50 ± 0.53</td>
<td>1.00 ± 0.00</td>
<td>5.20 ± 0.42</td>
</tr>
<tr>
<td>Grandson</td>
<td>7.25 ± 0.50</td>
<td>1.00 ± 0.00</td>
<td>7.53 ± 0.55</td>
</tr>
<tr>
<td>Uncle</td>
<td>8.40 ± 0.38</td>
<td>3.00 ± 0.00</td>
<td>7.92 ± 0.16</td>
</tr>
</tbody>
</table>

Continued on next page
5. Parallel Class Expression Learning

Table 5.5 – continued

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GMPC</th>
<th>GOLR</th>
<th>GMPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg. partial def. length</td>
<td>no. of partial def.</td>
<td>avg. partial def. length</td>
</tr>
<tr>
<td>UCA1</td>
<td>12.75 ± 0.00</td>
<td>4.00 ± 0.00</td>
<td>13.48 ± 0.22</td>
</tr>
</tbody>
</table>

5.5 Conclusion

Our approach to parallelising class expression logic learning showed promising results on the datasets used in the evaluation. By dividing the learning process into two separate stages, one for generating correct, but potentially incomplete, definitions and another one for aggregating the partial definition to a complete (or nearly complete) solution, the task was able to be spread over several subprocesses that can run in parallel. As a result, multi-core machines were able to be utilised and potentially also cloud computing, which makes the task of description logic learning more scalable.

Since the aggregation of partial solutions is now not integrated in the refinement procedure anymore, but runs as a separate thread concurrently to it, different strategies for aggregating the partial definitions are easily found to be tested. The ones that we have tested are greedy strategies that avoid exhaustive search for an optimal aggregate and therefore scale more easily.

In most datasets in the experiments, our learning algorithm produced promising results in terms of both accuracy and learning time. Decrease of learning time was not only caused by the parallelisation, but also by the combination of the top-down and implicitly conquer and divide learning approaches. For example, in the Uncle and Aunt datasets, the faster learning could be caused by the learning strategy: finding partial definitions represents the nature of these relations, e.g. an uncle is the brother of one’s father or mother, or the husband of one’s aunt. Obviously, finding separate simple definitions is easier than finding one complete definition.

ParCEL was only slower than CELOE in 2 datasets: Father and Grandson. How-
ever, these are very small datasets with short definitions: from 5 to 7 axioms, and the differences between learning times were not statistically significant. In addition, this is not our objective as the algorithm is expected to deal with complex learning problems.

For the noisy dataset CarcinoGenesis, ParCEL could not give a better result than CELOE, which shows that our learning currently might not deal well with noisy data and this is a future development so that the algorithm can deal with various learning problems. For another noisy dataset ILPD, ParCEL predictive accuracy was lower than CELOE. However, it was caused by the imbalance between positive and negative examples. A further investigation showed that our learning algorithm was more accurate if the balanced predictive accuracy was used.

A disadvantage of our learning approach is that it produced longer definitions than CELOE. In some circumstances, long definitions were needed to describe accurately the learning problems. However, there were also unnecessarily long definitions caused by overlap between partial definitions. Using normalisation and simplification can reduce the definition length [3, 51, 65, 86]. This has not been implemented yet and is left for future work.
5. PARALLEL CLASS EXPRESSION LEARNING
Chapter 6

Symmetric Class Expression Learning

This chapter introduces a Symmetric Class Expression Learning approach to description logic learning that aims to optimise the search space and benefit learning problems with exception patterns. Some scenarios to motivate our approach are first described, followed by the method and design of the algorithms. The chapter ends with an evaluation to demonstrate the effectiveness of our method.

6.1 Exceptions in Learning

In machine learning we often encounter datasets that can be described using simple rules and regular exception patterns describing situations where those rules do not apply. A simple example that demonstrates this scenario is the Tweety problem, a classical example used in logic programming. This example describes the flying capability of birds. Typically, all birds can fly and therefore the general rule to describe this relation is: ‘All birds can fly’. However, there is a kind of bird that cannot fly, penguin. Therefore, this rule is not applicable for penguins and thus the rule for inference of the flying capability of birds is: ‘All birds can fly except penguins’.
Another scenario is the problem of learning inhabitant’s normal behaviours in houses such as in the UCA1 dataset (see Chapter 3). In this scenario, it is often the case that a normal behaviour can consist of a general rule and then a set of exceptions. For example, a person may usually go to the library at 9AM on Mondays. However, this pattern might be broken by particular circumstances such as rain, or public holidays. Therefore, rather than ‘The person goes to the library on Mondays at 9AM’, the rule becomes ‘The person goes to the library on Mondays at 9AM as long as it is not raining and it is not a public holiday’.

The term exception is used in this sense: a small set of examples that are incorrectly covered by simple concepts that describe the vast majority of examples correctly. In the above examples, ‘All bird can fly’ and ‘The person goes to the library on Monday at 9AM’ are the general rules that describe the normal flying ability and going to library activity pattern of most of birds and going to library activities respectively. Penguins, rain and public holidays are the exceptions in these scenarios that require further constraints (rules) to make the general rules correct.

Most existing DL learning algorithms, e.g. $\mathcal{AL} - QuIn$ [85], DL-FOIL [45], CELOE [82] and ParCEL (Chapter 5), focus only on the definitions of positive examples. Learning starts from a very general concept, usually the TOP concept in DL. Then, subclasses and sub-properties (specialisation), conjunction (intersection) and the combination of conjunction and negation (subtraction) are used to remove the negative examples from the potential concepts.

This approach suits many learning problems and has been used successfully in [57, 82] and the experiments in Chapter 5. However, this strategy does not deal very well with learning problems that have exceptions to the normal patterns. It also does not use the descriptions in the search space effectively. Here CELOE and ParCEL are used as representative algorithms for two different approaches, the top-down and the combination of top-down and bottom-up approaches, to demonstrate the weakness of these approaches in dealing with exceptions in learning. Given a learning problem with a set of positive (+) and negative (−) examples, the concepts D_1, D_2, N_1, N_2 and their coverage (Figure 6.1(a)), top-down learning algorithms such as CELOE [82] find the single concept $C = (D_1 \cap \neg N_1) \cup (D_2 \cap \neg N_2)$, algorithms that combine both top-down
Figure 6.1: Exception patterns in learning. Pluses (+) denote positive examples, minus (−) denotes negative examples. The ellipses represent coverage of the corresponding class expressions.

(a) The target concept can be constituted from simple descriptions D_1, D_2, N_1 and N_2: $(D_1 \cap \neg N_1) \cup (D_2 \cap \neg N_2)$

(b) ParCEL learnt concepts: constructed from more complex descriptions $P_1 = D_1 \cap \neg N_1$ and $P_2 = D_2 \cap \neg N_2$ describe the dataset concisely

(c) CELOE learnt concept: a single complex description $C = (D_1 \cap \neg N_1) \cup (D_2 \cap \neg N_2)$ is required

and bottom-up approaches such as ParCEL and DL-FOIL find two simpler concepts $P_1 = D_1 \cap \neg N_1$ and $P_2 = D_2 \cap \neg N_2$ separately. These concepts are visualised in Figures 6.1(c) and 6.1(b), respectively.

The difference between the above approaches causes the difference in the search tree construction. While CELOE tries to construct the search tree using a downward refinement operator until it finds a node (expression) that correctly and completely defines the positive examples, ParCEL combines the search tree construction using a downward refinement operator with the checking for the possibility of a combination of several nodes in the search tree to constitute a complete and correct definition. This effects the search tree size. If all of the concepts D_1, D_2, N_1 and N_2 have the same length of 3, the length of the longest concepts generated by the first and the second approach are 16 (4 concepts of length 3 plus 4 operators) and 8 (2 concepts of length 3 plus 2 operators) respectively. If a concept is of length 16 then it must occur at depth at least 16 in the search tree. Thus, CELOE will only be able to identify this concept after searching the previous 15 levels of the search tree. However, Figure 6.1(a) suggests that there is a possibly better solution with the usage of exception definitions in the learning problem. The target concept can be computed from simple expressions D_1, D_2, N_1 and N_2 that may occur at depth 3 in the search tree.

The Tweety example is extended as a further demonstration for the benefits of
using the definitions of exceptions in learning as shown in Figure 6.2. This figure represents a search tree for the three learning strategies described above. As was discussed above, finding a complete definition (triple-line node, e.g. CELOE) requires a deeper search tree than finding several partial definitions (double-line nodes, e.g. ParCEL, DL-FOIL). Moreover, using definition of exceptions (dotted-line nodes) can produce shallower search trees.

6.2 Symmetric Class Expression Learning

6.2.1 Overview of our method

To address the problem described in Section 6.1, a Symmetric Class Expression Learning (SPaCEL) learning approach is proposed that processes the positive and negative examples symmetrically and simultaneously. Definitions of both positive and negative examples are sought separately and then they are combined to construct a complete definition. The negative example definitions are used to remove the negative examples from the concepts in the search tree to create definitions for positive examples. This learning approach can combine (potentially very short) concepts and so define relatively complex concepts based on much smaller depth traversals. This is particularly useful where removing negative examples leads to shorter definitions of positive examples.

Consequently, concepts in the search tree are used more effectively. It helps to reduce the search space of the learning problem and thus the learning time can be reduced. This approach is best suited to learning problems with exceptions as described in Section 6.1, especially when the exceptions follow a few relatively simple patterns. A simple pattern corresponds to a short, and therefore easily comprehensible, definition. Here, the pattern is used analogously to the definition in the context of description logics, i.e. a description that describes the characteristics of a set of examples. These benefits can help the learning approach to be more scalable with respect to the complexity of the learnt concept (definition length). Table 6.1 summarises the usage of positive and negative examples in learning of basic description logic learning.
Figure 6.2: Different approaches to learning the definition for the extended Tweety learning problem.

(a) The knowledge base of the learning problem.

(b) Visualisation of the knowledge base.

(c) The search tree for learning the extended Tweety example with three approaches illustrated. *Triple-line nodes* represent complete definitions (e.g., for CELOE). *Double-line nodes* represent partial definitions (e.g., for ParCEL). *Dashed-line nodes* represent definitions of some negative examples. The *ellipses* represent the combinations of an (incorrect and incomplete) expression with a definition of negative examples constitutes a partial definition. *Solid arrows* represent the paths to the definitions for positive or negative examples.
Table 6.1: Basic description learning algorithms and their usage of examples.

<table>
<thead>
<tr>
<th>Type of pattern</th>
<th>Our approach (SPaCEL)</th>
<th>YinYang</th>
<th>Others, e.g. CELOE, ParCEL, DL-FOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive patterns</td>
<td>top-down</td>
<td>top-down</td>
<td>top-down</td>
</tr>
<tr>
<td>negative patterns</td>
<td>top-down</td>
<td>bottom-up</td>
<td>–</td>
</tr>
</tbody>
</table>

6.2.2 Description of our method

In this learning approach, the positive and negative examples are used symmetrically. Definitions of both positive and negative examples are employed to learn the final definition. Basically, our learning approach consists of three main steps:

1. Find the definitions for positive and negative examples such that all the definitions, together, cover all positive or negative examples.

2. Reduce the partial definitions to remove the redundancies and select the best candidates for constructing a complete definition.

3. Aggregate the best candidates to form the complete definition using disjunction.

In the first step, partial definitions can be produced directly by specialisation using a downward refinement operator as in some other algorithms such as DL-FOIL and ParCEL. In this approach, as was described in Section 6.1, beside the partial definitions, the definitions of negative examples are also computed and used in combination with existing expressions in the search tree to create partial definitions.

Definitions of negative examples are called counter-partial definitions. They are formally defined as follows:

Definition 6.1 (Counter-partial definition). Given a learning problem $LP = (\mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-))$ as defined in Definition 2.16, a class expression C is called a counter-partial definition if $\text{cover}(\mathcal{K}, C, \mathcal{E}^-) = \emptyset$ and $\text{cover}(\mathcal{K}, C, \mathcal{E}^-) \neq \emptyset$.

The top-down step consists of the usage of a refinement operator to find the partial definitions and counter-partial definitions, and a combination operator to compute more partial definitions from the counter-partial definitions and existing expressions in the
search tree. In real scenarios, the exception may or may not exist. Therefore, the search for partial and counter-partial definitions are performed separately and simultaneously. This helps our approach not to be too specific to the learning problems that contain exceptions.

The combination acts as an extra step to deal with the exceptions with the support of counter-partial definitions. In this approach, only one downward refinement operator is used in the specialisation step to generate both partial and counter-partial definitions. The combination strategy is essentially the checking for the possibility of creating new partial definitions from an expression and counter-partial definitions using conjunction and negation. It can be defined as follows:

Definition 6.2 (Combinability). Given a learning problem \(LP = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle \) as defined in Definition 2.16; a set of counter-partial definitions \(\mathcal{Q} \), and an expression \(C \) such that \(\text{cover}(\mathcal{K}, C, \mathcal{E}^+) \neq \emptyset \) and \(\text{cover}(\mathcal{K}, C, \mathcal{E}^-) \neq \emptyset \), then \(C \) is said to be combinable with \(\mathcal{Q} \) iff:

\[
\text{cover}(\mathcal{K}, C, \mathcal{E}^-) \subseteq \text{cover}(\mathcal{K}, \mathcal{Q}, \mathcal{E}^-)
\]

that means \(C \) can be “corrected” by \(\mathcal{Q} \).

The above combination strategy also helps to avoid the use of negation in the refinement without any loss of generality. In this approach, the refinement operator defined in Definition 5.3 is redefined by removing the negation from refinement rules. It is formally defined below.

Definition 6.3 (SPaCEL refinement operator \(\rho_\neg \)). Given an expression \(C \), a set of concept names \(N_C \) and a set of property (role) names \(N_R \) in which \(N_{RO} \) is a set of object properties, \(N_{RD} \) is a set of data properties and the refinement operator \(\rho_\neg \) defined in Definition 5.3, the SPaCEL refinement operator \(\rho_\neg \) is defined as follows:

1. if \(C = \top \) (\(C \) is the TOP concept):

\[
\rho_\neg(C) = \{ C' \mid C' \in N_C, \exists C'' \in N_C : C' \sqsubseteq C'' \sqsubseteq C \}
\]

\[
\cup \{ \exists r. \top \mid r \in N_{RO} \} \cup \{ \forall r. \top \mid r \in N_{RO} \}
\]

\[
\cup \{ \exists r.V \mid r \in N_{RD}, V \in \text{mgdr}(r) \} \cup \{ \forall r.V \mid r \in N_{RD}, V \in \text{mgdr}(r) \}
\]

(negation is removed from the refinement in comparison with \(\rho_\neg \))

2. otherwise, \(\rho_\neg(C) = \rho_\neg(C) \)
It is important to realise that the first rule of ρ_\top is corresponding to the second rule of ρ_\lor with the generation of negation removed. Therefore, the third rule of ρ_\neg_\top, which defines the refinement of negated expressions, is also implicitly removed.

The top-down step finishes when either the partial definitions cover all positive examples or the counter-partial definitions cover all negative examples. It can now be formally defined below.

Definition 6.4 (SPaCEL top-down learning). Given a learning problem $LP = \langle \mathcal{X}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$, the top-down step in this approach aims to find a set of partial definitions \mathcal{P}, a set of counter-partial definitions \mathcal{Q} and a set of expressions \mathcal{X} such that:

$$\text{cover}(\mathcal{X}, \mathcal{P}, \mathcal{E}^+) \cup \text{cover}(\mathcal{X}, \mathcal{X}, \mathcal{E}^+) = \mathcal{E}^+,$$

such that $\forall C \in \mathcal{X} \mid C$ is combinable with \mathcal{Q}, or

$$\text{cover}(\mathcal{X}, \mathcal{Q}, \mathcal{E}^-) = \mathcal{E}^-.$$

Note that the above definition of SPaCEL top-down learning does not take the noise into consideration. In the real learning problems, there may be noise in the training data and thus a certain noise percentage may be allowed. In that case, given an allowed noise value $\epsilon \in [0, 1]$ (0: no noise), \mathcal{P} and \mathcal{X} only need to cover $|\mathcal{E}^+| \times (1 - \epsilon)$ positive examples. Moreover, there may be some other constraints on the termination of the learning such as the maximal learning time (called timeout).

Figure 6.3 demonstrates the top-down step in our approach that uses the refinement operator ρ_\top to produce both partial and counter-partial definitions. In this examples, the combination of the counter-partial definition C_2 and the expression C_{12} creates a partial definition $C_{12} \cap \neg C_2$.

As in the ParCEL algorithm, the selection of expressions in the search tree for refinement is controlled by node scores that are computed by a learning heuristic, which was defined in Definition 5.4. The learning is also optimised by removing irrelevant expressions from the search tree. Irrelevant expressions are expressions, from which no partial or counter-partial definition can be produced. Note that, this definition is different from the definition of irrelevant expressions in ParCEL (see Definition 5.1).
6. Symmetric Class Expression Learning

Figure 6.3: The top-down learning step aims to find both partial definitions and counter-partial definitions. Double-line nodes are partial definitions, dashed-line nodes are counter-partial definitions. ρ_\cap is the refinement operator defined in Definition 6.3. Connections from nodes to examples represent the coverage of the expressions.

The irrelevant expression in SPaCEL is defined as follows:

Definition 6.5 (Irrelevant class expression in SPaCEL). Given a learning problem $LP = \langle X, (E^+, E^-) \rangle$, a concept C is irrelevant if $\text{cover}(X, C, E^+) = \emptyset$ and $\text{cover}(X, C, E^-) = \emptyset$, i.e. it covers no positive and no negative example. ■

In addition, it makes sense to use the parallelisation in this approach: several expressions (branches) in the search tree can be processed (refined and evaluated) in parallel using multiple workers to find the partial definitions. A central reducer controls the finding of partial and counter-partial definitions of the workers until the condition described in Definition 6.4 is met. Then, it performs the reduction and aggregation steps to create a final definition. The parallel exploration of the search tree by multiple workers is illustrated in Figure 6.4.

The main learning algorithm is implemented on the reducer side. In the design, the reducer performs not only the reduction, as its name suggests, but also most of the tasks in Algorithm 6.1. Therefore, the terms reducer and learner are used interchangeably.

6.2.3 The algorithm

The learning algorithm is essentially a top-down learning approach combined with a reduction task. The top-down step is used to solve the sub-problems of the given learning problem and the reduction is used to reduce and combine the sub-solutions.
into an overall solution. The top-down step is performed by the downward refinement operator and a combination strategy while the reduction step currently uses a set coverage algorithm to choose the best partial definitions and disjunction to form the overall solution.

Algorithm 6.1 describes the main part of our learning algorithm, the *reducer*. It chooses the best concepts (i.e. highest score, based on the search heuristic described in Definition 5.4) from the search tree and uses the *specialise* algorithm (see Algorithm 6.2) for refinement and evaluation until the completeness of the partial definitions is sufficient. Concepts are scored using an expansion heuristic that is mainly based on the correctness of the concepts. In addition, a penalty is applied for complexity of the concepts (short expressions are preferred), and bonuses for accuracy and accuracy gained (see Definition 5.4).

The sets of new descriptions, partial definitions and counter-partial definitions returned from the *specialisation algorithm* are used to update the corresponding data structures and the set of covered positive and negative examples in the learning algorithm. In addition, the new descriptions are combined with the counter-partial definitions to create new partial definitions if possible. It is important to note that the concepts that have been refined can be scheduled for further refinements.

The refinement operator in Definition 6.3 is infinite, but in practice each refinement step is finite, since it is only allowed to generate descriptions at a given length. For example, a concept of length \(N\) will first be refined to concepts of length \((N + 1)\),...
6. Symmetric Class Expression Learning

Algorithm 6.1: Symmetric Class Expression Learning Algorithm—SPaCEL(\(\mathcal{K}, \mathcal{E}^+, \mathcal{E}^-, \varepsilon\))

Input: background knowledge \(\mathcal{K}\), a set of positive \(\mathcal{E}^+\) and negative \(\mathcal{E}^-\) examples, and a noise value \(\varepsilon \in [0, 1]\) (0 means no noise)

Output: a definition \(C\) such that \(|\text{cover}(\mathcal{K}, C, \mathcal{E}^+)| \geq (|\mathcal{E}^+| \times (1 - \varepsilon))\) and \(\text{cover}(\mathcal{K}, C, \mathcal{E}^-) = \emptyset\)

begin
initialise the search tree \(ST = \{\top\}\) /* \(\top\): TOP concept in DL */
\(\text{cum_pdefs} = \emptyset\) /* set of cumulative partial definitions */
\(\text{cum_cpdefs} = \emptyset\) /* set of cumulative counter-partial definitions */
\(\text{cum_cp} = \emptyset\) /* set of cumulative covered positive examples */
\(\text{cum_cn} = \emptyset\) /* set of cumulative covered negative examples */

while \(|\text{cum_cp}| < (|\mathcal{E}^+| \times (1 - \varepsilon))\) and \(|\text{cum_cn}| < |\mathcal{E}^-|\) do
get the best concept \(B\) and remove it from \(ST\) /* see text */
\((\text{pdefs}, \text{cpdefs}, \text{descriptions}) = \text{Specialise}(B, \mathcal{E}^+, \mathcal{E}^-)\) /* cf.Alg.6.2 */
\(\text{cum_pdefs} = \text{cum_pdefs} \cup \text{pdefs}\)
\(\text{cum_cpdefs} = \text{cum_cpdefs} \cup \text{cpdefs}\)
\(\text{cum_cp} = \text{cum_cp} \cup \{e \mid e \in \text{cover}(\mathcal{K}, P, \mathcal{E}^+), P \in \text{pdefs}\}\)
\(\text{cum_cn} = \text{cum_cn} \cup \{e \mid e \in \text{cover}(\mathcal{K}, P, \mathcal{E}^-), P \in \text{cpdefs}\}\)

foreach \(D \in \text{descriptions}\) do
/* if \(D\) can be ’corrected’ by existing \(\text{cpdefs}\) */
if \(\left(\text{cover}(\mathcal{K}, D, \mathcal{E}^-) \setminus \text{cum_cn}\right) = \emptyset\) then
/* combine \(D\) with \(\text{cpdefs}\) if possible */
\(\text{candidates} = \text{Combine}(D, \text{cum_cpdefs}, \mathcal{E}^-)\) /* cf.Alg.6.3 */
\(\text{new_pdef} = D \sqcap \neg \left(\bigcup A \in \text{candidates}(A)\right)\) /* new partial def. */
\(\text{cum_pdefs} = \text{cum_pdefs} \cup \text{new_pdef}\)
\(\text{cum_cp} = \text{cum_cp} \cup \text{cover}(\mathcal{K}, D, \mathcal{E}^+)\)
else
\(\text{ST} = \text{ST} \cup \{D\}\)

/* explore more partial definitions to meet the completeness */
if \(|\text{cum_cp}| < (|\mathcal{E}^+| \times (1 - \varepsilon))\) then
foreach \(D \in \text{ST}\) do
\(\text{candidates} = \text{Combine}(D, \text{cum_cpdefs}, \mathcal{E}^-)\)
\(\text{new_pdef} = D \sqcap \neg \left(\bigcup A \in \text{candidates}(A)\right)\)
\(\text{cum_pdefs} = \text{cum_pdefs} \cup \text{new_pdef}\)

return \(\text{Reduce}(\text{cum_pdefs})\) /* for description, see text */
end
and later, when it is revisited, to concepts of length \((N + 2)\), etc. For the sake of simplicity, we use \(\rho_{\gamma}\) in the algorithms to refer to one refinement step rather than the entire refinement. This technique is used in DL-Learner and discussed in detail in [82].

