Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Synthesis and Physical Properties of Hetero-substituted-HATNs and their Cu(I) and Re(I) Complexes

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University, Palmerston North

Nyree Dawn Parker

2013
“An expert is a person who has made all the mistakes that can be made in a very narrow field.”

— Niels Bohr
Acknowledgements

First and foremost I would like to thank my supervisors Associate Professor Eric Ainscough and Associate Professor Ashton Partridge who were friendly and supportive throughout my study. A/Prof Ainscough took this project on half-way through which was no easy task and for that I am especially grateful. Additionally, I would like to thank Dr Ross Davidson for his supervisor-like role, wealth of knowledge and support throughout this time.

I would like to acknowledge Massey University and the MacDiarmid Institute for providing financial support.

I wish to thank Dr Wayne Campbell for his support initially on this project, Graham Freeman for the synthesised copper starting materials and general help, Professor Geoff Jameson for his help with crystallography and Professor Keith Gordon (and his group) for running my Raman samples, running some calculations and providing advice. Finally I would like to thank Massey University, Albany Campus, for allowing me to run my calculations on their computers.

Lastly, I wish to thank my family and Paul for supporting my efforts to pursue a PhD.
Abstract

The electron deficient hexaazatrinaphthalene compounds are of interest for photovoltaic (PV) and molecular devices. These molecules contain multi phenazine (a common dye chromophore) centres that allow coordination of metals, forming complexes that have been shown to have photophysical properties that could be commercially valuable. HATNAs have been investigated for use in molecular devices; including liquid crystals (LCs), light emitting diodes (LEDs), PVs, and field effect transistors (FETs) by a variety of groups.

The initial goal of this thesis was the synthesis of mixed or ‘hetero’-HATNs. Preliminary investigations leading into the synthesis of HATNAs showed a number of problems associated with solubility, purification, and stability of these compounds, however a method was established and six hetero-HATNs, HATN-4Me, HATN-4Br, HATN-2Me, HATN4Br2Me HATN-2Br and HATN-4Me2Br, were synthesised and carried throughout the thesis. The rhodizonic acid route and its reactions with the appropriate diaminobenzenes followed by oxidation with nitric acid and then further reactions with diaminobenzene was considered the best.

The crystal structure of one of the possible intermediates for HATN production, PTK-2Me which is based on a 1,2,3,4-phenazinetetrone displays the presence of a gem-diol equilibrium on one of the rings which is no longer aromatic. The crystal structure of PKH-2Me (PKH = 2,3-dihydroxyphenzine-1,4-dione) which is a precursor to the PTK-2Me intermediate shows the C-OH bonds are shortened due to the partial double bond character due to a shifting of the equilibrium between a ketone and a hydroxyl group. The crystal structure of HATN-4Me shows all of the aromatic rings to be mostly planar with slight distortion. The MALDI mass spectra for each of the electron deficient HATNs displays a band due to [M+2]⁺ cations which is unusual and possibly formed by a [M+2H⁺+e⁻] species.
Physical properties of the six HATNs were investigated using UV/Vis, Raman and IR spectroscopies. They were tested as the electron-transport-material in a field effect transistor. It was found that HATN-4Br had the highest electron mobility of 8.13×10^4 cm2V$^{-1}$s$^{-1}$ and this was obtained after vacuum deposition onto a substrate rather than a solution processed deposition. However as it has a high resistance it is not suitable for a FET device.

The HATNs all display first reduction potentials at -0.9 V with a second at about -1.4 V. They are all quite close and do not appear to follow the expected trend according to the nature of the functional groups.

The HATNs coordinate to rhenium to form A and S isomers which are difficult to isolate. The HATN-1Re complexes display similar physical properties. When two rhenium atoms are added (HATN-2Re) there is a noticeable red-shift in their absorption spectra (100 nm). Crystal structures of HATN-4Me-1ReA and HATN-4Me-1ReS and HATN-2Me-2ReS were obtained and these show twisting of the HATN core up to 13°. These structures showed the π-π stacking ability of the HATN complexes ranging from 1 to 3 ring overlaps as well as solvent interactions.

