The Effects Of Wet Winters And Winter Management On Early Season Milk Production.

This thesis is presented in partial fulfilment of the requirements for the degree

MASTER OF APPLIED SCIENCE
in Agricultural Systems and Management
at
Massey University

John G. Smith
1997
Abstract

The effect of a wet winter on milksolid production in early lactation was measured for the years 1994 and 1995, against the 1993 year which had a dry winter. Data for milksolid production to the end of December, and for the whole season, were collected from 70 farms in the Manawatu region that had remained relatively unchanged in area and cow numbers over the three years. Management information was also collected from 18 selected farmers, whose milksolid production was either affected or unaffected by the wet winters. These farmers were also visited to obtain supplementary information about their management.

For the 70 farms, the effect of the wet winters on production in early lactation was a significant reduction (P<1%) in milksolids for both wet years studied. (-24 KgMS/ha; -9 KgMS/cow in 1994, and -66 KgMS/ha; -26 KgMS/cow in 1995). These effects could have been caused by 0.2tDM/ha and 0.5tDM/ha less pasture being eaten in the wet springs of 1994 and 1995 respectively. However the effect on the total lactation milksolid production was not significant, with increases in late lactation compensating for the decreases apparent in early lactation.

The effect of the wet winters was probably to increase the incidence of pugging damage and to lower the pasture growth rates and pasture cover through calving and into early spring, reducing the ability of the farmers to feed lactating cows in early lactation.

For the 18 farms selected in the management survey, the effect of the wet winter (1995) on production in early lactation was larger on the affected farms (-133 KgMS/ha; -45 KgMS/cow), than for the unaffected farms (-4 KgMS/ha; -11 KgMS/cow). There was a significant decrease in the total seasons production for the affected farmers with lower production (-93 KgMS/ha; -25 KgMS/cow) in 1995 than 1993. The total seasons production for the unaffected farmers was a significant
increase of 80 KgMS/ha, and an increase of 13 KgMS/cow for 1995 compared to 1993.

There was no one single management strategy that was used during the wet winter of 1995 by unaffected farmers that was not used by the affected farmers. Instead, more unaffected farmers used off farm grazing, on-off grazing, and had better overall farm drainage. This decreased the risk of pugging damage during the winter, and early spring to enable more pasture to be converted to milksolids. There were differences in goals between the groups, because the affected farmers had more goals associated with lifestyle, while the unaffected farmers had more production orientated goals, with the unaffected farmers constantly monitoring the system to ensure the achievement of their production goals.
Acknowledgements:

I would like to acknowledge and thank my supervisors Dr. Colin Holmes and Nicola Shadbolt for their efforts throughout the duration of this study. Their invaluable assistance and guidance on all areas of the study is very much appreciated, along with their positive comments and encouragement. Thanks to you both.

I would also like to thank the staff at Tui Milk Products (now part of Kiwi Co-operative Dairies Ltd.), and those farmers that were involved in the study for their assistance and co-operation.

Thanks must also go to my family, in particular my parents. They have always supported and encouraged me, and have helped to provide me with the motivation to pursue my studies.

Finally I must thank all my friends who have supported me in my studies during the year, but have also contributed towards what was a fun and memorable year. Cheers.
Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