When the algorithm reaches a sufficient degree of completeness, it stops and reduces the partial definitions to remove the redundancies using the \texttt{Reduce} function, which is essentially a set coverage algorithm: given a set of partial definitions \(\mathcal{X}\) and a set of positive examples \(\mathcal{E}^+\), it finds a subset \(\mathcal{X}' \subseteq \mathcal{X}\) such that \(\mathcal{E}^+ \subseteq \bigcup_{D \in \mathcal{X}'} (\text{cover}(\mathcal{X}, D, \mathcal{E}^+))\). The solution returned by the algorithm is a disjunction of the reduced partial definitions. However, returning the result as a set of partial definitions instead may be useful in some contexts, e.g. to make the result more readable. The reduction algorithm may be tailored to meet particular requirements such as the shortest definition or the least number of partial definitions. Note that the combination of descriptions and counter-partial definitions in Algorithm 6.1 is one of the combination strategies implemented in our evaluation. This strategy is called an \textit{on-the-fly} combination strategy; it gave the best performance in our evaluation (see Section 6.3.1). A discussion of the combination strategies is given in Section 6.2.4.

The \textit{specialisation} is described in Algorithm 6.2. The specialisation performs the refinement and evaluation of the concepts assigned by the learning algorithm. Firstly, it refines the given concept \(\rho_{\gamma}(C)\) and evaluates the result \((\text{cover}(\mathcal{X}, C, \mathcal{E}^+)\) and \(\text{cover}(\mathcal{X}, C, \mathcal{E}^-))\). Irrelevant concepts are removed from the result as no partial definition or counter-partial definition can be computed though the irrelevant concept specification. Then, the specialisation finds new partial definitions, counter-partial definitions and descriptions from the refinements. Practically, redundancies are often checked before evaluating descriptions to avoid redundant evaluations and duplicated descriptions in the search tree as a description can be generated from different branches.

Algorithm 6.3 describes the \textit{combination algorithm} that is used to combine the descriptions and counter-partial definitions to construct new partial definitions. This is basically a set coverage algorithm. A smallest set of counter-partial definitions that together cover all negative examples covered by the given expression will be returned. This set of counter-partial definitions is then used to correct the given expression.
Algorithm 6.2: Specialisation algorithm – SPECIALISE($C, \mathcal{X}, \mathcal{E}^+, \mathcal{E}^-$)

Input: a description C and a learning problem $LP = (\mathcal{X}, (\mathcal{E}^+, \mathcal{E}^-))$.

Output: a triple consisting of a set of partial definitions $pdefs \subseteq \rho_\top(C)$; a set of counter-partial definitions $cpdefs \subseteq \rho_\top(C)$; and a set of new descriptions $descriptions \subseteq \rho_\top(C)$ such that
\[
\forall D \in descriptions : \text{D is not irrelevant and } D \notin (pdefs \cup cpdefs),
\]
in which ρ_\top is the refinement operator defined in Definition 6.3.

1 begin
2 $pdefs = \{ D \in \rho_\top(C) \mid \text{cover}(\mathcal{X}, D, \mathcal{E}^+) \neq \emptyset \land \text{cover}(\mathcal{X}, D, \mathcal{E}^-) = \emptyset \}$
3 $cpdefs = \{ D \in \rho_\top(C) \mid \text{cover}(\mathcal{X}, D, \mathcal{E}^+) = \emptyset \land \text{cover}(\mathcal{X}, D, \mathcal{E}^-) \neq \emptyset \}$
4 $descriptions = \{ D \in \rho_\top(C) \mid \text{cover}(\mathcal{X}, D, \mathcal{E}^+) \neq \emptyset \land \text{cover}(\mathcal{X}, D, \mathcal{E}^-) \neq \emptyset \}$
5 return $(pdefs, cpdefs, descriptions)$

Algorithm 6.3: Combination algorithm – COMBINE($C, cpdefs, \mathcal{E}^-$)

Input: a description C, a set of counter-partial definitions $cpdefs$ and a set of negative examples \mathcal{E}^-

Output: a set $candidates \subseteq cpdefs$ such that
\[
\text{cover}(\mathcal{X}, C, \mathcal{E}^-) \subseteq \bigcup_{P \in candidates} (\text{cover}(\mathcal{X}, P, \mathcal{E}^-))
\]

1 begin
2 $candidates = \emptyset$ /* candidate counter-partial definitions */
3 $cn_c = \text{cover}(\mathcal{X}, C, \mathcal{E}^-)$ /* negative examples covered by C */
4 while $cpdefs \neq \emptyset$ and $cn_c \neq \emptyset$ do
5 \hspace{1em} sort $cpdefs$ by descending coverage of negative examples
6 \hspace{1em} get and remove the top counter-partial definition D from $cpdefs$
7 \hspace{1em} if $(\text{cover}(\mathcal{X}, D, \mathcal{E}^-) \cap cn_c) \neq \emptyset$ then
8 \hspace{2em} $candidates = candidates \cup D$
9 \hspace{2em} $cn_c = cn_c \setminus \text{cover}(\mathcal{X}, D, \mathcal{E}^-)$
10 \hspace{1em} if $cn_c \neq \emptyset$ then
11 \hspace{2em} return \emptyset /* return an empty set */
12 \hspace{1em} else
13 \hspace{2em} return $candidates$
14
6.2.4 Counter-partial definitions combination strategies

Counter-partial definitions are combined with expressions in the search tree to create new partial definitions if possible. A combination of an expression C with a set of counter-partial definitions \mathcal{X} has the form of $C \sqcap \neg(\sqcup_{D \in \mathcal{X}} D)$. The combinability of an expression with respect to a set of counter-partial definitions is defined in Definition 6.2. The combination may be performed at several stages of the learning algorithm. Each of them gives a different effect on the learning result. Here, three combination strategies are proposed. The evaluation of these strategies is discussed in Section 6.3.1.

Lazy combination

In this strategy, the learner maintains sets of partial definitions and counter-partial definitions separately. When all positive or negative examples are covered (or other termination conditions are reached if any such as timeout, number of examples covered, etc.), the learner will combine descriptions from the search tree and the set of counter-partial definitions.

Since the combination is performed after the learning stops, this strategy may provide a better combination, i.e. it may have better choices of counter-partial definitions for the combination. This advantage may result in shorter partial definitions. However, for the learning problems in which both positive and negative examples need negation to be completely defined, the algorithm may not be able to find the definition because the refinement operator designed for this algorithm does not use negation. If this is the case and the timeout is set, the combination will be made when the timeout is reached to find the definition. Otherwise, it will not terminate.

For example, the learning problem shown in Figure 6.2 may cause this strategy to run out of memory without finding an accurate concept if timeout or noise is not set. To cover all positive examples, we need a class expression with negation as follows:

$$\text{Bat} \sqcap (\text{Bird} \sqcap \neg\text{Penguin})$$

and to completely cover all negative examples, the following class expression is needed:

$$\text{Penguin} \sqcup (\text{Mammal} \sqcap \neg\text{Bat})$$
To produce the definition for positive examples, the counter-partial definition \texttt{Penguin} is needed to combine with the expression \texttt{Bird}. This expression cannot be produced directly by the refinement due to the removal of negation from the refinement operator. However, in this strategy, the combination is only called when all positive examples or negative examples are covered. Therefore, in this case, the combination can only be called when all negative examples are covered. Unfortunately, this condition is never met as the expression \texttt{¬Bat} cannot be produced due to the removal of negation from the refinement operator.

\textbf{On-the-fly combination}

This strategy is used in Algorithm 6.1. In this strategy, when a new description is generated from the refinement or an existing description is revisited (e.g. for refinement), it is combined with the existing counter-partial definitions if possible. Practically, the combination is performed on the worker side as new descriptions are always generated by workers. This strategy can avoid the termination problem discussed in the \textit{lazy combination} strategy because negation is used in the combination which is performed for every new description. The evaluation suggests that this strategy, overall, gives the best performance and the smallest search tree. However, the final result should be optimised, as a counter-partial definition can be combined with many expressions and thus the final definition is unnecessary long.

For example, in the learning problem described in Figure 6.2, when description \texttt{Bird} is generated, there is no counter-partial definition to combine with. However, when it is revisited for refinement, it will be combined with the new counter-partial definition \texttt{Penguin} to produce a partial definition \texttt{Bird} \texttt{⊓} \texttt{¬Penguin}. Therefore, it can avoid the termination problem that occurs when the lazy combination strategy is used.

\textbf{Delayed combination}

This is an intermediate solution between the above strategies that checks the possibility of combinations when a new description is generated. However, even if the combination is possible, only the set of cumulative covered positive examples is updated (by removing from this set the elements that are covered by the new description), while the new
description is put into a potential partial definitions set. The combination is executed when the termination condition is reached, i.e. either all positive examples or all negative examples are covered, or the timeout is approached.

This strategy may help to prevent the problem of the lazy combination strategy. In addition, it may return better combinations in comparison with the on-the-fly strategy because it inherits the advantage of the lazy combination strategy. However, as the combinable descriptions in this strategy are not combined until the learning terminates, they can be refined and therefore the search tree is likely to be bigger than that of the on-the-fly strategy.

6.3 Evaluation

The Symmetric Class Expression Learning approach was evaluated by four experiments using the 10-fold cross-validation method and the datasets described in Chapter 3. The first experiment was to investigate the effect of combination strategies on the search tree size and predictive accuracy. The results from this experiment was the basic to select the default combination strategy used with SPaCEL in further experiments. The second experiment was to measure the search tree size generated by three algorithms on each learning problem. In the third experiment, the predictive accuracy and learning time of the three algorithms was computed. Finally, the length of the learnt definitions produced by the three algorithms were examined in the fourth experiment.

The results of each experiment (except the first experiment, which uses only some learning problems) in this chapter are divided into three groups. The first group includes the results of the 7 low to medium complexity learning problems. All learning algorithms can find an accurate definition on the training set (i.e. without timeout) of these datasets. The second group includes the results of 3 high to very high complexity learning problems for which all learning algorithms can find accurate definitions of the training set (i.e. without timeout). Finally, the third group contains the 6 remaining learning problems, i.e. the learning problems for which at least one of the learning algorithms could not find an accurate definition on the training set, i.e. a timeout occurred. The reason for treating problems in this group separately is that some metrics
cannot be compared if the learning algorithm could not find the solution.

6.3.1 Experiment 1 - Combination strategies comparison

As was discussed in Section 6.2.4, three combination strategies were implemented: lazy, delayed and on-the-fly. Table 6.2 shows the experimental results of the strategies.

Table 6.2: Combination strategies experimental result (means ± standard deviations of 10 folds).

<table>
<thead>
<tr>
<th>Metric</th>
<th>Lazy</th>
<th>Delayed</th>
<th>On-the-fly</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning time (s)</td>
<td>1.01 ± 0.33</td>
<td>0.54 ± 0.23</td>
<td>0.72 ± 0.17</td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>100.00 ± 0</td>
<td>100.00 ± 0</td>
<td>100.00 ± 0</td>
</tr>
<tr>
<td>Definition length</td>
<td>20.20 ± 0.63</td>
<td>58.60 ± 21.31</td>
<td>66.60 ± 1.90</td>
</tr>
<tr>
<td>No of descriptions</td>
<td>11,137.30 ± 2,711.99</td>
<td>5,065.30 ± 1,867.64</td>
<td>6,998.70 ± 859.74</td>
</tr>
<tr>
<td>No of pdef. 1</td>
<td>1.00 ± 0.00</td>
<td>3.40 ± 1.27</td>
<td>4.00 ± 0.00</td>
</tr>
<tr>
<td>Avg. pdef. length</td>
<td>20.20 ± 0.63</td>
<td>17.65 ± 2.02</td>
<td>16.65 ± 0.47</td>
</tr>
<tr>
<td>MUBus1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning time (s)</td>
<td>47.59 ± 17.66</td>
<td>23.02 ± 28.33</td>
<td>7.52 ± 2.37</td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>100.00 ± 0</td>
<td>99.81 ± 0.36</td>
<td>99.74 ± 0.36</td>
</tr>
<tr>
<td>Definition length</td>
<td>297.30 ± 22.67</td>
<td>383.00 ± 170.47</td>
<td>393.30 ± 73.51</td>
</tr>
<tr>
<td>No of descriptions</td>
<td>39,096.80 ± 12,210.86</td>
<td>14,463.90 ± 20,232.28</td>
<td>2,130.10 ± 1,179.48</td>
</tr>
<tr>
<td>No of pdef.</td>
<td>1.00 ± 0.00</td>
<td>4.20 ± 1.69</td>
<td>6.30 ± 1.25</td>
</tr>
<tr>
<td>Avg. pdef. length</td>
<td>297.30 ± 22.67</td>
<td>145.32 ± 155.66</td>
<td>63.40 ± 10.54</td>
</tr>
<tr>
<td>MUBus2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning time (s)</td>
<td>int.3 @600s</td>
<td>90.97 ± 73.43</td>
<td>48.46 ± 16.56</td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>99.89 ± 0.15</td>
<td>99.84 ± 0.20</td>
<td>99.78 ± 0.23</td>
</tr>
<tr>
<td>Definition length</td>
<td>1,419.20 ± 328.20</td>
<td>1,372.30 ± 539.13</td>
<td>1,179.50 ± 209.80</td>
</tr>
<tr>
<td>No of descriptions</td>
<td>187,279.60 ± 2,584.59</td>
<td>23,843.40 ± 21,430.22</td>
<td>8,575.10 ± 4,184.27</td>
</tr>
<tr>
<td>No of pdef.</td>
<td>8.00 ± 0.00</td>
<td>8.60 ± 0.10</td>
<td>12.00 ± 2.79</td>
</tr>
<tr>
<td>Avg. pdef. length</td>
<td>177.40 ± 41.03</td>
<td>161.52 ± 67.40</td>
<td>101.29 ± 45.37</td>
</tr>
</tbody>
</table>

1Partial definitions
2Average
3Interrupted

Continued on next page
The experimental results show that these strategies achieved similar accuracy. However, the learning time and search space size were very different. As discussed in Section 6.2.4, the lazy combination strategy did not terminate in some cases. The experimental result of the MUBus-2 dataset shows that the learner was interrupted (by timeout) after 10 minutes. However, by using the combination algorithm after the algorithm was interrupted, a definition with 100% accuracy on the training dataset was produced. This means the solution existed implicitly, but the learner was not able to compute it. To make sure that the learner was not terminated too early, the experiment was rerun for 3 hours. However, the learner was still not able to find the solution on the training dataset. This demonstrates the disadvantage of this strategy.

In addition, as the lazy combination strategy performed the combination at the end, only when all positive or negative examples are covered, its learning times were always longer than other strategies. However, this strategy might produce more concise solutions than the on-the-fly strategy. In contrast, the on-the-fly and delayed strategies might miss some better combinations due to their early combining. For example, look at the following partial definitions of the UCA1 dataset produced by the on-the-fly strategy:

1. activityHasDuration SOME hasDurationValue \leq 15.5 AND
 (NOT (Activity AND activityHasDuration SOME hasDurationValue \leq 4.5))

2. activityHasStarttime SOME Autumn AND
 (NOT (Activity AND activityHasDuration SOME hasDurationValue \leq 4.5)) AND
 (NOT (Activity AND activityHasDuration SOME hasDurationValue \geq 19.5))
6. Symmetric Class Expression Learning

3. activityHasStarttime SOME Summer AND
 (NOT (Activity AND activityHasDuration SOME hasDurationValue ≤ 4.5)) AND
 (NOT (Activity AND activityHasDuration SOME hasDurationValue ≥ 19.5))

4. activityHasDuration SOME hasDurationValue ≥ 4.5 AND
 activityHasStarttime SOME Spring AND
 (NOT (Activity AND activityHasDuration SOME hasDurationValue ≥ 19.5))

and by the delayed strategy:

activityHasDuration SOME (hasDurationValue ≥ 4.5 AND
 hasDurationValue ≤ 19.5) AND
 (NOT (activityHasStarttime SOME Winter AND activityHasDuration SOME
 hasDurationValue ≥ 15.5))

The partial definitions produced by the on-the-fly strategy consist of a larger number
of short expressions and counter-partial definitions (length is from 5 to 7) while partial
definitions produced by the lazy strategy consisted of a small number of long counter-
partial definitions (length is 9). Therefore, the final definitions produced by the on-the-
fly strategy were usually longer than the definitions produced by the delayed strategy.
However, one of the weak points of the lazy strategy is that it might not achieve an
accurate solution even if a solution exists. The different combination strategies all have
different trade-offs between definition length and learning time.

The on-the-fly strategy produced promising results. It dominated other strategies
in most aspects, especially the learning time and the number of descriptions (search
space). There was only one exception in the dataset MUBus-1, where this strategy
produced a longer definition than others. The number of partial definitions involved
in the solution can help to explain the difference: there were common parts (counter-
partial definitions) amongst the partial definitions.

Finally, the delayed combination strategy was better than the lazy evaluation strat-
 egy, but worse than the on-the-fly strategy, on the learning time and the number of
descriptions. This strategy was expected to get the advantages of both on-the-fly and
lazy strategies to produce shorter definitions than the lazy strategy and use smaller
search spaces than the on-the-fly strategy. However, the experimental results showed
that this idea did not help much. The definitions produced by the delayed strategy were not always shorter than the definitions produced by the lazy strategy while the search spaces were always bigger. Therefore, the on-the-fly was chosen as the major combination strategy for the SPaCEL algorithm to compare with other learners in the evaluation.

6.3.2 Experiment 2 - Search tree size comparison

The search tree size reported in this experiment is the total number of all descriptions that are inserted into the search tree, including the irrelevant descriptions (the partial and counter-partial definitions which are removed later by the algorithm). If an algorithm can find the solution, the result reported is the search tree size after the learning algorithm has terminated. Otherwise, it is the search tree size at the moment when the timeout has occurred. In this case, the comparison should be treated with caution as it depends upon the timeout assigned for the learning algorithm.

The search tree size generated by the three algorithms on the evaluation datasets is shown in Table 6.3. In this experiment, only learning problems on which at least one of the algorithms found an accurate definition on the training set were considered. The comparison cannot be made if all three learning algorithms time out. Therefore, the results for the CarcinoGenesis and ILDP learning problems are not reported.

In the first group of learning problems, SPaCEL had smaller search trees than both CELOE and ParCEL for 4/7 learning problems and smaller than one of them in the remaining 3 learning problems. However, this group might not reflect well the reduction of the search tree size by our approach as it contains low to medium complexity problems. The definitions of these learning problems were short and therefore the search tree sizes were usually small. Consequently, they were sensitive to the parallelisation. In detail, as the search tree in our algorithm is expanded by multiple workers, the solution may be found by one of the workers while the other workers are still processing the search tree. Consequently, the search tree may be expanded redundantly and thus the reported search tree sizes might be unnecessarily larger than the minimal search tree size required to learn the problem.

In the second and the third groups, SPaCEL always produced the smallest search
Table 6.3: The experimental result on the search tree size (means ± standard deviations of 10 folds). The underlined values are the search tree size after the timeout has occurred. Result of the statistical significance t-test (at the 95% confidence level) is also included: the bold values are statistically significantly higher than other values; the unformatted values are statistically significantly lower than other values; the bold and italic values are statistically significantly lower than the bold values, and statistically significantly higher than the unformatted values.

<table>
<thead>
<tr>
<th>Problem</th>
<th>CELOE</th>
<th>ParCEL</th>
<th>SPaCEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low to medium complexity learning problems without timeout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moral</td>
<td>540.5 ± 16.9</td>
<td>33.3 ± 11.0</td>
<td>223.4 ± 364.2</td>
</tr>
<tr>
<td>Forte</td>
<td>64,707.9 ± 33,641.9</td>
<td>859.5 ± 251.2</td>
<td>174.1 ± 108.2</td>
</tr>
<tr>
<td>PokerStraight</td>
<td>1,090.8 ± 12.5</td>
<td>14,204.8 ± 2,847</td>
<td>2,105.0 ± 1,217.7</td>
</tr>
<tr>
<td>Brother</td>
<td>37.0 ± 0</td>
<td>104.4 ± 92.6</td>
<td>18.4 ± 9.1</td>
</tr>
<tr>
<td>Daughter</td>
<td>21.0 ± 0</td>
<td>111.3 ± 110.2</td>
<td>18.1 ± 5.9</td>
</tr>
<tr>
<td>Father</td>
<td>29.0 ± 0</td>
<td>82.9 ± 63.8</td>
<td>23.0 ± 7.0</td>
</tr>
<tr>
<td>Grandson</td>
<td>80.5 ± 3.0</td>
<td>1,867.5 ± 1,519.3</td>
<td>125.3 ± 25.3</td>
</tr>
<tr>
<td>High to very high complexity learning problems without timeout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aunt</td>
<td>85,883.8 ± 67,328.8</td>
<td>7,023.4 ± 2,912.1</td>
<td>2,127.8 ± 1,160.9</td>
</tr>
<tr>
<td>Cousin</td>
<td>20,331.6 ± 233.6</td>
<td>35,484.4 ± 39,055.4</td>
<td>6,761.1 ± 722.9</td>
</tr>
<tr>
<td>Uncle</td>
<td>541,081.8 ± 0</td>
<td>6,332.5 ± 3,247.9</td>
<td>2,400.0 ± 551.2</td>
</tr>
<tr>
<td>Learning problems with at least 1 timeout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCA1</td>
<td>1,465,263.2 ± 11,515.5</td>
<td>28,676.0 ± 14,935.2</td>
<td>6,998.70 ± 859.7</td>
</tr>
<tr>
<td>MUBus-1</td>
<td>161,832.2 ± 3,054.5</td>
<td>643,401.5 ± 139,303</td>
<td>2,130.1 ± 1,179.5</td>
</tr>
<tr>
<td>MUBus-2</td>
<td>79,959.2 ± 118.5</td>
<td>879,866.1 ± 34,000.4</td>
<td>8,575.1 ± 4,184.3</td>
</tr>
<tr>
<td>MUBus-3</td>
<td>55,130.4 ± 73.7</td>
<td>453,605.1 ± 7,565.3</td>
<td>23,477.0 ± 13,897</td>
</tr>
</tbody>
</table>
trees for all learning problems in comparison with CELOE and ParCEL. The search
tree sizes generated by the three algorithms for the same learning problem in this
group were extremely different. For examples, SPaCEL only needed to explore about
2,400 expressions to find the solution for the Uncle learning problem while CELOE had
to explore more than 541,081 expressions. Similarly, SPaCEL found a solution after
exploring about 2,130 expressions while ParCEL needed to explore 643,401 expressions
on the MUBus-1 learning problem. CELOE could not find an accurate solution for this
learning problem and timed out after 10 minutes. The average search tree size at the
time of timeout was about 161,832 expressions.

A t-test rejected the null hypothesis for all learning problems at the 99% confidence
level. That means all differences between search tree sizes generated by three algorithms
on each dataset were statistically significant at the 1% significance level. Therefore, the
search trees generated by SPaCEL were statistically significantly smaller than CELOE
in 12/14 learning problems and than ParCEL for 13/14 learning problems.

6.3.3 Experiment 3 - Predictive accuracy and learning time

In this experiment, the predictive accuracy and learning time of the three learning
algorithms on the evaluation datasets were measured and compared. The experimental
results are shown in Table 6.4.

