Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An *ex post* economic analysis of research and extension for the cover comb.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science in Agricultural Systems and Management at Massey University.

Anne Elizabeth Dooley

1997
ABSTRACT

Agricultural research funding organisations, such as Wools of New Zealand (WONZ), are seeking ways to maximise benefits from their research portfolio. It has been suggested that this can be achieved by reducing investment in on-farm research and increasing investment in post-farm gate research on processing technology, product development and market research. However, little information exists to substantiate this point-of-view, and this gave rise to the research reported in this thesis. The hypotheses tested were first, that the return on the investment made by Wools of New Zealand in research on cover comb technology was positive and comparable to the return on other investment options, and second, that a model for the *ex ante* economic analysis of on-farm research could be developed using an *ex post* economic analysis of cover comb shearing technology research.

The cover comb is an example of a discrete, relatively simple technology, whose development, research evaluation and extension have been reasonably well documented. Six experiments, funded jointly by Massey University and WONZ, were conducted with the cover comb at Massey University between 1989 and 1995. Most extension costs were incurred by WONZ. The cover comb generates financial advantages to farmers by reducing sheep losses and possibly by conserving pasture when the feed supply is low. Uptake of the cover comb was estimated by surveying shearing contractors and Wool Production Officers, and from the pattern of cover comb sales.

A spreadsheet model was developed to provide an *ex post* cost-benefit analysis of cover comb shearing technology research and extension for the period 1989 to 2020. This model included a sub-model of regional populations by class to estimate the number of sheep shorn by different methods, and a cost-benefit sub-model that described the temporal relationship between costs and benefits and calculated the returns.
The model estimated a 1330% internal rate of return (IRR), a $49.22 million net present value (NPV) and a 115:1 benefit-cost ratio (BCR) for the cover comb research and extension investment at a 5% discount rate. The model outputs were sensitive to the post-shearing reduction in sheep losses associated with cover comb use (and therefore benefits per sheep) and the cover comb adoption rate. A sensitivity analysis indicated a 485% IRR, a $12.30 million NPV and a 25.3:1 BCR at a lower adoption rate (an increase in sheep shorn with a cover comb between 1989 and 2000 due to the research and extension, of 9.5% of all adult sheep in New Zealand, versus an increase of 12.9%), a lower net benefit per sheep ($0.23 per ewe shorn versus $0.47 per ewe shorn) and a 10% discount rate. Thus, even where conservative values for the cover comb technology were applied, a very favourable return on the investment made by WONZ was shown. The rapid uptake of the cover comb (over 30% of ewes shorn were shorn in 1995 with a cover comb, compared to 15% of ewes in 1989), and the size of the industry (33.7 million ewes in 1995) the technology is applied to contributed to these returns.

The *ex post* cost-benefit analysis model could be adapted for *ex ante* evaluations of proposed on-farm wool industry research. This model would be useful for deciding which sheep production research should be funded.
ACKNOWLEDGEMENTS

First, I would like to thank Professor Warren Parker, Professor Stuart McCutcheon, Dr Ganesh Rauniyar and Associate Professor Stephen Morris for their advice, editing of the script, supervision and support. It was very much appreciated and contributed greatly to this study. I would also like to acknowledge Dr Chris Dake for his help and encouragement.

Sincere thanks to all those who provided information for this study: the shearing contractors and the Wools of New Zealand extension officers for replying to the questionnaires; Dr Ken Geenty of Wools of New Zealand; Mr Roger Locke of Agrisales NZ Ltd and Mr Ian Wright of Heiniger NZ Ltd for providing sales information on the winter comb; and Mr Rex Williams of the New Zealand Meat and Wool Board Economic Service for providing statistical information. A special thanks to Mr Robin Kidd for assistance with letters and contacts, advice and technical information on winter comb shearing.

Thank you also to Wools of New Zealand for the scholarship and for providing the funding for this project.

I am particularly grateful to Rita and Peter Batley for information and ideas, and for their encouragement, support and hospitality.

I would like to acknowledge the other postgraduate students in Agricultural and Horticultural Systems Management who contributed to making this an enjoyable year. Thanks also to Trena Hokianga and Denise Stewart for their cheerful assistance.