Copper willingly binds to all three bidentate hetero-HATN sites and has the unusual property of a colour change between the solvents acetonitrile and chloroform. The reason for this colour change is discussed and found possibly to be due to copper dissociation.
Table of Contents

Chapter 1 An introduction to HATNs
1.0 Abbreviations used in Chapter 1 3
1.1 Introduction 5
1.2 Metal coordination 8
 1.2.1 Discrete complexes 9
 1.2.2 Extended coordination sites 10
 1.2.3 Coordination network 11
1.3 Applications 12
 1.3.1 Liquid crystals 12
 1.3.2 Charge carrier 13
 1.3.3 Hydrogen storage 14
1.4 References 17

Chapter 2 Synthesis of hetero-HATNs
2.0 Abbreviations used in Chapter 2 21
2.1 Introduction 23
 2.1.1 Hetero-HATN synthesis 23
2.2 Towards the synthesis of hetero-HATNs in the present study 29
 2.2.1 Exploratory reactions for the preparation of hetero-HATNs 29
 2.2.2 The hexaketocyclohexane method 30
 2.2.3 The tetrahydroxy-p-quinone method 31
 2.2.4 The rhodizonic acid method 32
 2.2.5 Crystallography 33
 2.2.6 Crystal structure of PKH-2Me 35
 2.2.7 Crystal structure of PTK-2Me 36
 2.2.8 The quinoxalino[2,3-a]phenazine-6,7-dione (QPK) method 37
2.3 Synthesis of hetero-HATN 39
 2.3.1 Crystallography of HATN-4Me 42
2.4 Mass spectral data of HATNs 45
2.5 Conclusion 47
2.6 References 49
Chapter 3 Physical properties of HATN

3.0 Abbreviations

3.1 Introduction

- 3.1.1 Field effect transistor background
- 3.1.2 Field effect transistor make-up
- 3.1.3 Photovoltaics

3.2 Current Research

- 3.2.1 Electronic absorbance

3.3 Dye-sensitised solar-cell (DSSC)

- 3.3.1 Electrochemistry
- 3.3.2 HATN measurements

3.4 Field Effect Transistor

- 3.4.1 Solution-Processed Deposition
- 3.4.2 Solution Processed FET testing
- 3.4.3 FET with Vacuum Deposition

3.5 Conclusions

3.6 Acknowledgements

3.7 References

Chapter 4 Reactions of HATN ligands with selected transition metals

4.0 Abbreviations used in Chapter 4

4.1 Introduction and applications

- 4.1.1 Copper HATN complexes
- 4.1.2 Rhenium HATN complexes

4.2 Reactions of hetero-HATNs

- 4.2.1 Labelling compounds
- 4.2.2 Synthesis of rhenium complexes
- 4.2.3 Crystallography
- 4.2.4 Crystal structure of HATN-4Me-1ReA·H₂O
- 4.2.5 Crystal structure of HATN-4Me-1ReS·CHCl₃·H₂O
- 4.2.6 Crystal structure of HATN-2Me-2ReS
- 4.2.7 Crystallography discussion
- 4.2.8 Packing in the rhenium complexes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Copper(I) HATN complexes</td>
<td>130</td>
</tr>
<tr>
<td>4.3.1 The crystal structure of (\text{Cu}(\text{PPh}_3)_2(\text{Cu}(\text{PPh}_3)\text{ClO}_4)(\text{HATN-4Me})_2) (HATN-4Me-CuClO$_4$)</td>
<td>134</td>
</tr>
<tr>
<td>4.4 Palladium Complexes</td>
<td>137</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>139</td>
</tr>
<tr>
<td>4.6 References</td>
<td>140</td>
</tr>
</tbody>
</table>