Table 6.4: Learning time and predictive accuracy experimental results summary (means
± standard deviations of 10 folds). Result of the statistical significance t-test (at the 95%
confidence level) is also included: the bold and highlighted values are statistically signifi-
cantly better than other values; the unformatted values are statistically significantly worse
than other values; the bold and italic and highlighted values are statistically significantly
worse than the bold and highlighted values, and statistically significantly better than the
unformatted values; the underlined values represent the values that are not statistically
significantly different from the other values.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Predictive accuracy (%)</th>
<th>Learning time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>Low to medium complexity learning problems without timeout.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moral</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
</tbody>
</table>

Continued on next page
Table 6.4 – continued

<table>
<thead>
<tr>
<th>Problem</th>
<th>Predictive accuracy (%)</th>
<th>Learning time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>Forte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.86</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±2.27</td>
<td>±0.00</td>
</tr>
<tr>
<td>Poker-Straight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>96.43</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±4.12</td>
</tr>
<tr>
<td>Brother</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Daughter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Father</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Grandson</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
</tbody>
</table>

High to very high complexity learning problems without timeout.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Predictive accuracy (%)</th>
<th>Learning time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>Aunt</td>
<td>96.5</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>Cousin</td>
<td>99.29</td>
<td>99.29</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±2.26</td>
</tr>
<tr>
<td>Uncle</td>
<td>95.83</td>
<td>98.75</td>
</tr>
<tr>
<td></td>
<td>±6.80</td>
<td>±3.95</td>
</tr>
</tbody>
</table>

Learning problems with timeout.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Predictive accuracy (%)</th>
<th>Learning time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>CarcinoGenesis</td>
<td>53.73</td>
<td>56.05</td>
</tr>
<tr>
<td></td>
<td>±4.79</td>
<td>±4.30</td>
</tr>
<tr>
<td>UCA1</td>
<td>91.42</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>±7.01</td>
<td>±0.00</td>
</tr>
<tr>
<td>MUBus-1</td>
<td>53.61</td>
<td>99.63</td>
</tr>
<tr>
<td></td>
<td>±2.45</td>
<td>±0.31</td>
</tr>
<tr>
<td>MUBus-2</td>
<td>14.35</td>
<td>97.91</td>
</tr>
<tr>
<td></td>
<td>±1.10</td>
<td>±0.50</td>
</tr>
<tr>
<td>MUBus-3</td>
<td>11.34</td>
<td>95.85</td>
</tr>
<tr>
<td></td>
<td>±0.06</td>
<td>±0.31</td>
</tr>
</tbody>
</table>

Continued on next page
In general, SPaCEL achieved better predictive accuracy in most learning problems in comparison with CELOE and ParCEL. In the first two groups (10 learning problems) all three learning algorithms archived very high accuracy. There were 5 learning problems that the three algorithms achieved 100% accuracy. In the remaining 5 learning problems, SPaCEL was statistically significantly more accurate than CELOE for 3/5 and ParCEL for 1/5 problems. There was no learning problems in this group where SPaCEL was statistically significantly less accurate than CELOE and ParCEL.

In the last group, SPaCEL outperformed CELOE on 5/6 and ParCEL on 3/6 learning problems. The dataset MU-Bus is a complex learning problem in which the target definition is very long as the bus operation time depends upon many conditions (see Section 3.3.3). For this dataset, SPaCEL outperformed both ParCEL and CELOE. It always found the complete definition on training set and the accuracy on the test set was always over 99.7%, while CELOE could not find accurate definitions on the training set and the accuracy on the test set was very low, from 11.34% to 53.61%. ParCEL performed better than CELOE and the accuracy was also very high but it was still statistically significantly less accurate than SPaCEL. The predictive accuracy of ParCEL on these learning problems were from 95.85% to 99.63%. The only learning problem in this group where CELOE achieved higher predictive accuracy than SPaCEL was the ILPD dataset. It achieved 76.02% ± 2.61% accuracy in comparison with 72.67% ± 8.12% of SPaCEL but the difference was not statistically significant.

However, as the ILPD and MuBus datasets are unbalanced, the comparison is more accurate if we use the balanced accuracy (see Definition 5.6) for these learning problems instead. Table 6.5 shows the balanced predictive accuracy for ILPD and some other unbalanced learning problems. The balanced accuracy of SPaCEL and ParCEL on the ILDP learning problem were statistically significantly higher than CELOE. The
outcome of the statistical significance test on the balanced accuracy of other learning problems did not change.

Our symmetric approach to class expression learning not only increased the predictive accuracy but also decreased the learning time. For the low and medium learning problems in the first group, the improvement on learning time was not obvious as compared with both CELOE and ParCEL. In some cases, SPaCEL even took longer than CELOE or ParCEL, e.g. it took longer than ParCEL on the Poker datasets. For the datasets in the second group, the improvement in learning time of SPaCEL was very significant compared to CELOE. However, it was slower than ParCEL on the Cousin dataset.

In the last group of high and very high complexity leaning problems with timeout, SPaCEL dominated all other learning algorithms. Except on the noisy datasets CarcinoGenesis and ILDP on which all three learning problems could not find the solution for training datasets, SPaCEL outperformed both CELOE and ParCEL in all other datasets.

The t-test result on learning time shows that SPaCEL was statistically significantly faster than CELOE in 13/14 problems and than ParCEL for 10/14 learning problems. It was statistically significantly slower than ParCEL for 2/14 problems. It is worth noting that all the slower learning times of SPaCEL were in the first and second groups. The definition lengths in this group were short and the learning times were very small.
6. Symmetric Class Expression Learning

6.3.4 Experiment 4 - The learnt definitions

Besides the search tree size, the learning time and the predictive accuracy, the definitions produced by the three learning algorithms and their length were also analysed. Table 6.6 presents the definitions’ length produced by the three algorithms in the experiment. In this table, definition length of ParCEL and SPaCEL are reported by the number of partial definitions and the average length of the partial definitions. Therefore, their average length definitions are the product of those numbers.

Table 6.6: Definition length of the learning problems (means ± standard deviations of 10 folds). The bold values are the definition lengths after the timeout occurred.

<table>
<thead>
<tr>
<th>Problem</th>
<th>(Partial) definition length</th>
<th>No of partial definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>Low to medium complexity learning problems without timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moral</td>
<td>3.00</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.05</td>
</tr>
<tr>
<td>Forte</td>
<td>13.50</td>
<td>7.75</td>
</tr>
<tr>
<td></td>
<td>±1.00</td>
<td>±0.50</td>
</tr>
<tr>
<td>PokerStraight</td>
<td>11.70</td>
<td>10.90</td>
</tr>
<tr>
<td></td>
<td>±0.68</td>
<td>±1.31</td>
</tr>
<tr>
<td>Brother</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±1.83</td>
</tr>
<tr>
<td>Daughter</td>
<td>5.00</td>
<td>5.25</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±1.09</td>
</tr>
<tr>
<td>Father</td>
<td>5.00</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.53</td>
</tr>
<tr>
<td>Grandson</td>
<td>7.25</td>
<td>7.25</td>
</tr>
<tr>
<td></td>
<td>±0.50</td>
<td>±0.50</td>
</tr>
<tr>
<td>High to very high complexity learning problems without timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aunt</td>
<td>19.00</td>
<td>8.80</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.48</td>
</tr>
<tr>
<td>Cousin</td>
<td>23.40</td>
<td>8.50</td>
</tr>
<tr>
<td></td>
<td>±2.59</td>
<td>±0.00</td>
</tr>
</tbody>
</table>

Continued on next page
The experimental results show that ParCEL and SPaCEL produced longer definitions than CELOE for most learning problems. By manually inspecting results, the following reasons were identified:

1. The overlap between partial definitions.
2. ParCEL and SPaCEL tend to produce more specific definitions than CELOE due to the use of sub-solutions.
3. Long definitions are necessary: Long definitions are necessary to describe the learning problem accurately while the shorter definition cannot completely describe the problem. It may be a partial result received when the algorithm could not find the solution within given restrictions (time, memory, etc.).

For the learning problems in the first two groups, where all three algorithms can find the definition for the training sets without timeout, the differences in definition length

<table>
<thead>
<tr>
<th>Problem</th>
<th>(Partial) definition length</th>
<th>No of partial definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CELOE</td>
<td>ParCEL</td>
</tr>
<tr>
<td>Uncle</td>
<td>19.00</td>
<td>8.40</td>
</tr>
<tr>
<td></td>
<td>±14.94</td>
<td>±0.38</td>
</tr>
<tr>
<td>CarcinoGenesis</td>
<td>4.80</td>
<td>55.87</td>
</tr>
<tr>
<td></td>
<td>±0.42</td>
<td>±9.52</td>
</tr>
<tr>
<td>UCA1</td>
<td>9.00</td>
<td>12.75</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.00</td>
</tr>
<tr>
<td>MUBus-1</td>
<td>12.70</td>
<td>16.99</td>
</tr>
<tr>
<td></td>
<td>±0.48</td>
<td>±0.42</td>
</tr>
<tr>
<td>MUBus-2</td>
<td>2.00</td>
<td>16.07</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.19</td>
</tr>
<tr>
<td>MUBus-3</td>
<td>2.00</td>
<td>14.64</td>
</tr>
<tr>
<td></td>
<td>±0.00</td>
<td>±0.13</td>
</tr>
<tr>
<td>ILPD</td>
<td>5.80</td>
<td>8.34</td>
</tr>
<tr>
<td></td>
<td>±1.69</td>
<td>±0.12</td>
</tr>
</tbody>
</table>
between three algorithms were small. This was caused by the overlap between partial definitions. In some cases, they can be shortened using some optimisation strategies. For example, the definitions produced by CELOE and SPaCEL for the Forte dataset (the uncle relationship definition) are:

- **CELOE:**

 \[
 \text{male } \land \text{((married SOME sibling SOME Person) } \lor \text{(married SOME hasSibling SOME hasChild SOME Thing))}
 \]

- **SPaCEL** (two partial definitions):

 1. \text{hasSibling SOME hasChild SOME Thing } \land \text{ (NOT female)}
 2. \text{married SOME hasSibling SOME hasChild SOME Thing } \land \text{ (NOT female)}

 The length of the definition produced by CELOE is 15 and SPaCEL is 19 (length of two partial definitions plus 1 for disjunction). However, at least 3 axioms in the SPaCEL final definition can be reduced by removing the common part among partial definitions, i.e. \text{AND NOT female}. That means if the same normal form [51, 86] is applied for both CELOE and SPaCEL, the difference between their lengths can be reduced. Moreover, \text{NOT female} can be replaced by \text{Male} if \text{male} and \text{female} are declared as disjoint properties. This is the idea of the optimisation and simplification in description logic [3, 65]. Currently, this idea has not yet been implemented in our algorithm. However, breaking down a long definition (as for CELOE) into several smaller partial definitions (as for SPaCEL) may help the definitions to be more readable, particularly for long definitions.

 For the learning problems on which at least one of the learning algorithms cannot find an accurate definition on the training set, i.e. the timeout occurred in the experiments, definitions produced by SPaCEL are significant longer than those of CELOE. In some learning problems, CELOE produced shorter definitions because it could not find the solution for the training set. This is also the major class of learning problem that we want to focus on, i.e. complex learning problems. The experimental result on the UCA1 dataset is used to demonstrate the difference in searching for the definitions between the three algorithms. This is a complex and noiseless learning problem.
Therefore, the distraction of the noisy data in the learning strategy can be avoided. The definitions produced by three algorithms for the UCA1 dataset are as follows:

- **CELOE:**

 \[
 \text{activityHasDuration} \text{ SOME} (\text{hasDurationValue} \geq 4.5 \ \text{AND} \ \text{hasDurationValue} \leq 21.5)
 \]

- **ParCEL:**

 1. \[
 \text{activityHasDuration} \text{ SOME} (\text{hasDurationValue} \geq 4.5 \ \text{AND} \ \text{hasDurationValue} \leq 15.5)
 \]

 2. \[
 \text{activityHasDuration} \text{ SOME} (\text{hasDurationValue} \geq 15.5 \ \text{AND} \ \text{activityHasStarttime} \text{ SOME} \text{ Spring})
 \]

 3. \[
 \text{activityHasDuration} \text{ SOME} (\text{hasDurationValue} \geq 15.5 \ \text{AND} \ \text{activityHasStarttime} \text{ SOME} \text{ Summer})
 \]

 4. \[
 \text{activityHasStarttime} \text{ SOME} \text{ Autumn} \ \text{AND} \ \text{activityHasDuration} \text{ SOME} (\text{hasDurationValue} \geq 4.5 \ \text{AND} \ \text{hasDurationValue} \leq 19.5)
 \]

- **SPaCEL** (lazy combination):

 \[
 \text{activityHasDuration} \text{ SOME} (\text{hasDurationValue} \geq 4.5 \ \text{AND} \ \text{hasDurationValue} \leq 19.5) \ \text{AND} \ (\text{NOT} (\text{activityHasDuration} \text{ SOME} \ \text{hasDurationValue} \geq 15.5 \ \text{AND} \ \text{activityHasStarttime} \text{ SOME} \text{ Winter}))
 \]

Obviously, the short definition (length 9) produced by CELOE does not fully define the positive examples (both training accuracy and predictive accuracy were not 100%). Meanwhile, ParCEL produced a longer definition (length 51) but it describes the positive examples accurately (both training and predictive accuracy were 100%). The definition produced by SPaCEL for this dataset better demonstrates the idea of using the symmetric learning approach and exceptions in learning in comparison with the result on the Forte dataset discussed above. The definition found by SPaCEL is a combination of the following expression:
6. Symmetric Class Expression Learning

activityHasDuration SOME (hasDurationValue ≥ 4.5 AND hasDurationValue ≤ 19.5)

and a counter-partial definition:

activityHasDuration SOME (hasDurationValue ≥ 15.5 AND activityHasStarttime SOME Winter)

This definition is shorter than the definition produced by ParCEL and it still describes the positive examples accurately.

6.4 Conclusion

A symmetric approach to class expression learning has been proposed where we learn from both positive and negative examples simultaneously. This is motivated by learning scenarios where negative examples can be classified using simple patterns. This is common in practice and our empirical experiments suggested that our approach dealt well with this kind of scenario. More importantly, this approach to class expression learning is not only suited for the motivation scenario but can deal with other kinds of learning problems, as shown in Table 6.4. For example, the Forte learning problem can be solved by the top-down approach (e.g. CELOE and ParCEL) without using negation, i.e. negative example definitions (see Section 6.3.4). However, this learning problem has been solved faster by SPaCEL, which uses the definitions of negative examples, without decreasing the predictive accuracy.

Some current learning algorithms, e.g. CELOE and ParCEL, which were used in our evaluations, can also solve this category of problem by specialising the concepts or using negation and conjunction to remove negative examples from candidate concepts. However, for some datasets with regular exception patterns such as MUBus and UCA1, these algorithms had difficulties in finding the right concept: their learning times were very long in comparison with SPaCEL, which sometimes caused the system to run out of memory before the definition can be found. The most impressive improvements were in the search tree size and learning time. Although SPaCEL often generated longer definitions than other algorithms, there was no over-fitting for the datasets used.
However, the definitions generated by SPaCEL are not optimised. The normalisation and simplification can be used to produce better definitions, i.e. shorter and more readable. This, together with the investigations on more datasets will be the future work for further research.
6. Symmetric Class Expression Learning
Chapter 7

Improving Predictive Correctness by Fortification

This chapter proposes a method to improve the predictive correctness of class expression learning. The motivation for this is described first, followed by a method for addressing the problem. Then, the architecture and algorithm for the proposed method is introduced. The chapter ends with several experiments to demonstrate the efficacy of the proposed method.

7.1 Problem Description

Predictive accuracy is the basic criteria used in assessment of the learnt concepts in machine learning. It reflects the prediction ability of the learnt concepts over unseen examples. Essentially, predictive accuracy of a learnt concept depends upon the number of covered positive (true positives) and uncovered negative (true negatives) examples of the learnt concept. These are the two main factors that directly affect the completeness and correctness of the prediction (see Section 3.2.1 for details).

In description logic learning, the top-down approach is mostly used in comparison with other approaches as it can use the rich hierarchical structure of the knowledge base to build the search tree. This approach produces short, concise definitions and
thus the learnt definitions tend to be biased towards generality, i.e. the completeness of the prediction. This is suitable for some types of applications. However, there are also certain types of application that require bias towards the correctness of the prediction.

For example, consider the criminal behaviour warning systems that observe and learn the usual patterns of the daily life activities and use them, along with the Negation As Failure (NAF) inference rule [27, 40], to predict criminal activities. In these systems, missing criminal behaviours is very serious. Therefore, suppose that the cry-wolf effect [19, 22, 139] can be avoided, such systems usually prefer the false positives to the false negatives. Similarly, consider the elderly care systems in which the systems also observe and learn the normal behaviours of the elderly and use the learnt behaviours, together with NAF inference rule, to detect abnormalities. Missing any abnormal behaviours may threaten the inhabitant’s safety. In other words, correctness of the learnt rules is more important than the completeness. It is worth noting that normal and legal (moral) behaviours occur much more often than abnormal and criminal behaviours. Therefore, learning the normal and moral behaviours will result in better descriptions of the behaviours than that of the criminal or abnormal behaviours. Consequently, it is more plausible to learn and use moral and normal behaviour patterns (with NAF) to detect the criminal and abnormal behaviours than to learn and use the normal and criminal or abnormal behaviour patterns.

Learning in description logics is essentially a search problem (see Section 2.2.2) and most learning algorithms use a search heuristic to guide the search. A common method for trading off between completeness and correctness of the learnt concepts is to adjust the search heuristic [69, 70]. A learning algorithm that uses a search heuristic prioritising completeness will likely produce higher completeness concepts than learning algorithms that prioritise correctness and vice versa. However, an inappropriate adjustment to the search heuristic may prevent the learning algorithm from achieving the right definition. Moreover, this approach is not flexible as changing the trade-off level requires the learning problem to be relearnt. Therefore, in this chapter, an approach is proposed to improve the predictive correctness for class expression learning algorithms that can avoid the above problems. The basic idea of this method is to fortify the learnt concept by a redundant specialisation to reduce the number of false positives. In
Figure 7.1: The creation of a prediction model for a learning problem. Pluses (+) and minuses (−) represent positive and negative examples in training set respectively.

(a) Generation of a prediction model: D is a description, N_1, N_2, and N_3 are counter-partial definitions produced by a learning algorithm.

(b) Prediction model after the combination and reduction: $C \equiv D \cap \neg(N_1 \cup N_2)$ describes all positive examples and no negative examples.

addition, to prevent the cry-wolf problem, a balanced trade-off between the predictive correctness and completeness must be maintained. That means the predictive accuracy should not be decreased by over-specialisation.

Figures 7.1 and 7.2 describe the basic idea of our approach. Figure 7.1 shows a learning problem with a set of training positive (pluses) and negative (minuses) examples. Let D be a description, N_1, N_2 and N_3 counter-partial definitions generated by a learning algorithm with their coverage are described in Figure 7.1(a). A possible prediction model (definition) for the learning problem is $C \equiv D \cap \neg(N_1 \cup N_2)$ as depicted in Figure 7.1(b). N_3 is not included in the learning result as C is sufficient to accurately define the positive examples of the learning problem.

A possible prediction scenario of the prediction model C in Figure 7.1(b) is illustrated in Figure 7.2(a). In this scenario, the prediction model produces some false positives as it covers 4 negative examples in the test set (grey minuses) that are supposed to be covered by the redundant counter-partial definition N_3. Therefore, the prediction model C can avoid producing false positive predictions if it is fortified by making conjunction with the negation of N_3: $C \equiv D \cap \neg(N_1 \cup N_2) \cap \neg N_3$.

The above example demonstrates that fortification of the learnt concept by specialisation might help to increase the predictive correctness of the learnt concept. However, it might also decrease the predictive completeness as shown in Figure 7.2(b).
more positive example is misclassified caused by the fortification. Moreover, inappropriate fortification not only cannot increase predictive correctness, but also decreases predictive completeness. For example, Figure 7.3(a) shows a learning problem with 6 learnt descriptions. Three of them, D, N_1 and N_2, are sufficient to construct the final definition. The remaining descriptions, N_3, N_4 and N_5, are the potential candidates for fortification of the learnt concept. However, the predictive model in Figure 7.3(b) suggests that only N_3 can help to increase predictive correctness and accuracy. On the other hand, N_4 does not change the prediction accuracy while N_5 decrease predictive completeness and accuracy.

Therefore, there are a number of challenges to improve the predictive correctness using fortification, with the constraint on the balance trade-off between the predictive correctness and predictive completeness, as follows:

Q1. How to generate candidates for fortification? Fortification candidates are descriptions that can remove negative examples covered by the learnt concept in the test set or more generally in the prediction (classification). The proposed method must be general so that it can be used with most class expression learning algorithms.

Q2. How to choose the best candidates for fortification? As was described in Figure 7.3(b), fortification candidates may have different effects on the fortification.
7. Improving Predictive Correctness by Fortification

Figure 7.3: Decrease of predictive accuracy caused by inappropriate fortification. Notations are used similarly in Figure 7.1.

(a) A learning problem with several descriptions produced. An accurate definition for this learning problem can be constructed from \(D, N_1 \) and \(N_2 : D \sqcap \neg(N_1 \sqcup N_2) \). \(N_3, N_4, N_5 \) can be considered as redundancies in the prediction model.

(b) Using \(N_3 \) for fortification helps to increase predictive correctness (and accuracy). However, using \(N_4 \) does not help. Moreover, using \(N_5 \) decreases the predictive accuracy (does not increase correctness and decreases completeness).

Some descriptions may help to increase the predictive correctness while some others do not. Moreover, some of them may effect the predictive accuracy badly, i.e. they decrease the predictive completeness.

Q3. How many descriptions should be used for the fortification? The more descriptions are used for fortification, the more chances to increase predictive correctness. However, it also increases the chance of decreasing predictive completeness. Therefore, how many descriptions are sufficient for the fortification that ensures the predictive accuracy does not decrease?

This chapter proposes a fortification method for class expression learning that will address the above questions to improve the predictive correctness of the learnt concepts without reduction of the predictive accuracy. Besides, this approach is expected to be as independent of the training model as possible so that it can be applied to various class expression learning algorithms. Our method can be used in applications that favour correctness over completeness.

This problem is approached by first proposing an architecture for producing the candidates for fortification. Then, four strategies for scoring and selecting the fortification candidates are described. Finally, several experiments are performed to demonstrate
effects of our methods on the predictive correctness improvement.

7.2 Fortification Candidates Generation

In this section, a method to generate the fortifying definitions using class expression learning algorithms is described. One of the most important objectives of this method is that it must be general enough so that it can be used with several class expression learning algorithms. This addresses question Q1 in the problem description section (Section 7.1).

In general, a class expression learning algorithm uses a knowledge base and sets of positive and negative examples as input and produces one or more descriptions such that each of them covers all positive examples and no negative examples in the training set (also called definitions). The learnt definitions are expected to have predictive capability to classify positive examples. A formal definition of the class expression learning problem was given in Definition 2.16. For the purpose of this chapter, the class expression learning problem with the consideration of noise and multiple learnt concept results is redefined as follows:

Definition 7.1 (Class expression learning with noise). Given a learning problem \(LP = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle\) as defined in Definition 2.16 and a noise value \(\epsilon \in [0, 1]\), a class expression learning problem with noise, denoted by a structure \(\langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-), \epsilon \rangle\), is to compute a set of descriptions \(\mathcal{X} = \{C \mid \text{cover}(\mathcal{K}, C, \mathcal{E}^+) \geq (|\mathcal{E}^+| \times (1 - \epsilon))\text{ and cover}(\mathcal{K}, C, \mathcal{E}^-) = \emptyset\}\).