Finally, I would like to thank my parents, especially my late mother for her inspiration.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>EVALUATION OF RESEARCH</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Types of Evaluation Used</td>
<td>4</td>
</tr>
<tr>
<td>Practicalities of Research Evaluation</td>
<td>6</td>
</tr>
<tr>
<td>Cost-Benefit Analysis</td>
<td>11</td>
</tr>
<tr>
<td>Past Returns to Agricultural Research Investment</td>
<td>14</td>
</tr>
<tr>
<td>RESEARCH IMPACT AND TECHNOLOGY UPTAKE</td>
<td>17</td>
</tr>
<tr>
<td>Research Aspects</td>
<td>17</td>
</tr>
<tr>
<td>Technology Uptake</td>
<td>18</td>
</tr>
<tr>
<td>Size of the Industry</td>
<td>21</td>
</tr>
<tr>
<td>Research Depreciation</td>
<td>21</td>
</tr>
</tbody>
</table>
COVER COMB TECHNOLOGY ... 22
Description of the Cover Comb .. 22
Advantages of Cover Comb Use ... 22
 Reduced Cold Stress .. 23
 Reduced Losses ... 24
 Reduced Feed Intake ... 25
 Reduction in Live Weight Loss ... 28
 Animal Welfare and Peace of Mind ... 29
Applications for Cover Comb Use .. 29
 Pre-lamb Shearing ... 29
 Alternative to Blade Shearing ... 30
 Hogget and Lamb Shearing .. 31
Alternatives to Cover Comb Use .. 31

MODELLING .. 33
Definition of Modelling ... 33
Model Development for Systems Simulation .. 33

PURPOSE AND SCOPE OF THE STUDY .. 37
Aims and Objectives ... 37
Thesis Outline .. 38

CHAPTER TWO: COVER COMB TECHNOLOGY: THE COST OF
RESEARCH, DEVELOPMENT AND EXTENSION 39

INTRODUCTION .. 39

METHODS .. 40
Calculation of Research Trial Costs ... 40
Full Costing of the Trials ... 40
Use of the PGSF Model for Costing the Trials .. 41

PGSF Personnel Costs .. 41

PGSF General Operating Costs .. 41

PGSF Premises Costs .. 42

PGSF Equipment Depreciation ... 42

PGSF Overheads ... 42

PGSF Extraordinary Costs .. 43

Summary for the PGSF Objective .. 43

Other Assumptions Made in Calculating Research Trial Costs 43

Personnel Costs .. 43

Shearing Costs ... 44

Data Collection and Analysis Costs ... 44

Casual Labour Costs .. 44

Chromium Capsule Costs .. 44

Feed Costs ... 45

Development Costs .. 45

Extension Costs .. 45

Wools of New Zealand Extension Costs ... 45

RESULTS ... 47

Research Costs ... 47

Development Costs .. 49

Extension Costs .. 50

Total Costs .. 50

DISCUSSION .. 50

Research Costs ... 50

Extension Activities .. 52

SUMMARY .. 53
CHAPTER THREE: ASSESSING COVER COMB ADOPTION: FINDINGS FROM SURVEYS OF COVER COMB MANUFACTURERS, SHEARING CONTRACTORS AND WOOL PRODUCTION OFFICERS

INTRODUCTION

METHODS

Cover Comb Sales

Shearing Contractors Survey

Wool Production Officers Survey

RESULTS AND DISCUSSION

Cover Comb Sales

Survey Results

Timing of Shearing with a Cover Comb

Numbers of Sheep Shorn with a Cover Comb and First Year of Adoption

Proportion of Sheep Shorn in Winter and Cover Comb Use

Opinion Data

Opportunities for Further Use of a Cover Comb

Potential for Further Uptake of Cover Combs

Problems encouraging Farmers and Shearers to use a Cover Comb

Limitations on Further Use of the Cover Comb

General Comments on Cover Comb Uptake

Other Reasons for Uptake of Cover Comb Technology

CONCLUSION
REFERENCES .. 124

APPENDICES .. 132

APPENDIX I: DESCRIPTION OF THE RESEARCH TRIALS ... 132

APPENDIX II: COSTS ASSOCIATED WITH THE RESEARCH TRIALS 139

APPENDIX III: CONVERSION OF DEVELOPMENT COSTS INTO 1996 NZ$ 147

APPENDIX IV: PUBLIC GOOD SCIENCE FUND (PGSF) SPREADSHEETS FOR THE SIX TRIALS .. 148

APPENDIX V: COPIES OF THE QUESTIONNAIRES ... 173

APPENDIX VI: NUMBER OF EWE AND HOGGET SHEARINGS WITH A COVER COMB BASED ON CONTRACTORS DATA ... 181

APPENDIX VII: OFFICIAL ESTIMATES OF THE REGIONAL POPULATIONS OF SHEEP AND THE PERCENTAGE OF EWES, HOGGETS AND LAMBS SHORN WITH A COVER COMB ... 182

