Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Are the Northland rivers of New Zealand in synchrony with global Holocene climate change?

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geography at Massey University, Palmerston North, New Zealand

Jane Richardson
2013
Abstract

Climate during the Holocene has not been stable, and with predictions of human induced climate change it has become increasingly important to understand the underlying ‘natural’ dynamics of the global climate system. Fluvial systems are sensitive respondents to and recorders of environmental change (including climate).

This research integrates meta-data analysis of a New Zealand fluvial radiocarbon ($^{14}$C) database with targeted research in catchments across the Northland region to determine the influence of Holocene climate change on river behaviour in New Zealand, and to assess whether or not Northland rivers are in synchrony with global climate change. The research incorporates $^{14}$C dating and meta-analysis techniques, sedimentology, geophysics, ground survey (RTK-dGPS) and Geographic Information Systems analysis to investigate the response of New Zealand and Northland rivers to Holocene climate and anthropogenic change.

The emerging pattern of Holocene river behaviour in New Zealand is one of increased river activity in southern regions (South Island) in response to enhanced westerly atmospheric circulation (promoted by negative Southern Annular Mode [SAM]-like circulation), while in northern regions (North Island) river activity is enhanced by meridional atmospheric circulation (promoted by La Niña-like and positive SAM-like circulation). In Northland, Holocene floodplain development reflects the interplay between valley configuration and accommodation space, sediment supply, fluctuation in climate and anthropogenic factors in the last several hundred years. Evidence from Northland rivers suggests that a globally extensive abrupt climate change signal can promote a synchronous fluvial response, overprinting complex regional patterns of Holocene river behaviour.

The research demonstrates that at the centennial-scale, regional atmospheric circulation change is a key driver of river behaviour, with anthropogenic catchment disturbance responsible for enhanced river activity and floodplain aggradation in the last ~ 500 years. It is therefore likely that any future climate change involving a shift in the atmospheric
circulation regime will have an impact on river behaviour in New Zealand. However, at the catchment- or reach-scale, river response will be largely determined by local controls such as sediment supply and accommodation space, with these factors largely moderated by the post-settlement fluvial history.
Acknowledgements

I would like to express my appreciation to my supervisors, Dr Ian Fuller (Massey University), Dr Kat Holt (Massey University), Dr Nicola Litchfield (GNS Science) and Professor Mark Macklin (Aberystwyth University) for their support and guidance during this PhD research. I am also particularly grateful for the technical support provided by David Feek (Massey University) during the fieldwork phase of this project.

I wish to thank the following organisations for their financial support over the last three years: the Tertiary Education Commission (Top Achiever Doctoral Scholarship), New Zealand Federation of Graduate Women (Susan Byrne Memorial Award), Zonta Manawatu (Women in Science and Technology Scholarship sponsored by Graduate Women Manawatu), Massey University School of People, Environment and Planning (Graduate Research Fund) and Massey University Institute of Agriculture and Environment.

Several people have contributed their time and expertise, and I would like to acknowledge their contribution: Dr Henry Lamb (Aberystwyth University) for undertaking the XRF core scanning, Michael Hayes for supplying information on the settlement of Kaeo, Dr Bob Stewart (Massey University) and Professor Vince Neall (Massey University) for advice on sedimentology, Dr Mark Bebbington (Massey University) for assistance with statistical analysis, Dr Anja Moebis (Massey University) for help with grain size analysis and Hamish Mckoy (formerly Victoria University of Wellington) for training in the use of the percussion coring equipment. LiDAR data was kindly supplied by the Northland Regional Council (Bob Catheart, Joseph Camuso, Jonathan Santos and Colin Anderson). I would also like to thank the landowners for permitting access to the Northland study sites.

Special thanks also to my fellow students for their contributions and support, especially Rob Dykes and Dr Alastair Clement for their technical advice. Finally, I would like to thank my family and friends. Thank you to Glen, Georgia, Sophie, Jack and Isabel for all their tolerance, love and support, and to Monica and Dennis who instilled in me the desire for knowledge.
Thesis structure and authorship

This thesis consists of four manuscripts written for publication in appropriate journals (currently still under review) and six supporting chapters.