Practically, some class expression learning algorithms produce only one solution, i.e. one concept, such as CELOE. This may be considered as a special case of the above definition where the solution set consists of only one solution.

The basic idea of fortification is to fortify the learnt concepts using a redundant specification. This is essentially a further specialisation of the learnt concepts using a set of descriptions that are expected to be able to cover some negative examples in the test set (prediction). Therefore, the descriptions used for fortification are actually the definitions of negative examples generated by a class expression learning algorithm so that they can predict the negative examples in the test set. A fortification candidates
Figure 7.4: Fortification candidates learning. A class expression learning algorithm \mathcal{L} as defined in Definition 7.1 is used to learn a set of definitions for positive examples and then it is used to produce a set of fortifying definitions by swapping positive and negative examples.

![Diagram](image)

The learning problem can now be defined below.

Definition 7.2 (Fortification candidates learning problem). Given a class expression learning algorithm \mathcal{L}, a learning problem $LP = \langle \mathcal{K}, (E^+, E^-) \rangle$, a noise value $\epsilon \in [0, 1]$ and a fortification coverage threshold $t \in [0, 1]$, a fortification candidates learning problem is to find a description C such that $|\text{cover}(\mathcal{K}, C, E^+)| \geq (|E^+| \times (1 - \epsilon))$ and $\text{cover}(\mathcal{K}, C, E^-) = \emptyset$ and a set of descriptions $\mathcal{X} = \{D \mid |\text{cover}(\mathcal{K}, D, E^-)| \geq (|E^-| \times (1 - t)) \text{ and } \text{cover}(\mathcal{K}, D, E^+) = \emptyset\}$ using the learning algorithm \mathcal{L}.

C is the definition of the positive examples of the learning problem LP produced by \mathcal{L} and the descriptions in \mathcal{X} are the candidates for the fortification of the learnt definition. Basically, descriptions in \mathcal{X} are the counter-partial definitions as defined in Definition 6.1. However, in this chapter, these definitions are used for a different purpose and therefore they are named the *fortifying definitions* to reflect their function. Given a general class expression learning algorithm, a method for learning an additional set of *fortifying definitions* is proposed as illustrated in Figure 7.4.

The learning problem LP is first passed to the class learning algorithm \mathcal{L} to compute
the set of definitions of the positive examples. Then, the set of positive and negative examples are swapped and passed to the algorithm \mathcal{L} again together with the fortification threshold to compute a set of fortifying definitions. In this step, the fortification threshold is used as the noise percentage for the swapped learning problem (i.e. the learning problem with positive and negative examples being swapped). For example, if the fortification threshold is set to 10%, the learning algorithm can accept descriptions that cover 10% of the positive examples of the swapped learning problem, i.e. 10% of the negative examples in the original fortification candidates learning problem. Therefore, this is a constraint on the selection of the class expression learning algorithm used for learning the fortification candidates.

A formal fortification candidate learning algorithm is given in Algorithm 7.1. In this algorithm, a function Accuracy() is used to compute the accuracy of a given description on the training dataset (see Definition 3.2).

Algorithm 7.1: Fortification candidates learning –

$\text{FCandLearning}(\mathcal{L}, \mathcal{K}, \mathcal{E}^+, \mathcal{E}^-, \varepsilon, t)$.

Input: a class expression learning algorithm \mathcal{L}, a class expression learning problem $\langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$, a learning noise value $\varepsilon \in [0, 1]$ (0 means no noise) and a fortification coverage threshold value $t \in (0, 1)$ acts as the learning noise.

Output: a definition C and a set of fortifying definitions X produced by \mathcal{L} such that $|\text{cover}(\mathcal{K}, C, \mathcal{E}^+)| \geq (|\mathcal{E}^+| \times (1 - \varepsilon))$ and $|\text{cover}(\mathcal{K}, C, \mathcal{E}^-)| = 0$ and $\forall D \in X : |\text{cover}(\mathcal{K}, D, \mathcal{E}^-)| \geq (|\mathcal{E}^-| \times (1 - t))$ and $\text{cover}(\mathcal{K}, D, \mathcal{E}^+) = \emptyset$.

1 begin
 /* perform normal learning to learn the definition for pos. examples */
 2 $Y = \mathcal{L}(K, \mathcal{E}^+, \mathcal{E}^-, \varepsilon)$ /* find a set of definitions using \mathcal{L} */
 3 select a definition $C \in Y \mid \forall E \in Y : \text{Accuracy}(C) \geq \text{Accuracy}(E)$
 /* learn the fortifying definitions by reversing the sets of examples and using the threshold t */
 4 $X = \mathcal{L}(K, \mathcal{E}^-, \mathcal{E}^+, t)$
 5 return (C, X)

The definition of positive examples is called the learnt definition to distinguish with the fortifying definitions that are the definitions of negative examples.
7.3 Fortification Strategy

In this section, we describe some fortification strategies that aim to select the most promising candidates for fortification within a set of fortifying definitions produced by a fortification candidate learning algorithm as described in Algorithm 7.1. The general idea of our strategies include two steps. The first is to assign each fortifying definition a score and rank them accordingly to their score. Then, an appropriate number of fortifying definitions is selected so that it can help to increase the predictive correctness without decreasing the predictive accuracy.

The strategies address two questions Q2 and Q3 in the problem description section (Section 7.1): i) how to choose the best candidates for fortification?, and ii) how many candidates are sufficient for fortification?

7.3.1 Fortification candidates scoring

The aim of fortification candidates scoring is to score the fortifying definitions accordingly to their potential impact. The scores are then used to rank the fortifying definitions to support the selection of the most promising fortifying definitions.

A fortifying definition is promising for the fortification if it can help to exclude the negative examples covered by the learnt concept in the test set (see Figure 7.3b). However, as the negative examples in the test set are unknown when the learning takes place, a method for predicting the influence of the fortifying definitions is needed. Fortifying definitions can be considered as prediction models for the negative examples. Therefore, scoring the fortifying definitions is basically the estimation of their predictive power. This motivates two methods for scoring the fortifying definitions. The first is to consider their training coverage as the factor that represents their predictive power. The second is to use a dataset, called the (fortification) validation dataset, to evaluate their predictive power. This dataset does not overlap with the training and test sets. A fortifying definition that give a good prediction power on the validation dataset is expected to have a similar performance on the test set.

In addition, the prediction scenario illustrated in Figure 7.3(b) motivates another method for scoring the fortifying definitions. This method is based on the overlap
between the learnt concept and the fortifying definitions. Here, the concept overlap is used with the following meaning: Two descriptions are overlapped if they cover some common instances. The scenario in Figure 7.3(b) shows that if a fortifying definition is not overlapped with the learnt concept, it will not influence the predictive correctness even if it covers many negative examples. For example, in Figure 7.3(b), \(N_3 \) can help to exclude some negative examples covered by the learnt definition \(C \) as it covers some common negative examples (overlapped) with \(C \). On the other hand, although \(N_4 \) covers some negative examples, it does not influence the predictive correctness as it covers negative examples that are not covered by the learnt definition (i.e. not overlapped).

Therefore, in this method, the concept similarity measure is used to compute the overlap between the fortifying definition candidates and the learnt concept. The similarity measure based on both the ABox and TBox of the knowledge base are combined. The more overlap between a fortifying definition and the learnt concept there is, the more influence the fortifying definition has in the prediction. The following sections provide detailed description of our scoring methods.

7.3.1.1 Training coverage scoring

In this method, the training coverage of the fortifying definitions is used as their score. This information is the result of the training (learning) process and it is associated with every fortifying definition. The essential idea behind this method is that the training coverage potentially implies the generality and the predictive power of the fortifying definitions. The more general a fortifying definition is, the more chance for it to cover more negative examples in the test set in comparison with a less general definition.

The biggest advantage of this method is that the coverage is available from the learning process. Therefore, there is no extra computation required for scoring the fortifying definitions. In addition, high predictive power of the fortifying definitions (high coverage) may imply a higher chance for it to cover negative examples in the test set. The score of a fortifying definition \(C \) in this method is defined as follows:

\[
\text{score}(C) = \frac{|\text{cover}(\mathcal{X}, C, E^-)|}{|E^-|}
\]

(7.1)
This value is actually the training completeness of the fortifying definition. Therefore, this information is associated with each fortifying definition and thus it does not need to be re-computed. In addition, higher priority is given to short fortifying definitions in case the fortifying definitions have the same coverage on \mathcal{E}^-. In the top-down approach, shorter definitions are usually more general than longer ones. Therefore, this factor is used as a tiebreaker in scoring the fortifying definitions. It can now be defined as below.

Definition 7.3 (Training coverage score). Let $LP = \langle \mathcal{K}, (\mathcal{E}^+, \mathcal{E}^-) \rangle$ be a learning problem, C a fortifying definition learnt from LP, max_fdl the maximal length of all fortifying definitions learnt and $length(C)$ a function that returns the length of the definition C. The score of the fortifying definition C based on the training coverage scoring method is defined as follows:

$$TCScore(C) = \frac{|cover(\mathcal{K}, C, \mathcal{E}^-)| \times max_fdl - length(C)}{|\mathcal{E}^-| \times max_fdl} \quad (7.2)$$

The multiplication $cover(\mathcal{K}, C, \mathcal{E}^-)$ with max_fdl in Equation (7.2) is to ensure the training coverage is used as the primary criteria when ranking (sorting) the fortifying definition and the division is to scale the score into $[0, 1]$. The algorithm for scoring a set of fortifying definitions is given in Algorithm 7.2.

7.3.1.2 Fortification concept similarity scoring

In this strategy, the overlap between the fortifying and the learnt definitions is used to score the fortifying definitions.

Concept overlap measure

There are several approaches to assess the overlap between concepts that are based on the computation of similarity between concepts. The first approach is based on the overlap between instances in the ABox of the knowledge base [33, 34, 44, 68]. There are also some other approaches that use the refinement or subtraction operators in description logics such as [120, 130]. In our method, the overlap between concepts is
Algorithm 7.2: Training coverage scoring – TCScore(\(\mathcal{X}, \mathcal{K}, \mathcal{E}^+ \mathcal{E}^-\)).

Input: a set of fortifying definitions \(\mathcal{X}\) and a learning problem
\(LP = \langle \mathcal{X}, (\mathcal{E}^+, \mathcal{E}^-) \rangle\)

Output: a set of scored fortifying definitions based on Equation (7.2).

1. begin
2. \(\text{max} \text{__length} = 0\) /* maximal length of the fortifying definitions */
3. \(Y = \emptyset\) /* set of scored fortifying definitions */
4. /* calculate the maximal length of the fortifying definitions */
5. foreach \(C \in \mathcal{X}\) do
6. if \(\text{max} \text{__length} < \text{length}(C)\) then \(\text{max} \text{__length} = \text{length}(C)\)
7. /* compute the score for the fortifying definitions */
8. foreach \(C \in \mathcal{X}\) do
9. \(\text{cover}_C = \text{cover}(\mathcal{K}, C, \mathcal{E}^-)\) /* set of neg. examples covered by \(C\) */
10. \(\text{score}_C = (\text{cover}_C \times \text{max} \text{__length} - \text{length}(C)) / (|\mathcal{E}^+| \times \text{max} \text{__length})\)
11. \(Y = Y \cup \{(C, \text{score}_C)\}\)
12. return \(Y\)

computed based on the instances in the ABox. Basically, overlap between concepts is measured by the ratio between common instances over total instances covered by both descriptions (i.e. the Jaccard coefficient) as follows:

\[
J\text{Overlap}(C, D) = \frac{|\text{cover}(\mathcal{K}, C, \mathcal{E}) \cap \text{cover}(\mathcal{K}, D, \mathcal{E})|}{|\text{cover}(\mathcal{K}, C, \mathcal{E}) \cup \text{cover}(\mathcal{K}, D, \mathcal{E})|} \quad (7.3)
\]

where \(C, D\) are two descriptions, \(\mathcal{E}\) is a set of instances in which the similarity is tested and \(\mathcal{K}\) is the knowledge based that contains the concepts and instances.

In our method, the similarity measure proposed in [34] is adopted, which extends Equation (7.3) with the reduction by the major incidence of the intersection with respect to either concept (see [34] for more details).

\[
\text{overlap}(C, D) = \frac{|\text{cover}(\mathcal{K}, C, \mathcal{E}) \cap \text{cover}(\mathcal{K}, D, \mathcal{E})|}{|\text{cover}(\mathcal{K}, C, \mathcal{E}) \cup \text{cover}(\mathcal{K}, D, \mathcal{E})|} \times \\
\max \left(\frac{|\text{cover}(\mathcal{K}, C, \mathcal{E}) \cap \text{cover}(\mathcal{K}, D, \mathcal{E})|}{|\text{cover}(\mathcal{K}, C, \mathcal{E})|}, \frac{|\text{cover}(\mathcal{K}, C, \mathcal{E}) \cap \text{cover}(\mathcal{K}, D, \mathcal{E})|}{|\text{cover}(\mathcal{K}, D, \mathcal{E})|} \right) \quad (7.4)
\]
The following example illustrates the overlap calculation between concepts defined in Equation (7.4).

Example 7.1 (Concept similarity calculation). Let N_C be a set of concept names, N_R be a set of role names, $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a knowledge base with TBox \mathcal{T} and ABox \mathcal{A}, and \mathcal{E} be a set of instances of the concepts in \mathcal{K} as follows:

- $N_C = \{\text{Person, Male, Female, Mother, Father, Child}\}$
- $N_R = \{\text{married, hasChild, hasParent}\}$
- $\mathcal{T} = \{\begin{align*}
 \text{Male} & \sqsubseteq \text{Person}, \text{Female} \sqsubseteq \text{Person}, \text{Male} \equiv \neg \text{Female} \\
 \text{Mother} & \equiv \text{Female} \sqcap \exists \text{hasChild}. \text{Person} \\
 \text{Father} & \equiv \text{Male} \sqcap \exists \text{hasChild}. \text{Person} \\
 \text{Child} & \equiv \text{Person} \sqcap \exists \text{hasParent}. \text{Person}
\end{align*}\}
- $\mathcal{A} = \{\begin{align*}
 \text{Person}(a), \text{Female}(a), \text{hasChild}(a, b), \text{hasChild}(a, c) \\
 \text{Person}(b), \text{Male}(b), \text{hasChild}(b, d), \text{hasParent}(b, a) \\
 \text{Person}(c), \text{Male}(c), \text{hasChild}(c, e), \text{hasParent}(c, a) \\
 \text{Person}(e), \text{Female}(e), \text{hasParent}(e, c) \\
 \text{Person}(d), \text{Female}(d), \text{hasChild}(d, h), \text{hasParent}(d, b), \text{marriedTo}(d, g) \\
 \text{Person}(h), \text{Female}(h), \text{hasParent}(h, d), \text{hasParent}(h, g) \\
 \text{Person}(g), \text{Male}(g), \text{marriedTo}(g, d)
\end{align*}\}
- $\mathcal{E} = \{a, b, c, d, e, g, h\}$

Then, examples of the computation of the overlap between concepts are given below.

1. $\text{overlap}(\text{Person, Female}):$

 $\sqrt{\text{cover}(\mathcal{K}, \text{Person}, \mathcal{E})} = \{a, b, c, d, e, g, h\}$
 $\sqrt{\text{cover}(\mathcal{K}, \text{Female}, \mathcal{E})} = \{a, d, e, h\}$
 $\Rightarrow \text{overlap}(\text{Person, Female}) = \frac{|\{a, d, e, h\}|}{|\{a, b, c, d, e, g, h\}|} \times \max \left(\frac{|\{a, d, e, h\}|}{|\{a, b, c, d, e, g, h\}|}, \frac{|\{a, d, e, h\}|}{|\{a, d, e, h\}|} \right)$

 $= \frac{4}{7} = 0.571$
(2) \(\text{overlap}(\text{Female}, \text{Mother}) : \)

\[
\begin{align*}
\checkmark \quad & \text{cover}(\mathcal{K}, \text{Parent}, \mathcal{E}) = \{a, b, c, d, g\} \\
\checkmark \quad & \text{cover}(\mathcal{K}, \text{Female}, \mathcal{E}) = \{a, d, e, h\} \\
\Rightarrow \quad & \text{overlap}(\text{Female}, \text{Mother}) = \frac{|\{a, d\}| \times \max \left(\frac{|\{a, d\}|}{|\{a, b, c, d, e, g, h\}|}, \frac{|\{a, d\}|}{|\{a, d, e, h\}|} \right)}{\frac{2}{7} \times \frac{2}{4} = \frac{1}{7} = 0.143}
\end{align*}
\]

(3) \(\text{overlap}(C, D) : \) where,

\[
\begin{align*}
C & \equiv \text{Person} \cap \exists \text{hasChild}. \text{Person} \\
D & \equiv \text{Person} \cap \exists \text{marriedTo}. \text{Person} \\
\checkmark \quad & \text{cover}(\mathcal{K}, C, \mathcal{E}) = \{a, b, c, d, g\} \\
\checkmark \quad & \text{cover}(\mathcal{K}, D, \mathcal{E}) = \{d, g\} \\
\Rightarrow \quad & \text{overlap}(C, D) = \frac{|\{d, g\}|}{|\{a, b, c, d, g\}|} \times \max \left(\frac{|\{d, g\}|}{|\{a, b, c, d, g\}|}, \frac{|\{d, g\}|}{|\{d, g\}|} \right) = \frac{2}{5} = 0.4
\end{align*}
\]

The algorithm for measuring the overlap between two concepts is given in Alg. 7.3.

Concept similarity measure

The method above computes the overlap between two concepts based on the ABox, i.e. the instances (or the snapshot) of the knowledge base. As the result, it is sensitive to the change of instances of the knowledge base. Therefore, in our fortifying definition scoring is based on the overlap between the learnt concept and the fortifying definition, the semantics of the concepts in the descriptions is used to strengthen the measure of Equation (7.4) to reduce the dependency of the measure on the ABox. This method uses the semantics of the concepts defined by the TBox (e.g. subclass, sub-role, equivalent class, etc.) to estimate the similarity between concepts. Here, the word similarity is used to imply the independence of the measure on the instances or
Algorithm 7.3: Concept overlap measure – COVERLAP(C, D, K, E)

Input: Two description C, D, a knowledge base K = (T, A) and a set of instances E.

Output: an overlap value between C and D as defined in Equation (7.4).

```
1 begin
    /* see Definition 3.1 for definition of function cover() */
2    intersection = cover(K, C, E) \cap cover(K, D, E)
3    union = cover(K, C, E) \cup cover(K, D, E)

    /* overlap without dissimilarity factor */
4    basicOverlap = |intersection| / |union| /* |X|: no.of X's elements */

    /* dissimilarity factor */
5    dissimilarity =
        max(|intersection| / |cover(K, C, E)|, |intersection| / |cover(K, D, E)|)
6    return (basicOverlap \times dissimilarity)
```

snapshot of the knowledge base and the stability by using the semantics of the concepts in the TBox. Intuitively, concept similarity is more general than concept overlap. The overlap between concepts indicates the similarity between them. However, two similar descriptions do not necessarily have common instances. Similarity implies the potential or probability of the overlap between descriptions. The more similar the concepts are, the more they are likely to have common instances.

There is no widely accepted method for measuring the similarity between descriptions using the TBox. As the above overlap computation uses a particular ABox, the amount of the overlap can always be computed. On the other hand, concepts themselves sometimes do not provide sufficient information for estimation of their similarity. For example, given a concept hierarchy as shown in Figure 7.5, there may not have any information about the similarity between the concepts Father and Brother without a particular ABox. A father may be a brother or not, depending upon the particular circumstances.

However, in some cases, semantics of the concepts may help to estimate the chance of being similar between concepts or compare the chance of being similar amongst concepts. For example, the similarity between Child and Son is higher than the similarity between Brother and Father. In addition, if a statistical distribution is identified for the distribution of the instances of Child, Son and Daughter concepts, we can estimate
Figure 7.5: Family concepts hierarchy. Arrows represent subclass relations (superclass \rightarrow subclass)

![Family Concepts Hierarchy Diagram]

a specific value for the similarity between \textit{Child} and \textit{Son} or \textit{Child} and \textit{Daughter}. For example, if the instances of these three concepts follow the uniform distribution \cite{73}, the probability of an instance of the concept \textit{Child} being also an instance of the concept \textit{Son} is about 50\%. This probability can be used to estimate the similarity between the above concepts.

In this method, the Jaccard coefficient similarity and the semantics of the concepts defined in the TBox are used to estimate the similarity between two descriptions based on their composite atomic concepts and roles. Jaccard is a popular method to compute the overlap between (elements of) two sets \cite{67, 110}. It is defined as the ratio between the intersection of the two sets over the union of the two sets. Given two descriptions \(C \) and \(D \) in disjunctive normal form: \(C \equiv C_1 \sqcup \ldots \sqcup C_n \) and \(D \equiv D_1 \sqcup \ldots \sqcup D_m \), then we define the Jaccard similarity between \(C \) and \(D \) is the maximal similarity of all pair of disjuncts \((C_i, D_j) \) as follows:

\[
J\text{Sim}_{\sqcup}(C, D) = \begin{cases}
1, & \text{if } C \equiv D \\
0, & \text{if } C \sqcap D \equiv \bot \\
\max_{i=1..n, j=1..m} J\text{Sim}(C_i, D_j) & \text{(7.5)}
\end{cases}
\]

where \(J\text{Sim}(C_i, D_j) \) is the Jaccard similarity between two descriptions with no disjunction. The \text{max} function used in the case of disjunction is one of the possible methods that is chosen due to its simplicity. In addition, the intuition behind this selection is that sub-concepts in disjunctions account for a certain aspect of the overall concept. Hence, if they perfectly match on one aspect, then their individuals may be interchange-
able. Other aggregations such as min, the composition of min and max, or a weighted average may be viable options with an intuitive criterion in the background.

The similarity computation of a concept is separated into two parts: i) similarity between composite concepts at the top level and the similarity between properties of the given concept. The similarity result is the sum of those values. It is defined as follows:

\[JSim(C_i, D_j) = \lambda [\text{simPrim}(C_i, D_j) + \text{simPro}(C_i, D_j)] \] \tag{7.6}

where,

- \(\lambda \) is the scoring factor. It is used to normalise the scoring value (e.g., into the range of \([0, 1]\)).