Chapter 5 Physical properties of hetero-substituted HATN complexes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 Abbreviations</td>
<td>147</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>149</td>
</tr>
<tr>
<td>5.1.1 Rhenium HATN complexes</td>
<td>150</td>
</tr>
<tr>
<td>5.1.2 Copper(I) HATN complexes</td>
<td>155</td>
</tr>
<tr>
<td>5.2 Chromism</td>
<td>157</td>
</tr>
<tr>
<td>5.2.1 Solvatochromic effect</td>
<td>158</td>
</tr>
<tr>
<td>5.3 Raman spectroscopy</td>
<td>160</td>
</tr>
<tr>
<td>5.3.1 Resonance Raman spectroscopy</td>
<td>162</td>
</tr>
<tr>
<td>5.4 Current Research</td>
<td>165</td>
</tr>
<tr>
<td>5.4.1 Rhenium</td>
<td>165</td>
</tr>
<tr>
<td>5.4.2 Electronic absorbance spectra</td>
<td>168</td>
</tr>
<tr>
<td>5.4.3 Vibrational spectroscopy</td>
<td>180</td>
</tr>
<tr>
<td>5.4.4 Electrochemistry</td>
<td>181</td>
</tr>
<tr>
<td>5.5 Copper(I) HATN complexes</td>
<td>185</td>
</tr>
<tr>
<td>5.5.1 Electronic absorbance spectra</td>
<td>187</td>
</tr>
<tr>
<td>5.5.2 Comparison of the electronic absorbance spectra in chloroform and acetonitrile</td>
<td>191</td>
</tr>
<tr>
<td>5.6 Vibrational spectroscopy</td>
<td>197</td>
</tr>
<tr>
<td>5.6.1 Resonance Raman Spectra</td>
<td>199</td>
</tr>
<tr>
<td>5.7 Conclusions</td>
<td>203</td>
</tr>
<tr>
<td>5.8 References</td>
<td>205</td>
</tr>
</tbody>
</table>

Chapter 6 Conclusion and final remarks

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>207</td>
</tr>
</tbody>
</table>
List of Figures

Chapter 1

Figure 1 Structure of HATN. 5

Figure 2 Standard synthetic route for the formation of HATN. 5

Figure 3 Alternate synthesis to HATN. 6

Figure 4 Mechanism for Schiff-base condensation. 7

Figure 5 Synthesis of HATN via a titanium metal complex 2. 7

Figure 6 Left: [Cl₂Zn)(μ₁-HATN)] Right: [(Et₂Zn)₃(μ₃-HATN)]. 9

Figure 7 PHAT with three coordinated ruthenium complexes. 10

Figure 8 Crystal structure of [(Ag₃(HATN)₂)(NO₃)₃] with solvent removed. 11

Figure 9 Left: HATN-6(O-C₁₀H₂₁) Right: HATN-6(O-C₁₀H₂₁) in a confined cell made using glass plates. The pattern reflects a hexagonal symmetry of the columnar structure with face-on molecular anchoring. 12

Figure 10 SEM images of HATN on a Si substrate. a) SEM image of a sample prepared by dropping a dilute solution of DCM onto a silicon substrate, followed by solvent evaporation in a closed chamber saturated with the appropriate solvent vapour. b,c) Magnification of the helical structure. 13

Figure 11 HATN alkylsulfanyl derivatives used in charge transport. 14

Figure 12 HATN isomers used for electron transport. 14
Figure 13 HATN-PIM used for N₂ and H₂ sorption. 15

Chapter 2

Figure 1 i) homo-HATN with three DAB-2A added ii) and iii) hetero-HATN with two or one DAB-2A groups added. 24

Figure 2 Top: QPK-2COOH Bottom: Possible HATN-3COOH isomers (Left D₂, Right C₃) 25

Figure 3 Hetero synthesis of HATN derivatives. R = alkoxy chains of length CₙHₙ₊₁; n=6,8,10,12 with R₁ ≠ R₂. 26

Figure 4 Use of THBQ for formation of HATN-4R. 27

Figure 5 The three starting materials used for synthesis of hetero-HATNs. 29

Figure 6 Synthesis of PTK. 30

Figure 7 Synthesis of PTK with THBQ. 31

Figure 8 PTK-COOH. 31

Figure 9 Synthesis of mono-condensation product synthesised for this project. PTK and PTK-2Me are previously reported in literature. 32

Figure 10 The gem-diol equilibrium for PTK. 33

Figure 11 PKH-2Me crystal structure with 50% probability ellipsoids for all atoms excluding hydrogen, and solvent molecules removed for clarity. 35

Figure 12 Top: PTK-2Me structure with 50% probability ellipsoids for all atoms excluding hydrogen, solvent molecules removed for clarity. 36
Figure 13 Synthesis of QPK. R=H, Me. 37