APPENDIX VIII: SPREADSHEET TEMPLATES USED IN THE CALCULATION OF BENEFITS, SHEEP SHORN AND RESEARCH RETURNS .. 183
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Summary of cover comb research costs ($) for the six trials conducted at Massey University, based on original proposal costs (GST exclusive).</td>
<td>47</td>
</tr>
<tr>
<td>2.2 Summary of cover comb research costs for the six trials conducted at Massey University, both fully costed and excluding postgraduate (PG) costs (NZ$ 1996, GST exclusive).</td>
<td>48</td>
</tr>
<tr>
<td>2.3 Summary of annual timing of research costs for the six cover comb trials (NZ$ 1996, GST exclusive).</td>
<td>49</td>
</tr>
<tr>
<td>3.1 Cover comb sales as a percentage of conventional comb sales based on the average of the 1985/86 - 1989/90 seasons (base figure of 100) and the number of scientific publications on cover comb research.</td>
<td>58</td>
</tr>
<tr>
<td>3.2 Percentages of ewe and hogget shearings with a cover comb in 1992/93 and 1995/96, and year of first shearing with a cover comb. Contractors 1-7 are in the North Island and 8-12 are in the South Island.</td>
<td>63</td>
</tr>
<tr>
<td>3.3 Wool Production Officers' estimates of the regional populations of sheep and the percentage of ewes, hoggets and lambs shorn with a cover comb. (Numbers are in thousands).</td>
<td>66</td>
</tr>
<tr>
<td>3.4 Percentage of clients asking for sheep to be shorn between May and September, and the percentage of these clients requesting that the sheep be shorn with a cover comb.</td>
<td>69</td>
</tr>
<tr>
<td>3.5 Shearing contractors beliefs about attributes of the cover comb technology. Figures in brackets show the response for each Island e.g. (6,1) means 6 North Island and 1 South Island contractor.</td>
<td>71</td>
</tr>
<tr>
<td>4.1 Percentage of sheep in each class cover comb-shorn with, and without, research and extension.</td>
<td>87</td>
</tr>
<tr>
<td>4.2 Benefits ($/sheep) for two scenarios of reductions in sheep losses due to cover comb- rather than conventional comb-shearing.</td>
<td>90</td>
</tr>
<tr>
<td>4.3 The proportional allocation of benefits ($/ewe) accruing to cover comb (CC) shearing from a reduction in losses, a change from blade to CC technology or a change in shearing policy.</td>
<td>91</td>
</tr>
<tr>
<td>4.4 Sheep shorn and in the different stock classes as a proportion of opening numbers (as at 1 July) based on 1990/91 to 1994/95 averages.</td>
<td>102</td>
</tr>
</tbody>
</table>
4.5 The returns to research and extension for cover comb technology at the high benefit level. ...106

4.6 The returns to research and extension for cover comb technology at the low benefit level. ..107

4.7 The returns to research and extension on cover comb shearing of ewes at four adoption rates. ...109

4.8 The returns to research, development and extension of cover comb shearing at a 5% discount rate, at both the high and a low benefit levels and including and excluding the extra $0.08 shearing cost. ..112

4.9 A summary of the returns to research calculated in five cost-benefit analysis studies. (Numbers in brackets indicate the number of studies where results are reported for more than one study). ..116

5.1 The returns to research and extension on cover comb shearing technology.120

Appendix VI: Number of ewe and hogget shearings with a cover comb based on contractors data. ...181

Appendix VII: Official estimates of the regional populations of sheep and the percentage of ewes, hoggets and lambs shorn with a cover comb.182
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Basic steps in development of a model for systems simulation (Dent and Blackie, 1979).</td>
<td>34</td>
</tr>
<tr>
<td>3.1 Cover comb sales as a percentage of total comb sales (average of 1985/86 to 1989/90 seasons expressed as a base figure of 100).</td>
<td>59</td>
</tr>
<tr>
<td>4.1 Flow of information in the cover comb technology study.</td>
<td>84</td>
</tr>
<tr>
<td>4.2 A map of sources and flow of information in the cover comb technology study.</td>
<td>85</td>
</tr>
</tbody>
</table>