- \(\text{simPrim}(C_i, D_j) \) is the similarity between the primitive concepts of two descriptions \(C_i \) and \(D_j \). It is computed as the average of the Jaccard index of all pairs of primitive concepts \((A, B) \) in \(C_i \) and \(D_j \):

\[
\text{simPrim}(C_i, D_j) = \frac{1}{|\text{cname}(C_i)| \times |\text{cname}(D_j)|} \sum_{A \in \text{cname}(C_i), B \in \text{cname}(D_j)} jIndex(A, B) \] \tag{7.7}

where \(\text{cname}(X) \) is the set of primitive concepts occurring at the top level of \(X \) and \(jIndex(A, B) \) is the Jaccard coefficient similarity (Jaccard index) between two primitive concepts \(A \) and \(B \), which is defined as the Jaccard similarity between the sub-concepts of \(A \) and \(B \). In description logics, there may be equivalence relations between concepts and properties, the intersection (or union) operator in the original computation must be re-defined. In our method, the intersection operator, denoted by \(\cap \), is redefined and the Jaccard similarity computation is defined as follows:

\[
jIndex(A, B) = \frac{|\text{subcon}(A) \cap \text{subcon}(B)|}{|\text{subcon}(A) \cup \text{subcon}(B)|} \] \tag{7.8}

where,
7. Improving Predictive Correctness by Fortification

- \textit{subcon}(C) is a set of (inferred) sub-concepts of the primitive concept C with respect to the TBox \(T \):

\[
\text{subcon}(C) = \begin{cases}
\{ D \in T \mid D \sqsubseteq C \}, & \text{if } \exists D \in T \text{ such that } D \neq C \text{ and } D \sqsubseteq C \\
C, & \text{otherwise.}
\end{cases}
\]

- \(\cap \) is the intersection operator, which can deal with the equivalence semantics of the elements of two sets:

\[
X \cap Y = \{ C \mid (C \in X \text{ and } C \in Y) \\
or (C \in X \text{ and } \exists D \in Y : C \equiv D) \\
or (C \in Y \text{ and } \exists D \in X : C \equiv D) \}
\]

- \textit{simPro}(C_i, D_j) is the similarity between properties in descriptions \(C_i \) and \(D_j \):

\[
\text{simPro}(C_i, D_j) = \begin{cases}
0, & \text{if } \text{rcomm}(C_i, D_j) = \emptyset \\
\frac{1}{n} \sum_{P \in \text{rcomm}(C_i, D_j)} JSim(\text{range}(P, C_i), \text{range}(P, D_j)), & \text{otherwise}
\end{cases}
\]

(7.9)

where,

- \(\text{rcomm}(C_i, D_j) \) is a set of properties that are used in both \(C_i \) and \(D_j \),
- \(n = |\text{rcomm}(C_i, D_j)| \),
- \(\text{range}(P, X) \) is the range of a property \(P \) in the description \(X \). If the property \(P \) is used more than one time in \(X \), the conjunction of the ranges is returned.

As this method is based on the TBox without reference to the concepts population, i.e. the number of instances of the concepts, it is assumed that the distribution of instances of the concepts follows the uniform distribution \cite{73}. The similarity calculation between properties is projected into the similarity calculation between the ranges of the common properties of the descriptions. The following example demonstrates the computation of similarity between descriptions using our method.
Example 7.2 (Description similarity calculation using Jaccard method). This example demonstrates the computation of similarity between concepts in disjunctive normal form described in Equation (7.6). To scale the similarity value into $[0, 1]$, $\lambda = 1/2$ is chosen if there are both concepts and properties in the descriptions and $\lambda = 1$ otherwise. Given a TBox as shown in Figure 7.5, similarity of some concepts based on Jaccard method are computed as follows:

1. $JSim(Male, Female)$: as these descriptions have no property, the similarity between concepts (the first part of Equation (7.6)) is computed as follows:

\[
\checkmark \quad sim_{Prim}(Male, Female) = jIndex(Male, Female) = \frac{|\text{subcon}(Male) \cap \text{subcon}(Female)|}{|\text{subcon}(Male) \cup \text{subcon}(Female)|} = \frac{|\{\text{Dad, Father, Son, Brother}\} \cap \{\text{Mom, Mother, Daughter, Sister}\}|}{|\{\text{Dad, Father, Son, Brother}\} \cup \{\text{Mom, Mother, Daughter, Sister}\}|} = 0
\]

$\Rightarrow \quad JSim(Male, Female) = 0$

2. $JSim(Female, Mother)$: similar to the above example, we have:

\[
\checkmark \quad sim_{Prim}(Female, Mother) = jIndex(Female, Mother) = \frac{|\text{subcon}(Female) \cap \text{subcon}(Mother)|}{|\text{subcon}(Female) \cup \text{subcon}(Mother)|} = \frac{|\{\text{Mom, Mother, Daughter, Sister}\} \cap \{\text{Mother}\}|}{|\{\text{Mom, Mother, Daughter, Sister}\} \cup \{\text{Mother}\}|} = 0.5
\]

$\Rightarrow \quad JSim(Female, Mother) = 0.5$

3. $JSim(C, D)$, where:

 $C \equiv Person \sqcap \exists hasChild. Person$

 $D \equiv Person \sqcap \exists marriedTo. Person$

 We have:

\[
\checkmark \quad sim_{Prim}(C, D) = jIndex(C, D) = \frac{|\text{subcon}(Person) \cap \text{subcon}(Person)|}{|\text{subcon}(Person) \cup \text{subcon}(Person)|} = 1
\]
✓ \(\text{simPro}(C, D) = 0 \) (as \(\text{rcomm}(C, D) = \emptyset \))
\[
\Rightarrow JSim(C, D) = \frac{1}{2} \times (1 + 0) = 0.5
\]

The algorithm for computing Jaccard similarity between two normal form descriptions described in equation (7.6) basically includes 4 steps: i) flatten the two descriptions into sets of primitive concepts and properties in the two descriptions, ii) calculate the similarity between primitive concepts of the two descriptions, iii) find a set of common properties of \(C \) and \(D \) and compute the similarity between the ranges of common properties, and finally iv) aggregate concept and property similarity into overall similarity of two descriptions.

Computation of the concept and property similarities is based on the Jaccard similarity between two primitive concepts (defined in Equation (7.8)). The algorithm for this computation is introduced in Algorithm 7.4. It has 3 steps: i) find the sub-concepts of two input primitive concepts, ii) compute the intersection of the sub-concepts of two input primitive concepts including the processing for equivalent concepts (the \(\sqcap \) operator), and iii) return the ratio between the intersection and union of the sub-concepts.

Algorithm 7.4: Jaccard similarity (index) – \(\text{JINDEX}(C, D, T, N_C, N_R) \)

Input: two primitive concepts \(C \) and \(D \); a TBox \(T \) together with a set of concept names \(N_C \) and role names \(N_R \).

Output: a Jaccard similarity value between two primitive concepts \(C \) and \(D \) (Equation (7.8)).

1 begin
 /* 1. compute sub-concepts of \(C \) and \(D \) */
 2 subcon\(_C\) = \{ \(C' \in N_C \mid C' \subseteq_T C \) \}
 3 subcon\(_D\) = \{ \(D' \in N_C \mid D' \subseteq_T D \) \}
 4 if subcon\(_C\) = \(\emptyset \) then subcon\(_C\) = \{ \(C \) \}
 5 if subcon\(_D\) = \(\emptyset \) then subcon\(_D\) = \{ \(D \) \}
 /* 2. compute Jaccard similarity of \(C \) and \(D \) */
 6 intersection = subcon\(_C\) \(\cap \) subcon\(_D\) /* common concepts of \(C \) and \(D \) */
 /* process the equivalent classes */
 7 intersection = intersection \(\cup \) \{ \(\{ X, Y \} \mid X \equiv Y \) and \(\{ X, Y \} \cap \text{subcon}_C \neq \emptyset \) \}
 and \(\{ X, Y \} \cap \text{subcon}_D \neq \emptyset \} \}
 8 return \(|\text{intersection}| / |\text{subcon}_C \cup \text{subcon}_D| \)

The algorithm for calculation similarity between two descriptions is given in Al-
algorithm 7.5. Firstly, the similarity between primitive concepts is computed based on
the Jaccard coefficient calculation implemented in Algorithm 7.4. Then, the similarity
for the properties of the descriptions is calculated by recursively calling the similarity
calculation for the ranges of the common properties of the two descriptions. The simi-
larity between two description is the sum of concept similarity and property similarity
multiply with the scoring factor λ.

Fortifying definition scoring

The score of the fortifying definitions based on the concept overlap and similarity is
computed as follows:

Definition 7.4 (Concept similarity score). Let C be a fortifying definition, D a
learnt definition from the same learning problem, $\text{overlap}(C, D)$ a function function that
measures the overlap between C and D as defined in Equation (7.4) and $\text{JSim}_\cap(C, D)$
a function that compute the similarity between C and D as defined in Equation (7.5).
The score of C is defined as follows:

$$\text{CSScore}(C) = \text{overlap}(C, D) + \text{JSim}_\cap(C, D)$$

The overlap (based on ABox) and similarity (based on TBox) in Definition 7.4 seem
to be treated equally. However, we can adjust the impact of these parts according to
the particular learning problem using the similarity scoring factor in Definition 7.6.

The following example illustrates the calculation of similarity between descriptions
using the fortification concepts similarity scoring method.

Example 7.3. Given a knowledge base as shown in Example 7.1, then the calculation
of fortifying definition score is given below.

(1) $\text{CSScore}(\text{Female}, \text{Mother})$:

- $\text{overlap}(\text{Female}, \text{Mother}) = 0.286$ (see Example 7.1).
- $\text{JSim}_\cap(\text{Female}, \text{Mother}) = 0.5$ (see Example 7.2).

$\Rightarrow \text{CSScore}(\text{Female}, \text{Mother}) = (0.286 + 0.5) = 0.786$
Algorithm 7.5: Jaccard similarity scoring – JSim($C, D, \lambda, \mathcal{T}, N_C, N_R$)

Input: two descriptions in normal form C, D; the scoring weighting factor λ; a TBox \mathcal{T} together with a set of concept names N_C and role names N_R.

Output: Jaccard similarity value between C and D (Equation (7.6)).

1 begin

/* 1. compute similarity between primitive concepts */
/* 1.1. get lists of primitive concepts occurring at the 1st level of C and D */
2 $\text{prim}_C = \{ C' | C' \in N_C \text{ and } C' \text{ occurs at 1st level of } C \}$
3 $\text{prim}_D = \{ D' | D' \in N_C \text{ and } D' \text{ occurs at 1st level of } D \}$

/* 1.2. similarity of all pairs of disjuncts primitive concepts */
4 $\text{csim} = 0$ /* primitive concepts similarity */
5 foreach $X \in \text{prim}_C$ do
6 foreach $Y \in \text{prim}_D$ do
7 $\text{csim} += \text{JIndex}(X, Y, \mathcal{T}, N_C, N_R)$
8 $\text{csim} = \text{csim} / (|\text{prim}_C| \times |\text{prim}_D|)$ /* calculate the avg. value */
9 /* 2. calculate similarity between common properties of C and D */
/* 2.1. find list of common properties between C and D */
10 $\text{pro}_C = \{ C' | C' \in N_R \text{ and } C' \text{ occurs at the 1st level of } C \}$
11 $\text{pro}_D = \{ D' | D' \in N_R \text{ and } D' \text{ occurs at the 1st level of } D \}$
12 $\text{pcomm} = \text{pro}_C \cap \text{pro}_D$ /* common properties of C and D */
/* 2.2. compute the similarity of the common properties */
13 $\text{psim} = 0$ /* properties similarity */
14 if $|\text{pcomm}| > 0$ then
15 foreach $P \in \text{pcomm}$ do
16 $\text{range}_{PC} = \{ \forall C' | \exists P.C' \text{ or } \forall P.C' \text{ occurs in } C \}$
17 $\text{range}_{PD} = \{ \forall D' | \exists P.D' \text{ or } \forall P.D' \text{ occurs in } D \}$
18 $\text{psim} += \text{JSim}(\text{range}_{PC}, \text{range}_{PD}, \lambda, \mathcal{T}, N_C, N_R)$
19 $\text{psim} = \text{psim} / |\text{pcomm}|$
20 return $\lambda \times (\text{csim} + \text{psim})$

7. Improving Predictive Correctness by Fortification

(2) \(CSScore(C, D) \), where:

\[
C \equiv Person \sqcap \exists hasChild.\text{Person}
\]

\[
D \equiv Person \sqcap \exists marriedTo.\text{Person}
\]

We have:

\[
\checkmark \; \text{overlap}(C, D) = 0.4 \text{ (see Example 7.1).}
\]

\[
\checkmark \; JSim(C, D) = 0.5 \text{ (see Example 7.2).}
\]

\[
\Rightarrow \; CSScore(C, D) = (0.4 + 0.5) = 0.9
\]

The formal algorithm for this computation is presented in Algorithm 7.6.

Algorithm 7.6: Concept similarity scoring – \(CSScore(X, D, \beta, K, E^+, E^-) \).

Input: a set of fortifying definitions \(X \), a learnt definition \(D \), a concept similarity factor \(\beta \) and a learning problem \(LP = \langle K, (E^+, E^-) \rangle \).

Output: a set of scored fortifying definitions based on Definition 7.4.

```
1 begin
2 \( Y = \emptyset \) /* set of scored fortifying definitions */
3 \( N_C = \) set of concept names in \( K \)
4 \( N_R = \) set of role names in \( K \)
5 \( \cal T = \) TBox in \( K \)
6 foreach \( C \in X \) do
7 \( \text{overlap} = \text{COVERLAP}(C, D, K, E^-) \) /* cf.Algorithm 7.3 */
8 \( \text{similarity} = \text{JSim}(C, D, \beta, \cal T, N_C, N_R) \) /* cf.Algorithm 7.5 */
9 \( \text{score}_C = \text{overlap} + \text{similarity} \) /* cf.Definition 7.4 */
10 \( Y = Y \cup \{(C, \text{score}_C)\} \)
11 return \( Y \)
```

7.3.1.3 Fortification validation scoring

The third method for scoring the fortifying definition employs the idea of the cross validation method in machine learning (see Chapter 3). In this method, a dataset, called the fortification dataset, is used to evaluate the fortifying definitions to select the most promising ones. This is a labelled dataset, i.e. the examples are labelled as positive or negative examples, and it is different from the training dataset.
The fortification validation dataset is used similarly as a test set in cross-validation to measure the metrics that constitute the score of the fortifying definitions. The rationale behind this method is that we use the fortification validation dataset to simulate a real scenario for fortification to score the fortifying definitions accordingly to their performance on this dataset. Therefore, the best fortifying definitions in this step are assumed to have similar performance in real scenarios.

The main factor in the score of the fortifying definitions is the number of negative examples that the fortifying definition can remove from the set of negative examples covered by the learnt concept. The removal of negative examples from the coverage of the learnt concept helps to increase the predictive correctness, which is the main objective of our method. However, to avoid any decrease in the predictive accuracy, the fortifying definition score is reduced for each common positive example covered by both the fortifying definitions and the learnt concept. As in the scoring method based on the training coverage (Section 7.3.1.1), the definition length is also used to favour shorter definitions. This factor has a lower weight so that it is used as a secondary criteria in selecting the most promising fortifying definitions. The score of a fortifying definition can now be defined:

Definition 7.5 (Fortification validation score). Let $LP = \langle X, (E^+, E^-) \rangle$ be a learning problem, E_v a fortification validation dataset that consists of a set of positive examples E_v^+ and a set of negative examples E_v^-, C a fortifying definition and D a learnt definition of LP, $\text{length}(C)$ a function that returns the length of the definition C and max_fdlength a maximal length of all fortifying definitions of LP. The score of the fortifying definition C based on the fortification validation method is defined as follows:

\[
FVScore(C) = \lambda \times \frac{|\text{cover}(X, C, E^-_v) \cap \text{cover}(X, D, E^-_v)|}{|E^-_v|} - \alpha \times \frac{|\text{cover}(X, C, E^+_v) \cap \text{cover}(X, D, E^+_v)|}{|E^+_v|} + \beta \times \left(1 - \frac{\text{length}(C)}{\text{max_fdlength}}\right) \tag{7.10}
\]
\(\lambda, \alpha\) and \(\beta\) in Equation (7.10) are used to adjust the effect of the three factors on the fortification candidate’s score. As the number of negative examples covered by a candidate is the main factor, \(\lambda\) often has highest value in comparison with \(\alpha\) and \(\beta\). In our implementation, we chose \(\lambda = 1\), \(\alpha = 0.5\) and \(\beta = 0.1\) as the default values.

Besides the above scoring metrics, training coverage may be a useful supplement to assess the potential of the fortifying definitions, particularly when the fortification validation dataset is small.

Algorithm 7.7 introduces a formal algorithm for this scoring method. Given a set of fortifying definitions together with some other information such as the learnt concept, knowledge base, etc. that are necessary for scoring the fortifying definitions, this algorithm returns a set of scored fortifying definitions based on their coverage on the fortification validation dataset and length.

Algorithm 7.7: Fortification validation scoring – FVSCORE\((X, D, \lambda, \alpha, \beta, K, E^+, E^-)\).

\[\text{Input}: \text{a set of fortifying definitions } X, \text{ a learnt definition } D, \text{ scoring factors } \lambda, \alpha, \beta \text{ and a learning problem } LP = \langle K, (E^+, E^-) \rangle\]

\[\text{Output}: \text{a set of scored fortifying definitions based on Definition 7.5.}\]

\[
\begin{align*}
\text{begin} & \\
\text{max_length} & = 0 \quad \text{ /* maximal length of the fortifying definitions */} \\
Y & = \emptyset \quad \text{ /* set of scored fortifying definitions */} \\
\text{foreach } C \in X \text{ do} & \\
\text{if max_length < length(C) then max_length = length(C)} & \\
\text{/* compute the score for the fortifying definitions, see Def.7.5. */} \\
\text{foreach } C \in X \text{ do} & \\
\text{commonNeg} = |\text{cover}(K, C, E^-) \cap \text{cover}(K, D, E^-)| / |E^-| & \\
\text{commonPos} = |\text{cover}(K, C, E^+) \cap \text{cover}(K, D, E^+)| / |E^+| & \\
\text{lengthScore} = 1 - (\text{length}(C) / \text{max_length}) & \\
\text{score}_C = \lambda \times \text{commonNeg} - \alpha \times \text{commonPos} + \beta \times \text{lengthScore} & \\
Y & = Y \cup \{(C, \text{score}_C)\} \\
\text{return } Y
\end{align*}
\]
7. Improving Predictive Correctness by Fortification

7.3.1.4 Random score

In this scoring method, the fortifying definition scores are assigned randomly in $[0,1]$. This method aims to illustrate the effect of the above proposed scoring methods.

7.3.2 Fortification cut-off point computation

In this section, a method is proposed to compute a cut-off point in the selection of fortification candidates that addresses question Q3 in Section 7.1. The cut-off point computation method is used to define a suitable number of fortifying definitions to fortify the learnt definition.

Basically, our approaches to score the fortifying definition are based on the fortification validation dataset. In the scoring process, the fortifying definitions are tested under that dataset to provide the necessary information for the scoring algorithms. Our method to identify the cut-off point also uses the fortification validation dataset to empirically define the cut-off point. It is defined as the maximal number of fortifying definitions that are best used to fortify the learnt concepts on the fortification validation datasets. A formal procedure for identifying the cut-off point based on a fortification validation dataset is described in Algorithm 7.8.

Algorithm 7.8: Fortification cut-off point – \text{CutOff}(C, X, K, E_f^+, E_f^-).

Input: a learnt concept C, a set of fortifying definitions X, a knowledge base K and sets of fortification validation dataset (E_f^+, E_f^-)

Output: a cut-off point, i.e. the number of fortifying definitions should be used for fortification.

1. \textbf{begin}
2. \hspace{1em} $cp = \text{cover}(K, C, E^+)$ /* pos. examples covered by C */
3. \hspace{1em} $cn = \text{cover}(K, C, E^-)$ /* neg. examples covered by C */
4. \hspace{1em} $cutoff = 0$ /* cut-off point */
5. \hspace{1em} \textbf{foreach} $fdef \in X$ \textbf{do}
6. \hspace{2em} $cpf = \text{cover}(K, fdef, E^+)$ /* pos. examples covered by $fdef$ */
7. \hspace{2em} $cnf = \text{cover}(K, fdef, E^-)$ /* neg. examples covered by $fdef$ */
8. \hspace{2em} \textbf{if} $(|cpf \cap cp| / |E_f^+|) \geq (|cnf \cap cn| / |E_f^-|)$ \textbf{then}
9. \hspace{3em} $cutoff = cutoff + 1$
10. \hspace{1em} \textbf{return} $cutoff$

160
7. Improving Predictive Correctness by Fortification

7.4 Evaluation

Efficacy of fortification was evaluated by implementing our methods in CELOE, ParCEL and SPaCEL and conducting several experiments using these algorithms. These algorithms use different approaches in class expression logic learning and thus this selection allows a thorough assessment of the fortification approach. The fortification candidates generation algorithm (Algorithm 7.1) was first implemented in CELOE and ParCEL. For SPaCEL, its unused counter-partial definitions were employed as the fortifying definitions. Then, an evaluation methodology was designed based on the evaluation methodology described in Chapter 3 and the fortification strategies in Section 7.3 to measure the metrics with and without the fortification.

7.4.1 Fortification evaluation methodology

To evaluate the fortification approach, we used 10-fold cross-validation on the learning problems introduced in Chapter 3. In the evaluation of fortification, in addition to the training and test sets, another dataset, called the fortification validation dataset, was also needed to suppose the fortification strategies (see Sections 7.3.1.2 and 7.3.1.3). Therefore, in each fold, we used 8 parts for training, 1 for fortification validation and 1 for testing.

In addition, the procedure for measuring the evaluation metrics was also revised to involve the fortification. Each fold of the cross-validation includes the following tasks:

1. Learn the concept C and a set of fortifying definitions \mathcal{X} using the training set of the validation dataset i.

2. Score the fortifying definitions in \mathcal{X} using a fortification strategy and sort them according to their score. The fortification validation set in validation dataset i is used if it is needed by the fortification strategy.

3. Compute the cut-off point for the fortification.

4. Measure the evaluation metrics (accuracy, completeness and correctness) for the learnt definition C using the test set in evaluation dataset i.

161
5. Perform the fortification by making the conjunction: \(C = C \cap \neg \bigcup D_i, \forall D_i \in X \) such that \(D_i \) is within the cut-off point.

6. Recompute the evaluation metrics for the fortified definition \(C \).

7.4.2 Experimental results

This section provides the experimental results of the fortification approach on CELOE, ParCEL and SPaCEL. In this evaluation, the predictive accuracy, correctness and completeness with and without fortification of each algorithm will be compared. In this approach, a trade-off between the predictive correctness and completeness is expected. Therefore, the baseline used to assess the success of this approach is that the average predictive correctness with fortification is higher than for the original algorithm and the average predictive accuracy of the fortification is not lower than for the original algorithm. However, the assessment of the achievement should also take the predictive accuracy without fortification into consideration. For learning problems where learning algorithm achieved 100% predictive correctness, keeping the predictive accuracy unchanged is considered to be a good achievement.

The following subsections will provide the experimental results for the three learning algorithms. The four fortification scoring strategies training coverage, concept similarity, fortification validation, and randomly scoring are named TCScore, CSScore, FVScore and Random respectively. The experimental results without fortification are also presented and compared with the fortification results. As described in Section 7.4.1, the training sets of the learning problems in these experiments is smaller than the training sets used in the experiments in Chapters 5 and 6. Therefore, the experimental results without fortification in this section may be different from the results in the previous experiment. The experimental results with full training set in the previous experiments are also included for reference (called “Full training”).