Figure 14 The two routes to hetero-HATN synthesis using rhodizonic acid. 39

Figure 15 The six HATN compounds synthesised for use in this thesis. 40

Figure 16 Left: HATN-4Me1COOH Right: HATN-1COOH 41

Figure 17 Left: HATN-4Me1CN Right: HATN-1CN 41

Figure 18 Single crystal structure of HATN-4Me with 50% probability ellipsoids for all atoms excluding hydrogen, and solvent molecules (2CHCl₃) removed for clarity. 43

Figure 19 Synthetic routes to forming hetero-HATNs 47

Chapter 3

Figure 1 Nitrogen containing π-conjugated heterocycles 56

Figure 2 Comparison of mobility versus year for different charge carriers 56

Figure 3 Schematic construction of an OFET 57

Figure 4 Schematic graphs of band-bending in the OFET. Left: Build-up of holes by a positive bias being placed on the Gate leading to a negative charge build-up in the semiconductor. This causes ‘band bending’; the lowering of the effective HOMO and LUMO orbitals. Right: The lowered HOMO and LUMO orbitals enable the transfer of electrons between the source and the drain 58

Figure 5 Schematic of current flow in an FET with the regions of operation noted. 59

Figure 6: A figure schematically showing the extrapolation of V_T from $I_D^{1/2} - V_{GS}$ transfer characteristic. 60
Figure 7 A schematic showing the subthreshold voltage/current characteristic and the subthreshold slope extraction. The threshold voltage can be taken as the point at which the current deviates from the exponential character expected from purely diffusive transport.

Figure 8 A sample device transfer measurement showing both the saturation and linear characteristics on one graph.

Figure 9 Left: Pentacene. Right: Rubrene.

Figure 10 HATN-6R used in OFET studies.

Figure 11 DSSC schematic.

Figure 12 Common dyes used for DDSC work.

Figure 13 IPCE for N3 dye.

Figure 14 Indoline-based dye for use in DSSC with $\eta = 9.5\%$.

Figure 15 Schematic of HJSC with indication of orbital energy requirements

Figure 16 Schematic of the architecture of a bi-layer hetero-junction solar cell (left) and a bulk hetero-junction solar cell (right).

Figure 17 HATN-6Cl used in hetero-junction solar cell studies.

Figure 18 Sample J-V curve.

Figure 19 Left Top: Light source with adjustable stage for calibration. Right Top: Schematic of DSSC set up. Left Bottom: Cell holder used for testing DSSCs. Right bottom: Dye covered plate.

Figure 20 Hetero-HATNs used in Chapter 3.
Figure 21 Comparison between calculated and experimental IR spectrum for HATN-4Me.

Figure 22 Electronic absorbance spectra of, left: HATN-2Br and HATN-4Br, right: HATN-2Me and HATN-4Me

Figure 23 HOMO and LUMO orbitals of HATN-4Br.

Figure 24 Orbital diagrams for HATN-4Me

Figure 25 Electronic absorbance spectra of, left: HATN-4Me2Br and HATN-4Br2Me, right: HATN-4Me1COOH and HATN-1COOH

Figure 26 Orbital diagrams for HATN-1COOH

Figure 27 HOMO and LUMO levels of HATN compounds as well as redox potential for I/I₃⁻ and conduction band for TiO₂

Figure 28 Current potential graph for HATN-4Me1COOH and HATN-1COOH

Figure 29 Standard electron-transporters, left: C60 and right: PCBM

Figure 30 Six HATN-4Me FET devices

Figure 31 Current Voltage graphs of HATN-4Me2Br at a range of drain source voltages

Figure 32 Current voltage graph for HATN-4Me at varying Vₛ₃.

Figure 33 Transfer curves of HATN-4Me with 30 nm film thickness.

Figure 34 AFM image of HATN-4Me deposited on octadecyltrimethoxysilane modified SiO₂ substrate at Tₜₘₖ=60°C.
Figure 35 Transfer curves of HATN-4Br with 30 nm film thickness.

Chapter 4

Figure 1 (i) HAT (ii) HAT with peripheral binding site (iii) HATN

Figure 2 A group of isolated HATN complexes with mono, bi, and tri- palladium coordination

Figure 3 [Fe₃(HAT)(H₂O)₁₂][(SO₄)₃·3H₂O] without H atoms or anions shown. This complex gives a distorted coordination environment for the Fe atoms.