Jane Richardson carried out all the fieldwork in Northland between November 2009 and October 2011, and was assisted at different times by Dr Ian Fuller, Dr Katherine Holt, Dr Nicola Litchfield and David Feek. Jane Richardson also undertook all laboratory work included in this thesis with the assistance of Dr Henry Lamb (Aberystwyth University), Dr Anja Moebis (Massey University) and Dr Bob Stewart (Massey University).

Jane Richardson wrote all the text in this thesis and was the principal author in the preparation of manuscripts included in this thesis. Manuscripts are co-authored by others to acknowledge their input (see Appendix F for statements of contribution). Dr Ian Fuller and Prof. Mark Macklin developed the initial project, and all supervisors provided general advice and edited manuscripts. Dr Mark Bebbington performed the statistical analysis in Chapter 4. Dr Anna Jones advised on the analysis of the New Zealand fluvial radiocarbon database and contributed to the final editing of the manuscript presented in Chapter 4. Use of the New Zealand fluvial radiocarbon database is referenced as Macklin et al. (2012a).

Signed by Principal Supervisor:

Dr Ian Fuller
# Contents

List of Figures ....................................................................................................................... xiii

List of Tables ....................................................................................................................... xvii

Chapter 1 Introduction ............................................................................................................. 1
  1.1 Background and research motivation ............................................................................ 1
  1.2 Thesis aims ................................................................................................................. 4
  1.3 Thesis organisation ..................................................................................................... 4
  1.4 Summary ....................................................................................................................... 6

Chapter 2 Holocene climate change ......................................................................................... 9
  2.1 Introduction ................................................................................................................... 9
  2.2 Holocene climate change .............................................................................................. 9
    2.2.1 Causes of Holocene climate variability ............................................................... 10
    2.2.2 Interhemispheric climate dynamics .................................................................... 15
  2.3 New Zealand climate .................................................................................................. 16
    2.3.1 Major Southern Hemisphere climate modes ....................................................... 17
    2.3.2 The influence of the SAM, ENSO and IPO on New Zealand climate ............... 22
    2.3.3 The Holocene palaeoclimate of New Zealand .................................................... 24
    2.3.4 The Holocene palaeoclimate and palaeovegetation of Northland ..................... 25
    2.3.5 Intercomparison of palaeoclimate proxy records ................................................ 32
    2.3.6 Comparison between Northland and New Zealand Holocene palaeoenvironment records ............................................................................................................ 37
  2.4 Summary ..................................................................................................................... 38