The t-test at the 95% confidence level was conducted to check the statistical significant differences between the experimental results with and without fortification.
Experimental results on CELOE

Table 7.1 shows the experimental result of fortification on the CELOE algorithm. For the low and medium complexity learning problems (Group 1 in the result table), CELOE achieved 100% of accuracy for most of them (5/7 learning problems). For the 5 learning algorithms on which CELOE achieved 100% accuracy, fortification did not reduce the predictive accuracy of any of them. For the two remaining learning problems, the improvement on predictive correctness and accuracy was not significant. There was also no decrease of the predictive completeness for the datasets in this group.

In the high and very high complexity learning problems without timeout (Group 2 in the result table), the effect of the fortification was clearer. On the Aunt dataset, TCScore and CSScore improved both predictive correctness and accuracy significantly while the improvement made by FVScore was not significant. However, the predictive accuracy and correctness of the Cousin learning problem stayed unchanged. Note that CELOE got 100% predictive correctness on this learning problem. Therefore, no more improvement can be made. On the remaining dataset, Uncle, the improvement of the predictive correctness and accuracy was also not statistically significant.

Fortification worked best on learning problems where at least one learning algorithm timed out (Group 3 in Table 7.1). This group consists of 6 learning problems. All fortification strategies increased the predictive correctness and accuracy for all learning problems. The t-test at the 95% confidence level suggested that the increasing of both accuracy and correctness in 4 learning problems is statistically significant. There is no significant decrease of completeness on any dataset.

It is worth noting that the TCScore strategy decreased the predictive completeness of the CarcinoGenesis significantly. However, the predictive accuracy and correctness also increased significantly. This was caused by the increase of correctness was more significant than the decrease of completeness. The maximal confidence level such that the decrease of completeness was still significant was about 97.1% while those for the correctness and accuracy were about 99.8% and 98% respectively.

There were several impressive improvements by fortification in the experiments. For example, in the CarcinoGenesis learning problem, the correctness increased from 0.67 ± 2.11% to 13.46 ± 11.35% by TCScore and to 11.46 ± 8.24% and 8.46 ± 12.13% by
FVScore and CSScore respectively. Even for the learning problems in which CELOE achieved very high accuracy such as the Aunt learning problem, fortification also improved the predictive correctness and accuracy significantly. The predictive accuracy for this learning problem was increased from 95.25 ± 8.45% to 100% which was caused by the increase of the predictive correctness from 90.05 ± 17.07% to 100%.

Experimental results on ParCEL

The experimental results for the ParCEL algorithm are presented in Table 7.2. In the first group of learning problems, ParCEL achieved 100% predictive accuracy for 4/7 learning problems. The predictive accuracy of all these learning problems was not decreased by the fortification. In the three remaining learning problems, fortification decreased the predictive accuracy of the Forte dataset (except the TCScore strategy) and increased the predictive accuracy of the Moral and Poker Straight datasets. The t-test at the 95% confidence level suggests that there was a significant improvement of the predictive correctness on the Moral dataset.

In the second group of learning problems, ParCEL also produced very high accuracy. It got 100% predictive accuracy on two datasets and the fortification did not decrease their predictive accuracy. For the remaining dataset, the fortification could not improve the predictive correctness. Moreover, CSScore decreased the predictive accuracy of this dataset that was resulted by the decreased of the completeness. However, the decreases were not statistically significant.

As in the CELOE experimental results, fortification in this experiment also had a strong effect on the learning problem in Group 3. In general, the predictive accuracy increased in all 6 learning problems in this group. The correctness increased significantly for 3/6 learning problems in this group, i.e. the CarcinoGenesis, MUBus-2 and MUBus-3 datasets. In the UCA1 dataset, the fortification also helped to achieve 100% predictive accuracy.

Experimental results on SPaCEL

The last algorithm used in our evaluation is SPaCEL. The experimental result on this algorithm is shown in Table 7.3. In the total 16 learning problems, this algorithm
achieved 100% predictive accuracy for 4 of them. Fortification also did not decrease the predictive accuracy of these learning problems.

In the 12 remaining learning problems, fortification gave higher average predictive accuracy in 9 of them, in which there are two learning problems that had significant improvement of correctness with 95% confidence. One of them had a significant improvement on the accuracy at the same confidence level. The predictive accuracy was decreased in 1/3 remaining learning problems. One of them was caused by the higher decrease of completeness over correctness and the other was caused by the decrease of completeness without improvement on correctness. However, the decrease of completeness and accuracy were not significant at the 95% confidence level.
Table 7.1: Fortification experimental results with CELOE (means ± standard deviations of 10 folds). The number under/following the learning problem name is the cut-off point. We also encode the comparison between results of the fortification strategies with the No fortification results using the t-test with 95% confidence: i) bold values are statistically significantly higher than the corresponding No fortification values, ii) italic values are statistically significantly lower than the corresponding No Fortification values, iii) unformatted values are not statistically significantly different from the corresponding No Fortification values. The underlined values are the highest results within the fortification strategies results.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
</table>

Low and medium complexity learning problems without timeout (Group 1)

<table>
<thead>
<tr>
<th>Moral (0)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forte (2)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc.</td>
<td>98.86 ± 2.27</td>
<td>93.10 ± 11.95</td>
<td>93.10 ± 11.95</td>
<td>93.10 ± 11.95</td>
<td>95.40 ± 7.96</td>
<td>93.10 ± 11.95</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>92.06 ± 13.75</td>
<td>92.06 ± 13.75</td>
<td>92.06 ± 13.75</td>
<td>95.24 ± 8.25</td>
<td>92.06 ± 13.75</td>
</tr>
<tr>
<td>Comp.</td>
<td>95.83 ± 8.33</td>
<td>95.83 ± 7.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poker-Straight (1)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>98.08 ± 3.85</td>
<td>100.00 ± 0.00</td>
<td>98.08 ± 3.85</td>
<td>100.00 ± 0.00</td>
<td>98.08 ± 3.85</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>97.92 ± 4.17</td>
<td>100.00 ± 0.00</td>
<td>97.92 ± 4.17</td>
<td>100.00 ± 0.00</td>
<td>97.92 ± 4.17</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
</tr>
</tbody>
</table>

Continued on next page

1 Predictive accuracy
2 Predictive correctness
3 Predictive completeness
Table 7.1 – continued

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brother (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Daughter (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Father (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Grandson (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
</tbody>
</table>

High and very high complexity learning problems without timeout (Group 2)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aunt (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>96.5 ± 0.00</td>
<td>95.25 ± 8.54</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>97.75 ± 0.00</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Corr.</td>
<td>95.5 ± 9.56</td>
<td>90.50 ± 17.07</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>97.50 ± 7.91</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Comp.</td>
<td>97.5 ± 7.91</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>98.00 ± 6.33</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Cousin (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>99.29 ± 2.00</td>
<td>99.29 ± 2.26</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Comp.</td>
<td>98.57 ± 4.52</td>
</tr>
</tbody>
</table>

Continued on next page
Table 7.1 – continued

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uncle (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>95.83 ± 6.80</td>
<td>93.33 ± 10.97</td>
<td>93.10 ± 11.95</td>
<td>93.10 ± 11.95</td>
<td>95.40 ± 7.96</td>
<td>93.10 ± 11.95</td>
</tr>
<tr>
<td>Corr.</td>
<td>91.67 ± 13.61</td>
<td>89.17 ± 18.45</td>
<td>92.06 ± 13.75</td>
<td>92.06 ± 13.75</td>
<td>95.24 ± 8.25</td>
<td>92.06 ± 13.75</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>97.50 ± 7.91</td>
<td>95.83 ± 7.22</td>
<td>95.83 ± 7.22</td>
<td>95.83 ± 7.22</td>
<td>95.83 ± 7.22</td>
</tr>
</tbody>
</table>

Learning problems with timeout (Group 3)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CarcinoGenesis (8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>53.73 ± 4.79</td>
<td>54.01 ± 1.02</td>
<td>57.55 ± 4.91</td>
<td>56.39 ± 3.98</td>
<td>58.73 ± 3.50</td>
<td>55.49 ± 3.00</td>
</tr>
<tr>
<td>Corr.</td>
<td>2.63 ± 3.40</td>
<td>0.67 ± 2.11</td>
<td>13.46 ± 11.35</td>
<td>8.46 ± 12.13</td>
<td>11.46 ± 8.24</td>
<td>4.54 ± 5.33</td>
</tr>
<tr>
<td>Comp.</td>
<td>97.22 ± 7.10</td>
<td>99.44 ± 1.76</td>
<td>95.12 ± 6.48</td>
<td>97.28 ± 5.91</td>
<td>98.89 ± 2.34</td>
<td>98.89 ± 2.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>UCA1 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>91.42 ± 7.01</td>
<td>90.74 ± 8.12</td>
<td>91.41 ± 8.62</td>
<td>91.41 ± 8.62</td>
<td>91.41 ± 8.62</td>
<td>90.74 ± 8.12</td>
</tr>
<tr>
<td>Corr.</td>
<td>83.39 ± 13.55</td>
<td>89.64 ± 11.60</td>
<td>91.07 ± 11.93</td>
<td>91.07 ± 11.93</td>
<td>91.07 ± 11.93</td>
<td>89.64 ± 11.60</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>91.96 ± 14.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MUBus-1 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>53.61 ± 2.45</td>
<td>54.31 ± 3.28</td>
<td>68.15 ± 2.01</td>
<td>78.09 ± 2.06</td>
<td>66.84 ± 2.96</td>
<td>68.00 ± 3.93</td>
</tr>
<tr>
<td>Corr.</td>
<td>47.91 ± 2.87</td>
<td>48.52 ± 3.45</td>
<td>68.15 ± 2.01</td>
<td>68.15 ± 2.01</td>
<td>68.15 ± 2.01</td>
<td>68.15 ± 2.01</td>
</tr>
<tr>
<td>Comp.</td>
<td>87.71 ± 3.97</td>
<td>89.02 ± 3.89</td>
</tr>
</tbody>
</table>

Continued on next page
Table 7.1 - continued

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUBus-2 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>14.35 ± 1.10</td>
<td>14.35 ± 0.54</td>
<td>35.45 ± 6.99</td>
<td>46.98 ± 1.79</td>
<td>35.55 ± 9.82</td>
<td>33.31 ± 6.74</td>
</tr>
<tr>
<td>Corr.</td>
<td>4.18 ± 0.60</td>
<td>4.18 ± 0.60</td>
<td>27.79 ± 7.82</td>
<td>40.69 ± 2.00</td>
<td>27.89 ± 10.98</td>
<td>25.40 ± 7.54</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>MUBus-3 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>11.34 ± 0.06</td>
<td>11.34 ± 0.14</td>
<td>40.18 ± 0.95</td>
<td>43.51 ± 1.04</td>
<td>40.18 ± 0.95</td>
<td>26.16 ± 5.83</td>
</tr>
<tr>
<td>Corr.</td>
<td>4.36 ± 0.15</td>
<td>4.36 ± 0.15</td>
<td>35.47 ± 1.02</td>
<td>39.06 ± 1.12</td>
<td>35.47 ± 1.02</td>
<td>20.34 ± 6.28</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>ILDP (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>76.02 ± 2.61</td>
<td>71.51 ± 1.28</td>
<td>71.68 ± 1.66</td>
<td>72.55 ± 2.47</td>
<td>71.68 ± 1.73</td>
<td>71.86 ± 1.43</td>
</tr>
<tr>
<td>Corr.</td>
<td>29.56 ± 8.68</td>
<td>2.46 ± 6.01</td>
<td>4.30 ± 5.91</td>
<td>6.14 ± 11.41</td>
<td>4.27 ± 7.80</td>
<td>3.68 ± 7.88</td>
</tr>
<tr>
<td>Comp.</td>
<td>99.69 ± 0.10</td>
<td>99.03 ± 1.70</td>
<td>98.55 ± 1.70</td>
<td>99.03 ± 1.70</td>
<td>98.55 ± 1.70</td>
<td>99.03 ± 1.70</td>
</tr>
</tbody>
</table>
Table 7.2: Fortification experimental result with ParCEL (means ± standard deviations of 10 folds). Notations used in this table are similar to those of Table 7.1.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low and medium complexity learning problems without timeout (Group 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moral (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>97.00 ± 3.50</td>
<td>99.00 ± 2.11</td>
<td>98.50 ± 3.38</td>
<td>98.50 ± 3.38</td>
<td>98.50 ± 3.38</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>96.00 ± 5.164</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>99.00 ± 3.16</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>98.00 ± 4.22</td>
<td>98.00 ± 4.22</td>
<td>97.00 ± 6.75</td>
<td>97.00 ± 6.75</td>
<td>98.00 ± 4.22</td>
</tr>
<tr>
<td>Forte (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>89.66 ± 17.92</td>
<td>90.81 ± 15.93</td>
<td>84.98 ± 11.00</td>
<td>87.27 ± 16.25</td>
<td>84.98 ± 11.00</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>87.30 ± 21.99</td>
<td>88.89 ± 19.25</td>
<td>88.89 ± 19.25</td>
<td>87.30 ± 21.99</td>
<td>88.89 ± 19.25</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>95.83 ± 7.22</td>
<td>95.83 ± 7.22</td>
<td>73.81 ± 12.67</td>
<td>86.31 ± 14.32</td>
<td>73.81 ± 12.67</td>
</tr>
<tr>
<td>Poker Straight (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>96.43 ± 4.12</td>
<td>92.72 ± 5.84</td>
<td>96.29 ± 4.29</td>
<td>94.51 ± 3.67</td>
<td>96.29 ± 4.29</td>
<td>94.51 ± 3.67</td>
</tr>
<tr>
<td>Corr.</td>
<td>98.08 ± 3.85</td>
<td>94.23 ± 7.37</td>
<td>98.08 ± 3.85</td>
<td>96.15 ± 4.44</td>
<td>98.08 ± 3.85</td>
<td>96.15 ± 4.44</td>
</tr>
<tr>
<td>Comp.</td>
<td>75.00 ± 50.00</td>
</tr>
<tr>
<td>Brother (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Daughter (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Father (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
</tbody>
</table>

Continued on next page
Table 7.2 – continued

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandson (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>High and very high complexity learning problems without timeout (Group 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aunt (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Cousin (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>99.29 ± 2.26</td>
<td>100.00 ± 0.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Uncle (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>98.75 ± 3.95</td>
<td>98.75 ± 3.95</td>
<td>98.75</td>
<td>97.50</td>
<td>97.50</td>
<td>97.50</td>
</tr>
<tr>
<td>Corr.</td>
<td>97.50 ± 7.91</td>
<td>97.50 ± 7.91</td>
<td>97.50</td>
<td>97.50</td>
<td>97.50</td>
<td>97.50</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00</td>
<td>97.50</td>
<td>100.00</td>
<td>97.50</td>
</tr>
<tr>
<td>Learning problems with timeout (Group 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CarcinoGenesis (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>56.05 ± 4.30</td>
<td>52.78 ± 7.12</td>
<td>54.88</td>
<td>53.37</td>
<td>53.96</td>
<td>53.09</td>
</tr>
<tr>
<td>Corr.</td>
<td>75.29 ± 11.91</td>
<td>61.08 ± 11.01</td>
<td>69.58</td>
<td>62.38</td>
<td>65.58</td>
<td>64.33</td>
</tr>
<tr>
<td>Comp.</td>
<td>39.42 ± 11.41</td>
<td>45.44 ± 11.84</td>
<td>42.11</td>
<td>45.44</td>
<td>43.77</td>
<td>43.22</td>
</tr>
<tr>
<td>UCA1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>99.38 ± 1.98</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>98.66</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>98.75 ± 3.95</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>98.75</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>98.57</td>
</tr>
<tr>
<td>Metric</td>
<td>Full training</td>
<td>No fortification</td>
<td>TCScore</td>
<td>CSScore</td>
<td>FVScore</td>
<td>Random</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>MUBus-1 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>99.63 ± 0.31</td>
<td>99.51 ± 0.47</td>
<td>99.51 ± 0.47</td>
<td>99.74 ± 0.36</td>
<td>99.51 ± 0.47</td>
<td>99.63 ± 0.47</td>
</tr>
<tr>
<td>Corr.</td>
<td>99.61 ± 0.43</td>
<td>99.52 ± 0.43</td>
<td>99.52 ± 0.43</td>
<td>99.78 ± 0.31</td>
<td>99.52 ± 0.43</td>
<td>99.69 ± 0.46</td>
</tr>
<tr>
<td>Comp.</td>
<td>99.74 ± 0.83</td>
<td>99.47 ± 1.11</td>
<td>99.47 ± 1.11</td>
<td>99.47 ± 1.11</td>
<td>99.47 ± 1.11</td>
<td>99.21 ± 1.27</td>
</tr>
<tr>
<td>MUBus-2 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>97.91 ± 0.50</td>
<td>98.05 ± 0.57</td>
<td>98.12 ± 0.53</td>
<td>98.26 ± 0.61</td>
<td>98.12 ± 0.53</td>
<td>98.08 ± 0.59</td>
</tr>
<tr>
<td>Corr.</td>
<td>99.54 ± 0.45</td>
<td>99.49 ± 0.24</td>
<td>99.56 ± 0.24</td>
<td>99.72 ± 0.25</td>
<td>99.56 ± 0.24</td>
<td>99.52 ± 0.27</td>
</tr>
<tr>
<td>Comp.</td>
<td>84.18 ± 5.59</td>
<td>85.97 ± 6.26</td>
</tr>
<tr>
<td>MUBus-3 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>95.85 ± 0.31</td>
<td>94.57 ± 0.32</td>
<td>94.65 ± 0.32</td>
<td>94.65 ± 0.32</td>
<td>94.65 ± 0.32</td>
<td>94.58 ± 0.33</td>
</tr>
<tr>
<td>Corr.</td>
<td>99.74 ± 0.17</td>
<td>99.86 ± 0.05</td>
<td>99.94 ± 0.06</td>
<td>99.94 ± 0.06</td>
<td>99.94 ± 0.06</td>
<td>99.88 ± 0.05</td>
</tr>
<tr>
<td>Comp.</td>
<td>46.40 ± 3.66</td>
<td>27.36 ± 4.48</td>
<td>27.36 ± 4.48</td>
<td>27.36 ± 4.48</td>
<td>27.36 ± 4.48</td>
<td>27.28 ± 4.39</td>
</tr>
<tr>
<td>ILDP (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>71.12 ± 5.36</td>
<td>70.24 ± 6.76</td>
<td>72.07 ± 6.86</td>
<td>69.22 ± 5.66</td>
<td>72.06 ± 7.01</td>
<td>69.84 ± 5.95</td>
</tr>
<tr>
<td>Corr.</td>
<td>29.56 ± 8.68</td>
<td>67.28 ± 12.74</td>
<td>74.49 ± 12.42</td>
<td>67.90 ± 12.98</td>
<td>74.49 ± 12.42</td>
<td>69.15 ± 11.59</td>
</tr>
<tr>
<td>Comp.</td>
<td>99.69 ± 0.10</td>
<td>71.80 ± 11.32</td>
<td>70.87 ± 11.40</td>
<td>69.93 ± 10.51</td>
<td>70.86 ± 11.42</td>
<td>70.25 ± 10.10</td>
</tr>
</tbody>
</table>
Table 7.3: Fortification experimental result with SPaCEL (means ± standard deviations of 10 folds). Notations used in this table are similar to those of Table 7.1.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moral (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>98.00 ± 4.22</td>
<td>98.00 ± 4.22</td>
<td>98.50 ± 3.38</td>
<td>98.00 ± 4.22</td>
<td>98.50 ± 3.38</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>98.00 ± 6.33</td>
<td>98.00 ± 6.33</td>
<td>99.00 ± 3.16</td>
<td>98.00 ± 6.33</td>
<td>99.00 ± 3.16</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>98.00 ± 6.33</td>
</tr>
<tr>
<td>Forte (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>89.66 ± 17.92</td>
<td>91.91 ± 11.06</td>
<td>89.61 ± 9.08</td>
<td>89.61 ± 9.08</td>
<td>91.91 ± 11.06</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>87.30 ± 21.99</td>
<td>92.06 ± 13.75</td>
<td>92.06 ± 13.75</td>
<td>92.06 ± 13.75</td>
<td>92.06 ± 13.75</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>95.83 ± 7.22</td>
<td>91.07 ± 7.78</td>
<td>82.74 ± 6.76</td>
<td>82.74 ± 6.76</td>
<td>91.07 ± 7.78</td>
</tr>
<tr>
<td>Poker Straight (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>98.21 ± 3.57</td>
<td>94.51 ± 6.89</td>
<td>96.29 ± 4.29</td>
<td>96.29 ± 4.29</td>
<td>96.29 ± 4.29</td>
<td>96.29 ± 4.29</td>
</tr>
<tr>
<td>Corr.</td>
<td>98.08 ± 3.85</td>
<td>96.15 ± 7.69</td>
<td>98.08 ± 3.85</td>
<td>98.08 ± 3.85</td>
<td>98.08 ± 3.85</td>
<td>98.08 ± 3.85</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>75.00 ± 50.00</td>
</tr>
<tr>
<td>Brother (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Daughter (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Father (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
</tbody>
</table>

Continued on next page
Table 7.3 – continued

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandson (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>High and very high complexity learning problems without timeout (Group 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aunt (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>98.75 ± 3.95</td>
<td>98.75 ± 3.95</td>
<td>98.75 ± 3.95</td>
<td>98.75 ± 3.95</td>
<td>97.75 ± 4.78</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>97.50 ± 7.91</td>
<td>97.50 ± 7.91</td>
<td>100.00 ± 0.00</td>
<td>97.50 ± 7.91</td>
<td>97.50 ± 7.91</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>97.50 ± 7.91</td>
<td>100.00 ± 0.00</td>
<td>98.00 ± 6.33</td>
</tr>
<tr>
<td>Cousin (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
<td>97.32 ± 5.66</td>
</tr>
<tr>
<td>Corr.</td>
<td>100.00 ± 0.00</td>
<td>94.64 ± 11.33</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>97.50 ± 7.91</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
</tr>
<tr>
<td>Uncle (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>95.42 ± 10.84</td>
<td>95.83 ± 6.80</td>
<td>98.33 ± 5.27</td>
<td>94.58 ± 7.10</td>
<td>97.08 ± 6.23</td>
<td>94.58 ± 7.10</td>
</tr>
<tr>
<td>Corr.</td>
<td>90.83 ± 21.68</td>
<td>91.67 ± 13.61</td>
<td>96.67 ± 10.54</td>
<td>94.17 ± 12.45</td>
<td>96.67 ± 10.54</td>
<td>91.67 ± 13.61</td>
</tr>
<tr>
<td>Comp.</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>100.00 ± 0.00</td>
<td>95.00 ± 10.54</td>
<td>97.50 ± 7.91</td>
<td>97.50 ± 7.91</td>
</tr>
<tr>
<td>Learning problems with timeout (Group 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CarcinoGenesis (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>60.52 ± 6.06</td>
<td>56.36 ± 7.22</td>
<td>57.24 ± 6.39</td>
<td>57.85 ± 5.87</td>
<td>57.57 ± 8.56</td>
<td>56.63 ± 9.07</td>
</tr>
<tr>
<td>Corr.</td>
<td>35.42 ± 8.39</td>
<td>43.25 ± 10.32</td>
<td>53.50 ± 5.45</td>
<td>50.33 ± 5.87</td>
<td>51.00 ± 9.57</td>
<td>47.75 ± 12.30</td>
</tr>
<tr>
<td>Comp.</td>
<td>81.90 ± 6.77</td>
<td>67.54 ± 10.05</td>
<td>60.32 ± 11.36</td>
<td>64.27 ± 9.12</td>
<td>63.13 ± 9.96</td>
<td>64.21 ± 12.25</td>
</tr>
</tbody>
</table>

Continued on next page
Table 7.3 – continued

<table>
<thead>
<tr>
<th>Metric</th>
<th>Full training</th>
<th>No fortification</th>
<th>TCScore</th>
<th>CSScore</th>
<th>FVScore</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCA1 (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acc.</td>
<td>100.00 ± 0.00</td>
</tr>
</tbody>
</table>

Bus-1 (2)						
Acc.	99.74 ± 0.36	99.59 ± 0.45	99.59 ± 0.45	99.78 ± 0.36	99.59 ± 0.45	99.51 ± 0.50
Corr.	99.74 ± 0.42	99.61 ± 0.43	99.61 ± 0.43	99.83 ± 0.42	99.61 ± 0.43	99.61 ± 0.43
Comp.	99.74 ± 0.81	99.47 ± 1.11	99.47 ± 1.11	99.47 ± 1.11	99.47 ± 1.11	98.95 ± 1.84

Bus-2 (3)						
Acc.	99.78 ± 0.23	99.76 ± 0.21	99.76 ± 0.21	99.87 ± 0.16	99.78 ± 0.20	99.76 ± 0.20
Corr.	99.81 ± 0.18	99.77 ± 0.24	99.77 ± 0.24	99.89 ± 0.19	99.79 ± 0.23	99.79 ± 0.23
Comp.	99.55 ± 1.00	99.70 ± 0.63	99.70 ± 0.63	99.70 ± 0.63	99.70 ± 0.63	99.55 ± 0.72

Bus-3 (5)						
Acc.	99.72 ± 0.40	99.67 ± 0.14	99.80 ± 0.09	99.81 ± 0.19	99.80 ± 0.09	99.66 ± 0.15
Corr.	99.84 ± 0.06	99.67 ± 0.15	99.81 ± 0.10	99.84 ± 0.17	99.81 ± 0.10	99.67 ± 0.15
Comp.	98.16 ± 5.28	99.60 ± 0.68	99.60 ± 0.68	99.52 ± 0.77	99.60 ± 0.68	99.52 ± 0.86

ILDP (3)						
Acc.	72.67 ± 8.12	71.46 ± 8.15	73.08 ± 8.12	70.82 ± 8.54	72.87 ± 8.29	72.07 ± 7.81
Corr.	68.97 ± 13.19	63.02 ± 14.00	69.63 ± 12.84	64.78 ± 13.42	69.63 ± 12.84	66.03 ± 12.43
Comp.	74.54 ± 11.39	75.79 ± 11.84	74.85 ± 12.00	73.91 ± 12.95	74.54 ± 12.65	75.16 ± 12.40
7. Improving Predictive Correctness by Fortification

7.5 Conclusion

This chapter has presented a fortification method for improving the predictive accuracy of the class expression learning algorithms. A fortification method consists of a method for generating the fortifying definition, a fortification scoring and a cut-off point computation strategies.