Figure 4 Left: HATN-Me₆ copper phosphine complex. Right: HATN-Me₆ copper ferrocene phosphine complex.

Figure 5 The first and only synthesis of a heteronuclear HATN complex containing rhenium and palladium along with a HATN-2Pd complex.

Figure 6 Detailed synthetic steps to form mono- bi and tri- rhenium HATN complexes as well as the controlled synthesis of the syn and anti isomers of HATN-2Re complexes.

Figure 7 Six HATN ligands with varying donating and withdrawing groups used in the synthesis of complexes.

Figure 8 Labelling of various coordination compounds of HATN-4Me and their isomers. (a) the isomers formed when the metal:HATN-4Me ratio is 1:1 (b) the isomers formed with the metal:HATN-4Me ratio is 2:1 (c) the isomer formed with the metal:HATN-4Me ratio is 3:1.

Figure 9 A representative rhenium HATN-4Me reaction to give the A and S isomers.

Figure 10 The eleven HATN-1Re complexes identified.
Figure 11 Percentage of hetero-HATN-1Re A and S isomers formed during synthesis. This has been calibrated for the doubling up of protons in the symmetric isomers. 118

Figure 12 Possible isomers for multi-rhenium complexes illustrated with HATN-4Me. 119

Figure 13 Crystal structure for HATN-4Me-1ReA with 50% probability ellipsoids for all atoms excluding hydrogen, solvent molecule removed for clarity. 123

Figure 14 Crystal structure of HATN-4Me-1ReS with 50% probability ellipsoids for all atoms excluding hydrogen, solvent removed for clarity. 124

Figure 15 Crystal structure of HATN-2Me-2ReS with 50% probability ellipsoids for all atoms excluding hydrogen. 125

Figure 16 Left: HATN-4Me-1ReA Middle: HATN-4Me-1ReS Right: HATN-4Me-2ReS and their ring numbers to help aid description 127

Figure 17 Packing structure for HATN-4Me-1ReA. Blue lines indicate H bonding and H-π bonding. 128

Figure 18 Packing structure for HATN-4Me-1ReS·CHCl₃·H₂O, dotted line indicated H-bonding. 129

Figure 19 Crystal packing for HATN-2Me-2ReS. Blue lines show H-bonding. 130

Figure 20 HATN-copper complexes of the HATNs that were characterised. 131

Figure 21 Crystal structure of [(Cu(PPh₃)₂)₃(HATN-6Me)]³⁺ cation. The phenyl rings of the PPh₃ ligands have been removed for clarity. 132

Figure 22 Top: The HATN-4Me-Cu-ClO₄ crystal structure with phenyl rings, anions and solvent removed for clarity. Copper sites are labelled. Bottom: Side view of HATN-4Me-Cu-ClO₄ showing the perchlorate ion bound to HATN-4Me. 134
Figure 23 HATN-4Me-1PdS (left) and HATN-4Me-1PdA (right) palladium isomers obtained as a mixture but not separated.

Chapter 5

Figure 1 Previous examples of ruthenium HATN derivatives. Left: \([[(\mu_3\text{-HATN})\{\text{Ru}(\text{acac})_2\}]_3]\). Middle: \([[(\mu_3\text{-HATN-6Me})\{\text{Ru}(\text{acac})_2\}]_3]\). Right: \((\mu_3\text{-HATN-6Cl})\{\text{Ru}(\text{acac})_2\}]_3\).

Figure 2 Left: The mono-nuclear HATN complex, \([[(\text{HATN})\text{Re(CO)}_3\text{Cl}]_\text{2}]\). Right: The di-nuclear HATN complex \([[(\mu_2\text{-HATN-6Me})\{\text{Re(CO)}_3\text{Cl}]_\text{2}]\).

Figure 3 a) Di-nuclear and tri-nuclear HATN rhenium complexes and their isolated isomers. b) UV-Vis absorption spectra for a series of HATN-6Me and its rhenium complexes.

Figure 4 HATN rhenium and palladium complexes and their corresponding UV-Vis absorption spectra.