Chapter 3 Fluvial response to Holocene environmental change ............................................ 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2 Factors affecting change in the fluvial environment</td>
<td>41</td>
</tr>
<tr>
<td>3.2.1 Allogenic controls</td>
<td>43</td>
</tr>
<tr>
<td>3.2.2 Autogenic controls</td>
<td>48</td>
</tr>
<tr>
<td>3.2.3 River Response to floods</td>
<td>49</td>
</tr>
<tr>
<td>3.3 New Zealand river response to Holocene environmental change</td>
<td>49</td>
</tr>
<tr>
<td>3.3.1 Climate change</td>
<td>49</td>
</tr>
<tr>
<td>3.3.2 Volcanic activity</td>
<td>51</td>
</tr>
<tr>
<td>3.3.3 Base-level change</td>
<td>52</td>
</tr>
<tr>
<td>3.3.4 Land-use change</td>
<td>52</td>
</tr>
<tr>
<td>3.4 The fluvial sedimentary archive</td>
<td>54</td>
</tr>
<tr>
<td>3.5 Summary</td>
<td>57</td>
</tr>
<tr>
<td>4.1 General introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2 Abstract</td>
<td>60</td>
</tr>
<tr>
<td>4.3 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.4 Methodology</td>
<td>63</td>
</tr>
<tr>
<td>4.5 Results</td>
<td>70</td>
</tr>
<tr>
<td>4.5.1 Holocene floodplain sedimentation rates</td>
<td>77</td>
</tr>
<tr>
<td>4.6 Discussion</td>
<td>83</td>
</tr>
<tr>
<td>4.6.1 River activity and regional climate change</td>
<td>83</td>
</tr>
<tr>
<td>4.6.2 Model of Holocene river activity</td>
<td>92</td>
</tr>
<tr>
<td>4.6.3 Holocene floodplain sedimentation rates</td>
<td>92</td>
</tr>
<tr>
<td>4.7 Conclusion</td>
<td>93</td>
</tr>
<tr>
<td>5.1 General introduction</td>
<td>97</td>
</tr>
<tr>
<td>5.2 Abstract</td>
<td>98</td>
</tr>
<tr>
<td>5.3 Introduction</td>
<td>99</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>5.4</td>
<td>Regional setting</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Geology</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Bioclimatic history</td>
</tr>
<tr>
<td>5.5</td>
<td>Method</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Floodplain and terrace morphology</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Sedimentology and radiocarbon chronology</td>
</tr>
<tr>
<td>5.6</td>
<td>Results</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Awanui River</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Kaihu River</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Panguru, Whakarapa Stream</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Waimamaku River</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Takahue River</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Nukutawhiti, Mangakahia River</td>
</tr>
<tr>
<td>5.6.7</td>
<td>Kaeo River</td>
</tr>
<tr>
<td>5.6.8</td>
<td>Titoki, Mangakahia River</td>
</tr>
<tr>
<td>5.7</td>
<td>Discussion</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Holocene valley floor evolution</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Regional model for Holocene fluvial behaviour</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Mechanisms of floodplain formation</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Northland floodplain development in a global context</td>
</tr>
<tr>
<td>5.8</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Chapter 6 Regional river activity in the Holocene: Northern New Zealand rivers as sensitive recorders of centennial-scale climate change

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>General introduction</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Introduction</td>
<td>132</td>
</tr>
<tr>
<td>6.3</td>
<td>Method</td>
<td>133</td>
</tr>
<tr>
<td>6.4</td>
<td>Results</td>
<td>134</td>
</tr>
<tr>
<td>6.5</td>
<td>Discussion</td>
<td>142</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusion</td>
<td>145</td>
</tr>
</tbody>
</table>
8.6.3 Northland floodplain sedimentation rates ........................................................... 182
8.7 Discussion ................................................................................................................. 182
  8.7.1 Floodplain development ...................................................................................... 183
  8.7.2 Anthropogenic impacts ....................................................................................... 187
  8.7.3 Implications for flood management ................................................................. 189
8.8 Conclusions ............................................................................................................... 189

Chapter 9 Discussion ........................................................................................................... 193
  9.1 Introduction............................................................................................................... 193
  9.2 Spatial and temporal considerations ......................................................................... 193
  9.3 Limitations of radiocarbon dating and the fluvial radiocarbon database ............... 195
  9.4 Site selection ............................................................................................................. 197
  9.5 Discharge regime and the geomorphic effectiveness of flood events...................... 199
    9.5.1 The role of riparian vegetation ............................................................................ 201
  9.6 Sea-level history of Northland ................................................................................. 202
    9.6.1 Northland river response to sea-level change ..................................................... 203
  9.7 The Anthropocene and the New Zealand fluvial record ........................................... 204
    9.7.1 Disequilibrium associated with human activity .................................................. 205
    9.7.2 Management implications ................................................................................... 205

Chapter 10 Synthesis and conclusions ................................................................................. 207
  10.1 Introduction ............................................................................................................. 207
  10.2 Synthesis ................................................................................................................. 207
  10.3 Conclusions addressing the thesis aims ............................................................... 213
    10.3.1 The influence of Holocene climate change on river behaviour in New Zealand. ................................................................................................................ 213
    10.3.2 Chronology of river activity and the fluvial history of Northland catchments during the Holocene ........................................................................................................ 213
    10.3.3 The degree of synchrony between global climate change and river behaviour in Northland during the Holocene ........................................................................... 214
    10.3.4 Human impacts on catchment stability following Māori and European settlement in Northland. ........................................................................................................... 215
List of Figures