This chapter has also provided one method for fortifying definition generation, three fortification scoring methods and one cut-off point computation strategy. Overall, the experimental results in Tables 7.1, 7.2 and 7.3 show that this method improved the predictive predictive accuracy of most learning problems in the experiments. This means that the predictive accuracy was increased and the increase of the predictive correctness was higher than the decrease of the completeness (if any).

The experiments were conducted on three learning algorithms that use three different class expression learning approaches. The experimental results of CELOE and ParCEL were better than those of SPaCEL: 14/30 results of CELOE and 8/30 results of ParCEL were above the baseline in comparison with 6/33 results of SPaCEL. One of the possible reasons is that CELOE and ParCEL had better fortifying definitions for fortification than SPaCEL. In SPaCEL, some of the fortifying definitions were used to construct the learnt concept (counter-partial definitions) and they may be the most promising definitions for the fortification.

Amongst the three fortification strategies, CSScore produced better results in more learning problems than TCScore and FVScore. However, the TCScore strategy does not require an additional step to compute the fortification score. The result of the random fortifying definition selection was also presented in Tables 7.1, 7.2 and 7.3. The results illustrates the positive effect of the fortification strategies on the fortification result. The random selection strategy gave lower accuracy than the other strategies in more learning problems.

The current cut-off point computation strategy produced promising results. The increase of predictive correctness that was caused by the fortification was higher than the decrease of predictive completeness in most of learning problems in the experiments. As a result, the predictive accuracy also increased. There was no significant decrease
of predictive completeness in the experiments. The current cut-off point computation method is based on the fortification validation dataset. Therefore, it may be recomputed according to the change of data or the performance of the fortification on the classification.

Further investigation on the fortifying definitions suggests that the fortification results can be further improved by more appropriate cut-off points. Table 7.4 shows the predictive accuracy and correctness at other cut-off points (that is called \textit{the new cut-off point} in the table) for the CarcinoGenesis and MUBus-1 datasets in the CELOE and SPaCEL results. The new cut-off points produce higher results and some of them are statistically significant higher than the results without fortification, whereas the results produced by the current cut-off points are not. To produce the results in Table 7.4, we used all fortifying definitions and observe the fortification result incrementally. After that, we selected the first result that is better than the current cut-off point. These are still not necessarily the best results that the fortification can produce. A more thorough investigation on the cut-off point computation may involve more factors that have not been investigated yet.

Nevertheless, the fortification experimental results are promising, particular for the top-down learning approaches (e.g. CELOE and ParCEL). For example, experimental results on CELOE suggests that 14/48 results were above the baseline, i.e. they are statistically significantly better than the prediction result without fortification at 95% confidence. There were 18/48 results in which the predictive accuracy is 100%. Therefore, this approach is applicable for class expression learning, as top-down learning is the most popular approach in class expression learning. The experimental results suggest that our approach not only ensured a balanced trade-off between the predictive correctness and the predictive completeness, but also achieved promising results. The gained predictive correctness was higher than the lost predictive completeness in most learning problems. Therefore, the predictive accuracy was increased respectively. In 144 results (3 algorithms, 16 datasets and 3 fortification strategies), 28 results were above baseline, and none of the results was below the baseline. It is worth noting that in 144 validation results, there were 51 results in which the predictive accuracy is 100%.
7. Improving Predictive Correctness by Fortification

<table>
<thead>
<tr>
<th>Problem</th>
<th>Metric</th>
<th>No fort.</th>
<th>ParCEL</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td></td>
<td></td>
<td>CSS</td>
<td>FV</td>
</tr>
<tr>
<td></td>
<td>Score</td>
<td>Score</td>
<td>Score</td>
<td>Score</td>
<td>Score</td>
</tr>
<tr>
<td></td>
<td>Old</td>
<td>New</td>
<td>Old</td>
<td>New</td>
<td>Old</td>
</tr>
<tr>
<td>CarcinoGenesis</td>
<td>Acc.</td>
<td>52.78 ± 7.12</td>
<td>54.88 ± 6.38</td>
<td>54.55 ± 6.83</td>
<td>53.08 ± 5.05</td>
</tr>
<tr>
<td>(8, 5)</td>
<td>Corr.</td>
<td>61.08 ± 11.01</td>
<td>68.58 ± 5.46</td>
<td>73.46 ± 6.28</td>
<td>62.38 ± 8.75</td>
</tr>
<tr>
<td>MUBus-1</td>
<td>Acc.</td>
<td>99.51 ± 0.47</td>
<td>99.51 ± 0.47</td>
<td>99.78 ± 0.26</td>
<td>99.74 ± 0.36</td>
</tr>
<tr>
<td>(6, 16)</td>
<td>Corr.</td>
<td>99.52 ± 0.43</td>
<td>99.52 ± 0.43</td>
<td>99.83 ± 0.31</td>
<td>99.78 ± 0.14</td>
</tr>
<tr>
<td>MUBus-2</td>
<td>Acc.</td>
<td>99.61 ± 0.43</td>
<td>99.61 ± 0.43</td>
<td>99.96 ± 0.42</td>
<td>99.83 ± 0.28</td>
</tr>
<tr>
<td>(2, 21)</td>
<td>Corr.</td>
<td>99.76 ± 0.21</td>
<td>99.76 ± 0.21</td>
<td>99.83 ± 0.16</td>
<td>99.87 ± 0.08</td>
</tr>
<tr>
<td>MUBus-2</td>
<td>Acc.</td>
<td>99.77 ± 0.24</td>
<td>99.77 ± 0.24</td>
<td>99.84 ± 0.19</td>
<td>99.80 ± 0.08</td>
</tr>
<tr>
<td>(2, 21)</td>
<td>Corr.</td>
<td>99.77 ± 0.24</td>
<td>99.77 ± 0.24</td>
<td>99.84 ± 0.19</td>
<td>99.80 ± 0.08</td>
</tr>
</tbody>
</table>

Table 7.4: Experimental results for new cut-off points (means ± standard deviations of 10 folds). The pairs of numbers below the learning problem names represent the current (Old) and the new (New) cut-off points respectively. The representation conventions are similar to Table 7.1. “No fort.” is the abbreviation for “No fortification”.

7.184
In the three fortification scoring strategies, the TCScore strategy does not require additional computation and dataset to score the fortification candidates. Therefore, it is suitable for learning problems that do not have enough additional data for scoring. This strategy is also suitable for learning problems where the training data contains enough information to describe the scenario.

On the other hand, CSScore and FVScore require additional computation and a validation dataset. As these strategies use a separate dataset for scoring, they can deal with the unseen characteristics in the training data, i.e. incomplete training data. CSScore also uses the similarity between concepts to score the candidates. Therefore, it often had stronger impact on the fortification results. Using both ABox and TBox in scoring the candidates also help this strategy to be less dependant on the additional dataset. If there is no additional dataset, it can be adjusted to use only the TBox. In comparison with the TCScore and FVScore that use only the ABox, the combination of both ABox and TBox of the CSScore produced better results.

As each of the strategies uses different aspects to score the candidates, e.g. TCScore employs the training model, and CSScore employs the concept model (TBox) and a validation model (similarity based on ABox), a combination of them may create a potential scoring strategy. This is left as future work.
7. Improving Predictive Correctness by Fortification
Chapter 8

Conclusions and Future Work

In this chapter, we first summarise the results and contributions of the thesis. Then, we point out potential threats to the validity of results and discuss future work.

8.1 Discussion and Contributions of the Thesis

This thesis proposes novel approaches in description logic learning to improve speed and scalability, and to provide flexibility to trade off between predictive correctness and predictive completeness.

Two approaches have been proposed to speed up learning and improve the ability of the learning algorithms to deal with complex learning problems. In the first approach, the Parallel Class Expression Learning (ParCEL) algorithm, the learning is sped up by increasing the number of computations of the learning algorithm in a unit of time. The approach uses parallelisation to take advantage of multi-core processors and multi-processor systems. Moreover, the implicit divide and conquer strategy behind the three-step learning approach, which combines both top-down and bottom-up learning and a reduction step, helps to increase the scalability of the learning algorithm when the complexity of the learning problems increases. The reduction step enables customisation of the learnt models, i.e. to create bias towards a certain metric such as total definition length or the number of sub-solutions. The experiments show
promising results for both learning time and the ability to deal with complex learning problems. The results were compared with the Class Expression Learner for Ontology Engineering algorithm (CELOE), a top-down OWL class expression learning that was recently developed. The experimental results show that ParCEL outperformed CELOE on most learning problems in the experiments. The ParCEL approach addresses the second objective of the research and it was presented in Chapter 5.

A Symmetric Class Expression Learning (SPaCEL) approach has also been introduced to improve learning speed. The idea underlying this approach is to reduce the number of computations necessary to find the solution. This objective was achieved by using downward refinement to build models for both positive and negative examples simultaneously. In other words, the approach utilises definitions of both positive and negative examples. The downward refinement operators for description logics are not dedicated to finding the definition of positive or negative examples. They simply specialise a given description and therefore refinement results may be the definitions of positive or negative examples. Most top-down learning approaches only seek a definition for positive examples and they are completely based on the refinement operators. However, models of positive examples can be constructed using the models of negative examples. For instance, the concept Father can be defined not only as Male AND hasChild SOME Person but also as hasChild SOME Person AND (not Female) where Female is a model of negative examples. Intuitively, a symmetric approach can use the refinement results more effectively and thus can reduce the search space size. In addition, this approach is also beneficial for parallelisation. The evaluation results suggest that combining these methods reduced the search space significantly in comparison with CELOE, a top-down class expression learning algorithm. The SPaCEL approach addresses the third objective of the research and it was presented in Chapter 6.

An Adaptive Numerical Data Segmentation approach that aims to segment the values of numerical datatype properties to add support for numerical data learning in description logic learning has been introduced. This approach contributes to the improvement of the scalability and speed of description logic learning. We have shown that this approach computes quasi-order sets for refinement of numerical datatype
properties based on relational graphs that describe relationships between examples and
the values of datatype property assertions. The relational graphs provide necessary
information to reduce redundancy and avoid the missing of any necessary values in
the quasi-order space. As the result, this approach decreases the learning search space
and speeds up the learning algorithms. The Adaptive Numerical Data Segmentation
approach addresses the first objective of our research and it was presented in Chapter
4.

To provide flexibility to trade off between predictive correctness and predictive
completeness, fortification of the prediction model has been proposed. In description
logic learning, the top-down approach is most used and it tends to create bias towards
predictive completeness. Therefore, a method that can improve predictive correctness
to provide flexibility to trade off between these factors has been proposed. The basic
idea of this approach is to fortify the predictive correctness by applying a level of over-
specialisation on the prediction model. Two questions in this problem were addressed:
i) how to specialise the prediction model, and ii) how much specialisation should be
applied.

A method for producing fortification candidates has been proposed that can be
applied to arbitrary class expression learning algorithms. Fortification candidates can
be computed by swapping the sets of positive and negative examples and using the
allowed noise percentage in the learning setting. More over-specialisation can poten-
tially provide higher prediction correctness, but it can lead to over-fitting. Therefore,
methods for ranking the fortification candidates and identifying appropriate levels of
over-specialisation for the prediction model have been proposed. Three ranking meth-
ods have been proposed, based respectively on training coverage, fortification validation
and concept similarity. These methods use different aspects to rank the candidates and
thus each of them is suitable for a particular class of problems. The number of candi-
dates used for fortification, called cut-off point, is computed based on the fortification
validation dataset.

The experiments show promising results, particularly on top-down learning ap-
proaches such as CELOE and ParCEL. However, further investigation suggests that
the proposed cut-off strategy is not optimal. The fortification results could be further
improved by a more appropriate cut-off point computation strategy. The Fortification Approach to Improve Predictive Correctness addresses the fourth objective of the thesis and it was described in Chapter 7.

In addition to the above-mentioned findings, this thesis also produced some other considerable contributions. Two learners, ParCEL and SPaCEL, and a fortification model were implemented and integrated into DL-Learner, a popular description logic learning framework\(^1\) (see Appendix A). In addition, an evaluation methodology that was designed in Chapter 3 includes all aspects of a thorough evaluation: selection of datasets; evaluation metrics; measurement methodology and statistical significance tests. An overview of the literature in the field of class expression learning was also provided in Chapter 2.

8.2 Threats to Validity of the Results

In this section, we discuss the uncontrollable factors that impact on the results of the experiments (internal validity) and the generalisability of the findings (external validity).

8.2.1 Threats to internal validity

Four potential threats to the internal validity of the experimental results have been identified:

1. **Thread scheduling.** Class expression learning is essentially a search problem where the exploration of the search space is controlled by a search heuristics. In parallel class expression learning, multiple workers are used to explore the search space (search tree) simultaneously. Although the descriptions in the search space (branches) are assigned to the workers based on the search heuristic, the order of refinements may be slightly different between different runs of the same learning problem depending on the order in which the workers are scheduled. Potential metrics affected by this threat are the learning time and the predictive accuracy. Our investigation suggested that there was not a significant variation between

\(^1\)http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/
8. Conclusions and Future Work

runs. However, this does not mean that the threat caused by thread scheduling can be completely ignored. It can be addressed by using the multi-run k-fold cross-validation method.

2. Concurrency control. In a parallel programming paradigm, concurrency control between threads is an important issue. In our implementation, monitor locks (i.e. synchronized blocks) and concurrent data structures were used for concurrency control [25, 47, 136]. While the concurrent data structures allow for higher guarantees of concurrency control, the monitoring locks have the potential to cause conflicts between threads. Using concurrency is a trade-off between avoiding concurrency-related problems such as deadlocks and taking advantage of parallelism. Our implementation might not strike the optimal balance, affecting the learning time and accuracy.

3. Calibration of problems. In general, default learning configurations suggested by the learners were always used (see [82] for CELOE settings and Chapters 6 for ParCEL and SPaCEL settings). However, other settings may yield better results. In particular, there are two basic learning settings that influence the learning results: the allowed noise percentage and the search heuristic. The first setting is very important to deal with the noisy learning problems. In our experiments, CarcinoGenesis and ILDP are noisy datasets. It was reported that CELOE achieved the highest accuracy on the CarcinoGenesis dataset when the allowed noise percentage is 30% [82]. Similarly, the learning heuristic is also a potential factor that influences the experimental results. Appropriate learning heuristics can help to improve the learning time and perhaps the predictive accuracy. For example, the solution for a complex learning problem can be found faster if the penalty on the description length is low or vice versa.

There are two reasons for using the default learning setting in our experiments. First, investigating this cracks the combinatorial exploration of a problem that is already computationally expensive. Second, it is necessary to avoid the favouritism between learning algorithms that is caused by the customised learning configurations. For example, we may set an inappropriate penalty factor for the comparison
algorithm while optimising this factor for our algorithm. Therefore, if the experimental results are used to compare between learners, the impact of this threat upon the results will not be significant. Otherwise, this threat should be treated with caution. It can be counteracted by using a validation dataset to investigate the best learning setting.

8.2.2 Threats to external validity

Two threats that potentially influence the generalisability of the findings should be considered:

1. **Implementation language selection bias.** Our algorithms have been implemented in Java, which is widely used by the Semantic Web community. Therefore, it can benefit the implementation of existing semantic web techniques such as the application programming interface for OWL (OWLAPI) and the OWL reasoners. This language also strongly supports concurrency control techniques that are necessary for implementing parallelisation. However, the more benefits the implementation got, the more difficult the migration of the implementation would be. In the context of the Semantic Web application, the influence of this threat to validity of our implementation is not a major concern. Therefore, we consider it as a minor threat to the external validity of our implementation.

2. **Dataset and reasoning framework selection.** The low to high complexity datasets, whose definitions have from several to hundreds of axioms, were used for evaluation. However, the size of these datasets ranges only from small to medium. Therefore, this allows the entire knowledge base of the learning problems to be loaded into memory and reasoner for processing and reasoning. In real-world applications, there are many large to very large ontologies that contain thousands to hundred thousands of classes and properties such as DBpedia, Cyc, etc. [18, 94]. Our algorithms cannot be applied directly to learning problems with such knowledge bases. The reason for this issue is that the OWL reasoners used in our algorithms, Pellet [107] and Fast Instance Check (FIC) [81], cannot load the entirety of the large ontologies into memory for reasoning. The initial
time for loading and classifying such ontologies is time-consuming. This can be considered a major threat for our algorithms as the learning problems are increasing not only in term of complexity (of the definitions) but also in term of size (of the knowledge base). A potential solution for this problem is to use the knowledge fragment selection approach [58, 116], which allows the reasoning to be performed within a ‘related part’ of the knowledge base towards a given reasoning request. Another solution is to use the parallel semantic web reasoning frameworks that are developed for web-scale knowledge bases such as LarKC [48], Reasoning-Hadoop [132] and WebPIE [131].

8.3 Future Work

Our experiments achieved promising results in improving class expression learning algorithms’ performance and providing a flexible trade-off between predictive correctness and completeness. However, our investigations have shown that there are other interesting properties that have not been explored yet.

It would be useful to test the learning algorithms with more learning problems, particularly learning problems with large knowledge bases and noisy datasets. This would provide more thorough investigations into the ability of the learning algorithms to deal with large knowledge bases and noisy datasets, which would help improve the algorithms’ applicability for real-world applications. This is a challenging work as handling noisy data is a difficult problem in machine learning.

The second direction is to investigate more reduction strategies for the Parallel Class Expression Learning algorithm. The current reduction strategies are based on the greedy strategy combined with a scoring criteria that creates bias towards certain metrics. Each of the current reduction strategies uses only one certain condition to score the partial solutions such as training coverage or definition length. Of a partial solution, these two basic attributes are currently used separately. However, a combination of these metrics may result in a more promising reduction strategy. For example, consider two partial definitions with length 5 where each of them covers 80% of the positive examples and their combination covers 100% of the positive examples. The combination
of these partial definitions is preferred to a definition with length 15 that has 100% coverage. However, a definition with length 15 that covers 100% of the positive examples is better than 3 partial definitions with length 10 where each of them covers 40% and their combination covers 100% of the positive examples. This example implies that a more thorough reduction strategy requires the combination of different metrics.

Another direction that is also related to the construction of the final definition is the normalisation and simplification of the learnt definitions. As discussed in Section 6.3.4, the current partial definition aggregation simply creates disjunction of all reduced partial definitions. This may produce redundancies in the final definition, particularly in the SPaCEL approach, where the counter-partial definitions can be used in many partial definitions. Optimisation and simplification can be used to optimise and simplify descriptions in description logics [3, 65]. They can remove redundancy in the learnt definitions to reduce their length and increase the readability.

Fortification scoring and cut-off point estimation strategies can also be improved further. An initial investigation into the experimental results in Section 7.5 shows that although the current fortification and cut-off point estimation strategies produce promising results, they have potential to produce even more promising results. Each of the current fortification scoring strategies is based on a certain aspect such as training coverage and concept similarity. A combination of these aspects can result in a more robust strategy. In addition, a cut-off point strongly influences the fortification results. The current strategy uses a fortification validation dataset for estimating the cut-off points. However, a combination with training accuracy, completeness and correctness may produce a better strategy.

Improving the scalability of the learner with respect to the size of the learning problem’s knowledge base is an indispensable direction to help the learners to be more useful for real-word applications. As was explained in the discussion of potential threats to external validity of the research (see Section 8.2.2), there are two possible approaches for this direction. The first approach is to use more scalable reasoning frameworks for the learners, particularly the parallel and web-scale reasoners frameworks such as LarKC [48], Reasoning-Hadoop [132] and WebPIE [131]. Another approach is to use the knowledge fragment selection technique to reduce the size of the knowledge base required for
instances checks [58, 116]. This technique identifies a minimal segment of knowledge base that is relevant to the instance checks of a learning problem. This approach is particularly useful for learning problems that use the general (upper) ontologies as the knowledge base.

Another potential direction for future work is to redesign the learner to enable the use of cloud computing [1, 23, 41]. An advantage for this direction is that the current learners use the map-reduce architecture. This model is used for most cloud technologies such as Hadoop [138] and CGL-MapReduce [42]. However, as with other parallel and distributed algorithms, dealing with the concurrency and latency between nodes in the cloud is the most challenging problem. The latency between cloud nodes may influence the learnt result as it may influence the learning heuristics’ impact. However, this direction, together with the improvement of the reasoning scalability, will result in a highly scalable class expression learner that can handle learning problems that have web-scale knowledge bases.
8. Conclusions and Future Work
Appendix A

Accessing the Implementation

The algorithms proposed in this thesis including ParCEL, SPaCEL and Fortification for description logic learning are implemented based on the DL-Learner, an open source machine learning framework [79]. This appendix first introduces briefly the DL-Learner framework architecture based on its manual. After that, we present structure of the algorithms proposed in this thesis. Finally, we provide instructions for checking out and compiling the projects.