Figure 5 \([(\text{Cu}(\text{PPh}_3)_2)](\mu_3\text{-HATN-6Me})\]$_3^+$

Figure 6 \([(\text{Cu}(\text{dppf})_3)](\mu_3\text{-HATN-6Me})\]$_3^+$ structure.

Figure 7 The absorption spectra of \([(\text{Cu}(\text{dppf})_3)](\mu_3\text{-HATN-6Me})\]$_3^+$ in its oxidised (left hand spectrum) and reduced forms (right hand spectrum) obtained from spectroelectrochemistry.

Figure 8 The \{\text{Cu}[\text{3,5-(CF}_3\text{)Pz}]}_3 complex that exhibits solvato, thermo and concentration chromism.

Figure 9 \{[\text{3,5-(CF}_3\text{)Pz}]\text{Cu}\}_3 luminescence chromism.

Figure 10 Spectroscopic transitions underlying Raman and Resonance Raman spectroscopy. \(i\) and \(f\) represent the ground and excited vibrational states, respectively.
The virtual states are not real states of the molecule and are determined by the frequency of the light source used for excitation. 160

Figure 11 Resonance Raman transition 163

Figure 12 Hetero-HATNs synthesised in Chapter 4. 166

Figure 13 Comparison between calculated (black) and experimental (red) FT-Raman spectra of HATN-2Me-1ReA. 167

Figure 14 Electronic absorbance spectra of the mono rhenium HATN-2Me and HATN-4Me complexes. 168

Figure 15 Top: Lowest energy HOMO to LUMO transition orbitals of HATN-2Me-1ReA. Bottom: Highest oscillator strength MLCT HOMO-1 to LUMO transition orbitals for HATN-2Me-1ReA 170

Figure 16 Electronic absorbance spectra of HATN-4Br-1ReS and HATN-2Br-1ReA/S 171

Figure 17 Isomers of HATN-2Br-1Re and HATN-4Br-1Re isomers with red indicating the pyrazine rings and functional groups influenced by binding of rhenium. 172

Figure 18 Electronic absorbance spectra of HATN-4Me-2ReA, HATN-2Me-2ReS, HATN-4Br2Me-2ReS and HATN-4Me2Br-2ReA. 173

Figure 19 FT-IR spectra of HATN-2Br-1ReS (Black), HATN-2Br-1ReA (Red) and the HATN-2Br ligand (Green) measured without solvent. 174

Figure 20 Experimental CO stretching frequencies along with theoretical CO stretching frequency diagrams for HATN-2Br-1ReS (blue arrows indicate vibration direction). 176

Figure 21 IR vibrational modes of HATN-2Br-1ReA (blue arrows indicate vibration direction). 177
Figure 22 FT-Raman spectra of HATN-2Br-1ReS (Black), HATN-2Br-1ReA (Red) and HATN-2Br (Green) measured without solvent. 178

Figure 23 Resonance Raman spectra of HATN complexes collected at 488 nm (left) and 532 nm (right) 179

Figure 24 Vibrational modes top left: ca. 1470 cm$^{-1}$ and right: ca. 1510 cm$^{-1}$ of HATN-4Me-1ReS with blue arrows indicating vibration mode. Bottom: 1424 cm$^{-1}$ (blue arrows indicate vibration direction). 180

Figure 25 HOMO LUMO levels of selected HATN-1Re complexes 183

Figure 26 Six copper HATN-3CuBF$_4$ complexes synthesised in Chapter 4 as well as the HATN-4Me-3CuClO$_4$ analogue. 185

Figure 27 Electronic absorbance spectra of, top: HATN-2Me-3CuBF$_4$ HATN-4Me-3CuBF$_4$ and HATN-4Me2Br-3CuBF$_4$ Bottom: HATN-2Br-3CuBF$_4$ HATN-4Br-3CuBF$_4$ and HATN-4Br2Me-3CuBF$_4$. All spectra were measured in CHCl$_3$. 187

Figure 28 The electronic absorbance spectra measured in CHCl$_3$ of HATN-4Me-3CuBF$_4$ and HATN-4Me-3CuClO$_4$. 189

Figure 29 Left: Comparison between experimental and calculated results for HATN-4Me-3CuBF$_4$. Right: The standard structure for HATN-4Me-3CuBF$_4$. 190

Figure 30 HOMO and LUMO orbitals for HATN-4Me-3CuBF$_4$. Hydrogen atoms are omitted for clarity. 190

Figure 31 Electronic absorbance spectra of HATN-4Me-3CuBF$_4$ in various solvents 191

Figure 32 Electronic absorbance spectra of HATN-4Me-3CuBF$_4$ and HATN-4Me-3CuClO$_4$ in MeCN 192
Figure 33 X-band EPR spectra of HATN-2Me-3CuBF₄ and HATN-2Me-3CuClO₄ in frozen DCM and MeCN at -150 °C. Receiver gain 6.3 x 10³ modulation, amplitude 4 x 1.