2.1. Weighted and smoothed sum of (a) dry periods based on 35 humidity/precipitation proxy records (Wanner et al., 2011) ............................................................................................................. 14

2.2. Oceanographic setting of New Zealand in the mid-latitudes of the Southern Hemisphere. .............................................................................................................................................. 18

2.3. Coherent climate regions of New Zealand.............................................................................................................................. 19

2.4. New Zealand’s three weather regimes displayed with an example of an associated synoptic pattern (Kidson, 2000)........................................................................................................................................... 23

2.5. Map of Northland showing the location of the palaeovegetation study sites, Auckland maar craters and the main urban centres........................................................................................................ 27

2.6. Compilation of palaeoenvironmental records and a climate event stratigraphy linked by key tephra for the last 30,000 cal. yr BP from Alloway et al. (2007) ........................................................................ 35

3.1. The flow-sediment balance of rivers.......................................................................................................................... 42

3.2. Radiocarbon date calibration and summing individual probability distributions to produce cumulative probability function plots.................................................................................................................. 55

3.3. Schematic diagram showing a) five types of alluvial sedimentation units. ................................................. 57

4.1. Map showing the six coherent precipitation variability regions in New Zealand (Mullan, 1998), major rivers, and the location of sample sites included in the $^{14}$C-dated Holocene fluvial unit database. ........................................................................................................................................ 64

4.2. Cumulative probability function (CPF) plots of $^{14}$C-dated fluvial units in New Zealand. ...................................................................................................................................................... 71

4.3. Cumulative probability function (CPF) plots of $^{14}$C-dated fluvial units from the five types of fluvial depositional environment........................................................................................................ 72

4.4. Cumulative probability function (CPF) plots of ‘activity’, ‘stability’ and ‘change-after’ $^{14}$C dates from New Zealand Holocene fluvial records.............................................................................................. 73

4.5. Relative CPF plots of ‘activity’ (top), ‘stability’ (middle) and ‘change-after’ (bottom) $^{14}$C dates plotted with frequency of dates per 100 years from New Zealand fluvial units... 74