A.1 Software Structure

Our algorithms are implemented based on DL-Learner framework. This is an open source Web Ontology Language learning framework developed by Lehmann and his team [79]. It is written in Java and developed using Maven software project management architecture [92]. It provides flexibility for developing and new description learning algorithms and integrating them into this framework as it uses the component based model.

A.1.1 DL-Learner architecture

The architecture of this framework is adopted from [79] as shown in Figure A.1. There are four core components:

Knowledge source – is a wrapper for knowledge bases and provides interface for ac-
A. Accessing the Implementation

Accessing data inside the knowledge bases. This component is used by reasoner components. Some types of knowledge sources currently supported by this framework are OWL files (in various syntax), SPARQL endpoints and linked data [17, 29].

Reasoning component – provides reasoning services on knowledge sources to the learning algorithm and learning problem components. It supports DIG 1.1 [10] and OWLAPI [11] reasoner interfaces to connect to most of OWL reasoners such as Pellet, FaCT and Hermit.

Learning problem – specifies types of learning problem (see Section 2.2 for more details) accompanying the necessary information to describe a learning problem, e.g. sets of positive and negative examples. This component also provides calculations related to the learning problem such as completeness, correctness and accuracy.

Learning algorithm – provides methods to solve one or more types of learning problem. The relation between this component and other components is illustrated in Figure A.1.

This framework also provide interfaces (graphical and command line) for running and interacting with the learning algorithm. More details can be found in [79].

A.1.2 Our algorithms packages

Our algorithms are developed based on the DL-Learner framework. Therefore, they inherit the architecture of this framework, i.e. they are written in Java programming language and follow Maven project management architecture. In addition, Subversion is used to manage the project code revisions. We have developed three packages:

1. Package org.dllearner.algorithms.ParCEL implements the ParCEL algorithm (details are provided in Chapter 5).

2. Package org.dllearner.algorithms.ParCELEX implements the SPaCEL algorithm (details are provided in Chapter 6).
3. Package org.dllearner.cli.ParCEL implements fortification strategy and command line interface for running the algorithms (details are provided in Chapter 7).

Our code is being maintained in a Google Code repository at http://code.google.com/p/parcel-2013/

A.2 Checking Out and Compiling Code

In this section, we provide instructions for checking out and compiling the project code. There are no special hardware requirement for these tasks. The hardware is only needed to be able to run the required softwares. Software requirements are listed as follows:

1. Subversion (SVN) client 1.6.x or above for checking out the source code. It can be found at: http://subversion.apache.org/. For Linux systems, this package is also provided in apt-get repositories.

2. Maven 3.x or above for managing the compilation, test and deployment. This software can be found at: http://maven.apache.org/. Note that the most up-to-date version in apt-get repositories is 2.x. Therefore, it does not satisfy the
A. Accessing the Implementation

requirement and a newer version must be downloaded from the Apache website provided.

3. Java Development Kit (JDK) 1.5 or above. It can be found at: http://www.oracle.com/technetwork/java/javase/downloads/index.html and in apt-get repositories.

A.2.1 Checking out the project

The project code can be checked out at: https://parcel-2013.googlecode.com/svn/trunk/. The top level has three folders corresponding to three sub-projects and a project configuration file:

1. components-core: contains the core components of the DL-Learner framework.

2. interfaces: contains the DL-Learner interfaces including command line interface and a GUI. This project used components-core as its dependency.

3. parcel-components-core: contains algorithms proposed in this thesis including ParCEL and SPaCEL. This project uses components-core as its dependency.

4. parcel-interfaces: contains interface for running DL-Learner and our learning algorithms. It also support cross-validation and fortification strategy. This project depends on three above projects.

5. examples: contains the datasets and learning configuration files used in our experiments. This project is essentially a folder that contains datasets and learning configuration used for evaluations.

6. pom.xml: a common configuration for building all sub-projects.

The following command is used to checkout the projects from the repository:

svn checkout http://parcel-2013.googlecode.com/svn/trunk/ [containing folder]
A.2.2 Compiling code

To produce a runnable jar file for ParCEL and SPaCEL algorithms command line interface, we need to compile all four projects. Compiling a project and creating a jar file for it include two steps (using command line):

1. Navigate to the project folder.
2. Enter the following command:

```
mvn clean install -Dmaven.test.skip=true
```

Output of the compilation are the Java class files and a project jar file in the target folder of the project. For example, to compile and create a jar file for the components-core project, we follow the steps below:

1. In the terminal, change to the components-core folder.
2. Run the following command:

```
mvn clean install -Dmaven.test.skip=true
```

Outputs of this step are Java class files a jar file `components-core-1.0-SNAPSHOT.jar` in the folder target of this project.

Compilation of other projects can be done in the same manner. They must be compiled in the following order: components-core, parcel-components-core, interface and parcel-interfaces. Note that the first time these projects are compiled, Maven may checkout the DL-Learner package from the remote repository and it may not be compatible with our algorithms. Therefore, if the compilation of the interfaces or parcel-interfaces project has error related to DL-Learner package, recompile the projects again.

The final jar file that is used for running the algorithms (experiments) is the jar file of the parcel-interfaces project parcel-cli.jar. This is a runnable jar file that contains all necessary dependencies inside. Syntax for running this file is provided in Appendix B.
A. Accessing the Implementation
Appendix B

Reproducing the Experimental Results

This appendix provides instructions for reproducing experimental results reported in this thesis. Metrics that are related to performance (e.g., learning time) of the algorithm depend upon computer hardware (e.g., CPU and memory) and software (e.g., numbers of workers and splitting strategy). Therefore, different experimental systems may produce different results. Other metrics such as learnt concept and search tree size are often similar to the reported result. Basic learning configuration parameters are also provided. Finally, a test case is given as a step-by-step demonstration for learning a dataset with several learning algorithms on a system with no required applications installed, i.e., the test case starts from scratch.

B.1 System Requirements

There is no specific hardware requirement for running our algorithms. Any computers that can run the required softwares can also run our algorithms. The software requirements are as follows:

1. Java Runtime Environment (JRE) 1.5 or above.

2. Runnable ParCEL interfaces runnable jar file parcel-cli.jar.
B. REPRODUCING THE EXPERIMENTAL RESULTS

3. Datasets and learning configuration files. We provide a set of datasets and learning configuration files for these datasets in the folder examples in the repository. The examples folder must be put in the same level with the folder containing the jar file parcel-cli.jar. If it is placed in another level, paths in background knowledge files must be modified correspondingly.

All files in the 2nd and 3rd requirements can be downloaded at our project repository: http://parcel-2013.googlecode.com/files/parcel-2013.zip. The zip file contains:

1. A bin folder: this folder contains ParCEL interface runnable jar file parcel-cli.jar and two script files cli.bat and cli.sh for running the experiment in Windows and Linux respectively.

2. An examples folder: this folder contains the datasets and learning configurations files used in our experiments. Each dataset and the learning configuration files for the dataset are organised in a separate folder.

3. A README.txt file: this file provides brief instructions for running the experiments.

B.2 Running the Experiments

B.2.1 Syntax

To run an experiment (learning options are indicated in the learning configuration file), we firstly extract the downloaded file (see Section B.1). Then, go to the bin folder and run the following command:

- On Linux or Mac OS: ./cli.sh <learning configuration file>

 For example:

  ```
  ./cli.sh ../examples/forte/uncle_owl_large_parcel_learn.conf
  ```

- On Windows: cli.bat <learning configuration file>

 For example:
B. Reproducing the Experimental Results

cli.bat ..\examples\forte\uncle_owl_large.Parcel_learn.conf

The learning result is outputted both to the terminal and a log file saved in the bin\log folder.

B.2.2 Learning configuration file naming conventions

Learning configuration files are named using the following naming convention:

<dataset name>_<algorithm name>_<experiment type>.conf

Algorithm name can be: celery, parcel or parcelex (SPaCEL). On the other hand, experiment type is abbreviated as follows: learn stands for learning only, cross stands for running cross-validation and fort stands for running cross-validation with fortification.

For example, the file uncle_owl_large_parcel_learn.conf is a learning configuration file for learning the concept for uncle_owl_large dataset using the parcel algorithm without running cross-validation procedure.

B.3 Learning Configuration

Our algorithms are developed based on the DL-Learner framework as described in Section A.1.2. Therefore, a learning configuration file must provide sufficient information for the four components. An example of a typical learning configuration file is:

```plaintext
// command line interface (CLI) component
cli.type = "org.dllearner.cli.ParCEL.CLI"
cli.performCrossValidation = true
cli.nrOfFolds = 3
cli.fortification = false
cli.fairComparison = false

// knowledge source component
ks.type = "OWL File"
```
B. Reproducing the Experimental Results

```java
ks.fileName = "forte_family.owl"
//reasoner component
reasoner.type = "fast instance checker"
reasoner.sources = {ks}

//algorithm component
alg.type = "org.dllearner.algorithms.ParCEL.ParCELearner"
alg.numberOfWorkers = "4"
alg.maxExecutionTimeInSeconds = "180"

//learning problem component
lp.type = "org.dllearner.algorithms.ParCEL.ParCELPosNegLP"
lp.positiveExamples = {
...
}
lp.positiveExamples = {
...
}
```

Common parameters of the components are described in Table B.1.

Table B.1: Common components in DL-Learner framework and their parameters. Mandatory options are marked with * and conditional mandatory options are marked with ** (described in their description).

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge source (ks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type*</td>
<td>Type of the knowledge source. Some common types are: OWL File, KB File, SPARQL Endpoint</td>
<td>String</td>
</tr>
<tr>
<td>fileName**</td>
<td>A path to a knowledge base file. This is used if the type of knowledge source is OWL File</td>
<td>String</td>
</tr>
</tbody>
</table>
Table B.1 – continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>url**</td>
<td>A path to a KB file or an URL of a SPARQL Endpoint. This is used if the knowledge source type is KB File or SPARQL Endpoint.</td>
<td>String</td>
</tr>
<tr>
<td>type*</td>
<td>Type of the reasoner. Some common reasoners are: fast instance checker, PelletReasoner, DIGReasoner.</td>
<td>String</td>
</tr>
<tr>
<td>source**</td>
<td>A knowledge source component. This is used if the reasoner is fast instance checker or PelletReasoner. (ks)</td>
<td>Component</td>
</tr>
<tr>
<td>url**</td>
<td>An URL of a DIG reasoner. This is used if the reasoner is DIGReasoner.</td>
<td>String</td>
</tr>
<tr>
<td>type*</td>
<td>Type of the learning problem. It can be posNegStandard, ClassLearningProblem, PosOnlyLP, ParCELPosNegLP (full qualified names are recommended).</td>
<td>String</td>
</tr>
<tr>
<td>positiveExamples**</td>
<td>Set of positive examples.</td>
<td>Set of string</td>
</tr>
<tr>
<td>negativeExamples**</td>
<td>Set of negative examples.</td>
<td>Set of string</td>
</tr>
<tr>
<td>type*</td>
<td>Learning algorithm type. Common algorithms are: celoe, ocel, ParCELearner, ParCELEarnerExV2 (SPaCEL) (full qualified names are recommended).</td>
<td>String</td>
</tr>
<tr>
<td>maxExecutionTimeInSeconds</td>
<td>Maximal seconds that an algorithm is allowed to learn a given problem.</td>
<td>Integer</td>
</tr>
<tr>
<td>numberOfWorkers</td>
<td>Maximal number of workers (see Chapter 5) are used in learning. This is used with ParCEL and SPaCEL algorithms.</td>
<td>Integers</td>
</tr>
<tr>
<td>noisePercentage</td>
<td>Percentage of the negative examples are allowed to be covered by a learnt concept.</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Continued on next page
Table B.1 – continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>splitter</td>
<td>A splitter component that is used to create split values for numeric datatype properties. This option is supported by ParCEL and SPaCEL algorithms.</td>
<td>Component (sp)</td>
</tr>
<tr>
<td>maxNoOfSplits</td>
<td>Max number of splits are used to split numeric datatype properties.</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Splitter (sp)

| type* | Type of splitter. Currently, the only splitter supported is ParCELDualSplitterV1. | String |

Command line interface (cli)

type*	Type of command line interface. CLI is usually used to run the cross-validation. Two currently supported CLIs are: org.dllearner.cli.CLI and org.dllearner.cli.ParCEL.CLI.	String
performCrossValidation	Used to indicate to run a training or a cross validation procedure. Default value is false.	Boolean
nrOfFolds	Number of cross-validation folds. This is used if performCrossValidation is true. Default value is 10 folds.	Integer
fortification	Used to indicate to run the fortification or not. This option is only available if performCrossValidation is true and ParCEL CLI is used. Default value is false.	Boolean
fairComparison	Used to indicate to perform a fair comparison for the fortification or not. This option is only available if fortification is true. Default value is false.	Boolean

B.4 Test Cases

This section summarises the commands to perform all tasks introduced in Appendix A (checking out and compiling code) and Appendix B (running experiments) by giving a test case. All tasks in this test case have been successfully tested under:

- three operating systems: Windows 7, Ubuntu 10.04 and 12.10, Mac OS X Mountain...
tain Lion, and

- JDK 1.6.x and 1.7.x.

In this section, we show the test case under Ubuntu 12.10 and JDK 1.7.0_09. The only difference when running this test case under other operating systems is the installation of the required softwares. In Ubuntu, we use `apt-get` utility for installing required softwares while in Windows and Mac OS, we can use installers available on their vendor’s website. Otherwise, the commands for the remaining steps are similar to in Ubuntu. Following is the summary of this test case:

- **Objectives**: are to successfully:
 1. check out and compile the project code of this thesis, and
 2. run three learning algorithms CELOE, ParCEL and SPaCEL for the *forte-uncle* dataset.

- **Pre-conditions**:
 1. A fresh Ubuntu system (i.e. system has not been installed any required softwares described in A.2) with an internet connection.
 2. The project code is committed to the repository at `https://code.google.com/p/parcel-2013/`.

The test case execution (actions and results) is demonstrated by showing the figures that are captured from the execution. Summary of actions and expected results are given in Table B.2.
B. Reproducing the Experimental Results

Table B.2: Actions and expected result of the test case.

<table>
<thead>
<tr>
<th>No</th>
<th>Action</th>
<th>Expected result</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Check the required softwares installation: Execute three required applications (described in Section A.2) using the commands in line 1, 11 and 15 in Figure B.1.</td>
<td>No required applications have been installed as shown in Figure B.1.</td>
<td>B.1</td>
</tr>
<tr>
<td>2.</td>
<td>Install required applications JDK, Subversion and Maven3: JDK and Subversion are installed using the commands in line 1 and 3 in Figure B.2. Maven3 is extracted and configured as shown in Figure B.2 from line 10 to 15.</td>
<td>Applications are installed and tested successfully as shown in line 4 to 7 and 16 to 22 in Figure B.2.</td>
<td>B.2</td>
</tr>
<tr>
<td>3.</td>
<td>Checkout the project code from repository: Create a folder in the home folder to contain the project (line 1) and checkout the project using \texttt{svn} as shown in line 3, Figure B.3). The parameter “\texttt{-q}” is used for eliminating the messages from \texttt{svn}. It can be removed with affecting on the result.</td>
<td>Four projects, one folder containing experimental datasets and one POM file should be downloaded into the desired folder as shown in line 5, Figure B.3.</td>
<td>B.3</td>
</tr>
<tr>
<td>4.</td>
<td>Compile the \texttt{components-core} project using Maven and install its jar file into local repository. Command for doing this task is given in line 2 in Figure B.4.</td>
<td>Compiled classes are created in folder \texttt{target} and a jar file is created (line 6 in Figure B.4) and copied to the Maven local repository.</td>
<td>B.4</td>
</tr>
<tr>
<td>5.</td>
<td>Compile the \texttt{parcel-components-core} project: similar to step 4.</td>
<td>Compiled classes and a jar file containing all compiled classes are created in folder \texttt{target} of this project. Jar file is also copied to Maven local repository (as shown in line 13, Figure B.4.</td>
<td>B.4</td>
</tr>
</tbody>
</table>

Continued on next page
Table B.2 – continued

<table>
<thead>
<tr>
<th>No</th>
<th>Actions</th>
<th>Expected result</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Compile the interfaces project: similar to the above projects.</td>
<td>A runnable jar file dl-learner.jar is created in folder target of this project.</td>
<td>B.5</td>
</tr>
<tr>
<td>7.</td>
<td>Compile the parcel-interfaces project: similar to the interfaces project.</td>
<td>A command line interface for ParCEL is created in the folder target of this project. This is a runnable jar file parcel-cli.jar and it contains all necessary libraries for running this jar file.</td>
<td>B.6</td>
</tr>
<tr>
<td>8.</td>
<td>Run CELOE for the Forte-Uncle dataset: run the jar file dl-learner.jar and pass the learning configuration file for CELOE algorithm as in lines 2-3 in Figure B.7.</td>
<td>CELOE learns and finishes with a set of solutions in which there is an accurate concept as shown in lines 33-34 in Figure B.7.</td>
<td>B.7</td>
</tr>
<tr>
<td>9.</td>
<td>Run ParCEL for the Forte-Uncle dataset: similar to step 8 but for ParCEL algorithm as shown in lines 1-2, Figure B.8.</td>
<td>Two partial definitions are returned as shown line 22-23 in Figure B.8.</td>
<td>B.8</td>
</tr>
<tr>
<td>10.</td>
<td>Run SPaCEL for the Forte-Uncle dataset: similar to step 8 but for SPaCEL algorithm as shown in lines 1-2, Figure B.9.</td>
<td>Two partial definition are returned as shown in line 28-31 in Figure B.9.</td>
<td>B.9</td>
</tr>
</tbody>
</table>
B. Reproducing the Experimental Results

Figure B.1: Check required softwares in the system including JDK, Subversion and Maven.

```
$ sudo apt-get install <selected package>
```

Figure B.2: Install required softwares: JDK, Subversion and Maven. JDK and Subversion are installed using `apt-get` while Maven3 is installed manually. "-> null" in lines 1, 3 and 11 is used to turn off the messages when install or extract the softwares.
B. Reproducing the Experimental Results

Figure B.3: Check out the project from the repository. “-q” in line 3 is used to tell `svn` not to display the messages.

```bash
$ cd workspace
$ ls parcel-2013/
components-core examples interfaces parcel-components-core parcel-interfaces pom.xml
```

Figure B.4: Compile the DL-Leaner and ParCEL core components project.

```bash
$ cd parcel-2013/components-core/
$ mvn clean install -Dmaven.test.skip=true -q
$ ls target/
[necessary code]
$ cd ..
$ cd parcel-components-core/
$ mvn clean install -Dmaven.test.skip=true -q
$ ls target/
[necessary code]
```

Figure B.5: Compile the interface project.

```bash
$ cd ..
$ cd /interfaces/
$ mvn -o clean install -Dmaven.test.skip=true -q
$ ls target/
[necessary code]
```

Figure B.6: Compile the ParCEL CLI project.

```bash
$ cd ..
$ cd /parcel-interfaces/
$ mvn -o clean install -Dmaven.test.skip=true -q
$ ls target/
[necessary code]
```
B. Reproducing the Experimental Results

Figure B.7: Learning the Forte-Uncle dataset using CELOE. By default, CELOE displays the best 10 solutions. This figure keeps only the best one, which has 100% accuracy.

Figure B.8: Learning the Forte-Uncle dataset using ParCEL.
Figure B.9: Learning the Forte-Uncle dataset using SPaCEL.
B. Reproducing the Experimental Results
Appendix C

List of Publications

Parts of this thesis are based on previously published materials as follows:

- **An C. Tran, Stephen Marsland, Jens Dietrich, Hans W. Guesgen, and Paul Lyons.** Use cases for abnormal behaviour detection in smart

Glossary

\mathcal{AL} a short for Attribute Language, the most basic language in the description logic language family. 14

SRIOQ a description logic language, which is an underlying logic for the most-up-to-date W3C recommendation for semantic web language OWL2-DL. 14, 15

\mathbf{BOTTOM} a special concept in description logics (also denoted by \bot) with no individuals are its instances. 15, 18

\mathbf{TOP} a special concept in description logics (also denoted by \top) that subsumes all other concepts in the TBox, i.e. all individuals in the knowledge base are its instances. 15, 18, 24

Thing the super class of all class in a OWL knowledge base (ontology). 24

SPaCEL a short for Symmetric Class Expression Learning algorithm (see Chapter 6). 106

ParCEL a short for Parallel Class Expression Learning algorithm (see Chapter 5). 62, 68, 79

ABox a part description logic knowledge base that contains concept and role assertions. 17, 20

axiom (in DLs) an axiom is a concept in the form of $C \subseteq D$ (inclusion axiom) or $C \equiv D$ (equality axiom), where C and D are concepts. 19, 26
Glossary

CELOE a short for Class Expression Learner for Ontology Engineering algorithm. This is an OWL learning algorithm in DL-Learner framework developed by Lehmann et al. [80]. 33, 49, 62, 68

CPU time the actual time taken by the CPU(s) to process a certain task. 41

decidable in general, a logical system is decidable if it can compute the truth value of all inference tasks within a finite time. In description logics, a description logic language is decidable if there exist algorithms that can give an answer for a subsumption (or satisfiability) check in a finite number of steps. 13, 15, 24

DL a short for Description Logics, a family of knowledge representation formalisms. 1, 13

ILP a symbolic approach in machine learning (i.e. an intersection of Machine Learning and Logic Programming), which aims to learn general rules from specific facts. 1

OCEL a short for Ontology Class Expression Learning Algorithm. This is an OWL learning algorithm in DL-Learner framework developed by Lehmann et al. [80]. 33, 49, 63

OWL a short for Web Ontology Language which is a family of knowledge representation languages for the Semantic Web endorsed by World Wide Web Consortium (W3C). 3, 23

RBox a part of description logic knowledge base that contains role axioms. 17

scalable (a system) is able to handle a growing amount of work in a capable manner or to enlarge to accommodate that growth [20]. 34

semi-decidable in general, a logical system is semi-decidable if it can compute the truth value of all inference tasks within a finite time if the inference is hold but it may not give the answer if the inference is not hold. In description logics, a description logic language is semi-decidable if there exist algorithms that can give an answer for a subsumption (or satisfiability) check in a finite number of
steps if the subsumption (or satisfiability) is hold and there may not have such an algorithm if the subsumption (or satisfiability) is not hold. 24

speeding up in parallel computing, speed-up aims to decrease the time taken for performing a task in proportion to the increase of the degree of parallelisation. 4

TBox a part of description logic knowledge base that contains concept and role axioms. In case that the knowledge base has RBox, this part contains only concept axioms. 17, 19

wall-clock time the actual time taken by a computer to process a task that includes the CPU time, I/O time and delay time caused by waiting for availability of required resources. 41
Glossary
References

REFERENCES

[26] Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y Ng, and Kunle Olukotun. Map-Reduce for machine
REFERENCES

[34] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. *A semantic similarity measure for expressive Description logics*. In *Proceedings of Convegno Italiano di Logica Computazionale, CILC05*, 2009.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[135] **Andrew Vickers.** *What is a P-value anyway?: 34 stories to help you actually understand statistics.* Addison-Wesley, 2010.