Figure 34 Possible states that the HATN-4Me-3CuBF₄ complex is in equilibrium with while in acetonitrile.

Figure 35 Left: Calculated MLCT bands for HATN-4Me-3CuBF₄ and its possible dissociation products in MeCN solution. Right: Calculated MLCT bands for HATN-4Me-1Cu, HATN-4Me-2Cu and HATN-4Me-3CuBF₄.

Figure 36 FT-Raman spectra of HATN-3Cu compounds.

Figure 37 Raman frequency diagrams for HATN-2Me-3CuBF₄ (blue arrows indicate vibration direction). Calculation done on the PH₃ analogue of HATN-2Me-3CuBF₄.

Figure 38 rR enhancements for HATN-2Me-3CuBF₄.

Figure 39 Raman frequency diagrams for rR enhancements using 413 nm excitation (blue arrows indicate stretching direction). The calculation was done on HATN-2Me-3Cu(PH₃)₂.
Tables

Chapter 2

Table 1 PTK-2Me Crystal data (Left) PKH-2Me Crystal data (right) 34

Table 2 Crystal data for HATN-4Me 42

Table 3 HATN MALDI experimental results compared with the calculated results for the 100% peaks. 46

Chapter 3

Table 1 λ_{max} and absorption coefficients of selected HATNs. 78

Table 2 λ_{max} (nm) and absorption coefficients ($\varepsilon / 10^3 \text{ L mol}^{-1}\text{cm}^{-1}$) of selected HATNs. 80

Table 3 HATN-1Re first reduction potentials (vs. Fc/Fc$^+$ in DCM) 82

Table 4 Summary of the energy levels obtained from cyclic voltammetry. 83

Table 5 Comparison of HOMO LUMO energy levels of typical ETM and HATNs 85

Table 6 Decomposition temperatures found by TGA. 90

Chapter 4

Table 1 Colours of HATN-1Re complexes. G=green complex O=orange complex N/A=isomer wasn’t isolated. 118

Table 2 HATN-4Me-1ReA·H$_2$O left and HATN-4Me-1ReS·CHCl$_3$·H$_2$O 121

Table 3 HATN-2Me-2ReS 122

Table 4 Table of important HATN-Re crystallography information 127

xxii
Table 5 Colour changes of the six HATN copper complexes with BF$_4^-$ anion. G = green, R = red. 133

Table 6 HATN-4Me-CuClO$_4$ 136

Chapter 5

Table 1 λ_{max} and absorption coefficients ($\varepsilon/10^3$ Lmol$^{-1}$cm$^{-1}$) of selected HATN-1Re complexes. 169

Table 2 λ_{max} and absorption coefficients ($\varepsilon/10^3$ Lmol$^{-1}$cm$^{-1}$) of selected HATN-1Re complexes. 170

Table 3 λ_{max} and absorption coefficients ($\varepsilon/10^3$ Lmol$^{-1}$cm$^{-1}$) of selected HATN-1Re complexes. 173

Table 4 Solution IR of selected HATN compounds in DCM. 175

Table 5 HATN-1Re first reduction potentials (vs. Fc/Fc$^+$ in DCM) 181

Table 6 Summary of the energy levels obtained from cyclic voltammetry. 182

Table 7 λ_{max} and absorption coefficients ($\varepsilon/10^3$ Lmol$^{-1}$cm$^{-1}$) of selected HATN-3CuBF$_4$ complexes in chloroform solution. 188

Table 8 λ_{max} and absorption coefficients ($\varepsilon/10^3$ Lmol$^{-1}$cm$^{-1}$) of HATN-3CuBF$_4$ complexes in various solvents. 192