4.6. Cross-correlation functions for North and South Island river activity time-series ........... 75
4.7. Relative CPF plots of Holocene river ‘activity’ $^{14}$C dates plotted with frequency of dates per 100 years for the North and South Islands, New Zealand. ................................. 77
4.8. Relative CPF plots of Holocene river ‘stability’ $^{14}$C dates plotted with frequency of dates per 100 years for the North and South Islands, New Zealand. .......................... 78
4.9. Comparison of relative CPF plots of ‘activity’ $^{14}$C dates from North and South Island fluvial units. .......................................................................................................................... 78
4.10. Relative CPF plots of Holocene river ‘activity’ $^{14}$C dates plotted with frequency of dates per 100 years from the coherent precipitation regions within New Zealand ...... 81
4.11. Holocene floodplain sedimentation rates ........................................................................ 82
4.12. New Zealand’s three weather regimes displayed with an example of an associated synoptic pattern (Kidson, 2000) and annotated with average regional precipitation anomalies ..................................................................................................................... 85
4.13. Regional palaeoclimate proxy records for the Holocene ........................................... 86
4.14. Regional palaeoclimate proxy records for the Holocene ........................................... 89
4.15. Schematic of regional palaeoclimate, climate modes and major relationships for the Holocene .......................................................................................................................... 91
5.1. Location map of study sites, catchment boundaries, major rivers and urban centres in Northland, New Zealand. ........................................................................................................... 103
5.2. Map showing the main rock types of Northland and the Northland Allochthon ........ 104
5.3. (a) Hillshade DEM of the Awanui catchment showing the major rivers, maximum catchment elevation and study site location. (b) Awanui study site planform map showing major geomorphological features and core site location. (c) Chronostratigraphy at the core site. .................................................................................. 110
5.4. (a) Hillshade DEM of the Kaihu catchment showing the major rivers, maximum catchment elevation and study site location. (b) Kaihu study site planform map showing major geomorphological features and core site locations. (c) Valley cross-sections showing topography and chronostratigraphy at the core sites. ............................... 113
5.5. (a) Hillshade DEM of the Panguru catchment showing the major streams, maximum catchment elevation and study site location. (b) Panguru study site planform map showing major geomorphological features and core site location. (c) Valley cross-section showing topography and chronostratigraphy at the core site. ................................. 114
5.6. (a) Hillshade DEM of the Waimamaku catchment showing the major river and streams, maximum catchment elevation and study site location. (b) Waimamaku study site planform map showing major geomorphological features and core site locations. (c) Valley cross-section showing topography and chronostratigraphy at the core sites... 115
5.7. (a) Hillshade DEM of the upper Awanui catchment showing the major rivers, maximum catchment elevation and study site location. (b) Takahue study site planform map showing major geomorphological features and core site locations. (c) Valley cross-section showing topography and chronostratigraphy at the core sites. .......................... 117
5.8. (a) Hillshade DEM of the Mangakahia catchment showing the major rivers, maximum catchment elevation and study site location. (b) Nukutawhiti study site planform map showing major geomorphological features and core site locations. (c) Valley cross-section showing topography and chronostratigraphy at the core sites. ..................... 118
5.9. (a) Hillshade DEM of the Kaeo catchment showing the major rivers, maximum catchment elevation and study site location. (b) Kaeo study site planform map showing major geomorphological features and core and exposure site locations. (c) Valley cross-section showing topography and chronostratigraphy at the core and exposure sites. 119
5.10. (a) Hillshade DEM of the Mangakahia catchment showing the major rivers, maximum catchment elevation and study site location. (b) Titoki study site planform map showing major geomorphological features and exposure site location. (c) Valley cross-section showing topography and chronostratigraphy at the exposure site. .............................. 120
5.11. LiDAR derived DEM hillshades overlying aerial images and showing morphological examples of floodplain forming and reworking processes. (a) Upper Whakarapa Stream, Panguru and (b) Takahue River. ................................................................. 122
5.12. Stylised schematic model for Holocene floodplain development in different valley confinement settings. .............................................................................. 124
6.1. The location of fluvial $^{14}$C sample sites included in the New Zealand fluvial $^{14}$C database and the location of Northland $^{14}$C-dated fluvial units ................................................. 134
6.2. Cumulative probability function (CPF) plots of $^{14}$C-dated fluvial units in (a) Northland, (b) New Zealand before the addition of the Northland $^{14}$C dates and (c) New Zealand after the addition of Northland $^{14}$C ages. ................................................................. 136
6.3. Relative CPF plots of ‘activity’ and ‘stability’ $^{14}$C dates plotted with frequency of dates per 100 years from New Zealand fluvial units................................................. 137
6.4. Relative CPF plots of Holocene river ‘activity and ‘stability’ $^{14}$C dates plotted with frequency of dates per 100 years for the North and South Islands, New Zealand........ 139
6.5. Relative CPF plots of Holocene river ‘activity’ $^{14}$C dates plotted with frequency of dates per 100 years from the coherent precipitation regions within New Zealand .......... 141
6.6. Schematic of regional palaeoclimate proxy records, climate modes and major relationships for the Holocene. ................................................................. 144
7.1. Map showing the location of $^{14}$C-dated Holocene fluvial unit sample sites in Northland, and major rivers and urban centres in northern New Zealand ......................... 152
7.2. Cumulative probability function (CPF) plot of $^{14}$C-dated fluvial units in Northland.

7.3. Relative CPF plot of ‘activity’ $^{14}$C dates plotted with frequency of dates per 100 years from Northland fluvial units.

7.4. Schematic of regional palaeoclimate, palaeovegetation and Northland river behaviour for the Holocene.

8.1. (a) Location map of the Kaeo catchment in the Northland region of New Zealand showing the location of Holocene $^{14}$C-dated floodplain sample sites, rivers and urban centres. (b) The study site location in the lower Kaeo catchment near the settlement of Kaeo.

8.2. Contemporary land cover map of the Kaeo catchment, Northland, New Zealand.

8.3. (a) LiDAR derived digital elevation model hillshade of the Kaeo study site labelled with the main geomorphic features, location of cross-sections and sediment cores used in this study. (b) GoogleEarth™ aerial image of the lower Kaeo catchment with study site indicated.


8.5. (a) Log of floodplain core K4 displayed with lithology, grain size, radiocarbon chronology and reference to XRF analysis of the top 2.7 m of core. (b) Cross-section KXS1 showing location of core K4 and stratigraphical interpretation of the GPR profile. (c) GPR profile acquired with 100 MHz antennae and processed using the autogain function.

8.6. (a) Floodplain exposure K1 displayed with lithology, grain size, radiocarbon chronology and reference to grain size analysis of the top 2.0 m of core. (b) Image of interbedded sand and silty sands in bank exposure K1. (c) Description, grain size frequency data and sediment $D_{50}$ of top 2 m of exposure K1.

8.7. Inorganic geochemical data from high resolution XRF scans (5 point smoothed peak area integral [int.] data) for selected elements and in Kaeo floodplain sediment.


8.9. Aerial image of flooding in Kaeo (19 March 2012) that occurred following 146 mm of rain in 24 hours.

9.1. Northland study sites. (a) Waimamaku River near Waimamaku. (b) Mangakahia River near Nukutawhiti. (c) Kaeo River near Kaeo. (d) Kaihu River near Maitahi. (e) Takahue River near Pamapuria. (f) Mangakahia River near Titoki. (g) Te Rapa Stream near Panguru. (h) Awanui floodplain near Awanui, Kaitaia.

9.2. Bank erosion caused by the Mangakahia river, Nukutawhiti, Northland.
List of Tables

2.1 Age models for key tephras in New Zealand erupted during the Holocene and coincidence with important environmental or climatic changes .................................................. 36

3.1 Evidence provided by Grant (1985) for coincidence of major periods of alluviation in New Zealand (bold text) with fluvial records in USA, central Europe, Southwest Pacific, Australia and Africa ........................................................................................................ 53

4.1 Holocene fluvial $^{14}$C dates from New Zealand river catchments. Regional groupings follow Mullan (1998) ..................................................................................................... 65

4.2 The total number of fluvial $^{14}$C dates, number of ‘activity’ dates and proportion of ‘activity’ dates classified by the organic material used for dating .................................... 67

4.3 Episodes of Holocene river flooding, activity and stability in New Zealand based on analysis of $^{14}$C-dated fluvial units ................................................................. 76

4.4 Episodes of regional Holocene river activity and stability in the North and South Islands, New Zealand based on analysis of $^{14}$C-dated fluvial units ............................ 79

4.5 Episodes of regional Holocene river activity in the six coherent precipitation variability regions of New Zealand based on analysis of $^{14}$C-dated fluvial units ............... 80

5.1 Summary of $^{14}$C data, sample code and description, core name, depositional environment and location of samples used in this study ............................................. 112

6.1 Summary of sample location, sample details, radiocarbon data, depositional environment and whether or not the sample represents fluvial activity or stability. ... 135

6.2 Episodes of Holocene river activity and stability in New Zealand and Northland based on analysis of $^{14}$C-dated fluvial units ......................................................... 138

6.3 Episodes of regional Holocene river activity and stability in the North and South Islands, New Zealand, based on analysis of $^{14}$C-dated fluvial units ...................... 140

6.4 Episodes of regional Holocene river activity in the six coherent precipitation variability regions of New Zealand based on analysis of $^{14}$C-dated fluvial units .............. 142

7.1 Summary of sample location, sample details, depositional environment and radiocarbon data ........................................................................................................ 155

8.1 Summary of radiocarbon data, sample description and location of samples used in this study .............................................................................................................. 183

8.2 Kaeo floodplain sedimentation rates ...................................................................... 186

9.1 Floodplain classification and specific stream power for the Northland floodplain sites... ................................................................. 199

9.2 Flow statistics for major Northland rivers ............................................................. 200