List of Abbreviations

Chapter 1: Introduction

Chapter 2: Review Of Literature

2.0 Introduction

2.1 Stocking Rate

2.2 Drying Off

2.3 Calving Date

2.4 Targets for Winter Management

2.4.1 Pasture Cover at Calving

2.4.2 Early Spring Management

2.4.3 Body Condition Score at Calving

2.5 Grazing Management

2.6 Management Factors

Chapter 3: Methods And Materials

3.0 Introduction

3.1 Farm Production Data

3.1.1 The Years

3.1.2 Selection of Farms

3.1.3 Farm Data Collected

3.1.4 Analysis of Farm Data
List of Tables.

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.</td>
<td>Factors Influencing Milk Production in Early Lactation.</td>
<td>1</td>
</tr>
<tr>
<td>Table 2.</td>
<td>Average Stocking Rates in the New Zealand Dairy Industry.</td>
<td>5</td>
</tr>
<tr>
<td>Table 3.</td>
<td>Marginal feed conversion efficacy (kg extra pasture DM/kg extra milk fat).</td>
<td>10</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Effect of Increasing Pasture Allowance on Cow Performance.</td>
<td>11</td>
</tr>
<tr>
<td>Table 5.</td>
<td>The Effect of Cow Condition at Calving and the Level of Feeding On Milkfat Production Over The First Twenty Weeks of Lactation.</td>
<td>18</td>
</tr>
<tr>
<td>Table 6.</td>
<td>Condition Score Targets At Calving.</td>
<td>20</td>
</tr>
<tr>
<td>Table 7.</td>
<td>Effect of defoliation treatment on subsequent pasture production measured over 14 weeks.</td>
<td>24</td>
</tr>
<tr>
<td>Table 8.</td>
<td>The Effect Of Treading Damage On Wet Plots Grazed In Successive Winters At A High Stocking Rate (300 cows/ha/day).</td>
<td>26</td>
</tr>
<tr>
<td>Table 9.</td>
<td>Pasture growth rates and cow requirements in early spring after average and wet winters.</td>
<td>27</td>
</tr>
<tr>
<td>Table 10.</td>
<td>Production Advantages Of A Feed Pad Vs No Feed Pad.</td>
<td>28</td>
</tr>
<tr>
<td>Table 11.</td>
<td>Total Rainfall and Percentage Of Rainy Days For The Winter Period (May-August) Of 1993 - 1995.</td>
<td>33</td>
</tr>
<tr>
<td>Table 12.</td>
<td>Statistics for the Average Farm (and Ranges) in the Present Study and values for the Wellington Region and for New Zealand.</td>
<td>40</td>
</tr>
<tr>
<td>Table 13.</td>
<td>Ranges in Total Milksolid Production for the Farms in the Present Study.</td>
<td>41</td>
</tr>
<tr>
<td>Table 14.</td>
<td>Total Rainfall for the Winter and Spring with Percentage Rainy Days.</td>
<td>42</td>
</tr>
<tr>
<td>Table 15.</td>
<td>Mean Values with Standard Deviations for Milksolid Production Per Hectare (kgMS/ha) to December and for the Total Season, with differences between 1993 & 1994, and 1993 & 1995.</td>
<td>46</td>
</tr>
</tbody>
</table>
Table 16. Mean Values with Standard Deviations for Milksolid Production Per Cow (kgMS/cow) to December and for the Total Season, with differences between 1993 & 1994, and 1993 & 1995.

Table 17. Differences (and Standard Deviations) in Monthly Milksolid Production (kgMS/farm) between the 1993 dry year and the two wet years of 1994 and 1995.

Table 18. Percentage (and Standard Deviations) of Milksolid Production up to December 31st for the dry year of 1993 and the wet years of 1994 and 1995.

Table 20. Average milk supply period (days) for the two groups and the three years.

Table 21. Average date for the start of milk collection for the two groups and the three years.

Table 22. Difference in Milksolid Production (kgMS/ha & /cow) between 1993 (dry) and 1995 (wet) Milksolid Production for Affected and Unaffected farmers.

Table 23. Percentage of Milksolid Production up to December 31st for the dry year of 1993 and the wet year of 1995.

Table 24. Reasons for drying off at the end of lactation in 1995 between Affected and Unaffected farmers.

Table 25. Winter fertiliser applications: types and timing of applications between Affected and Unaffected farms.

Table 26. Winter supplementation: types of supplement and length of feeding between Affected and Unaffected farms.

Table 27. Percentage of farmers who used off farm grazing during the winter period.

Table 28. Percentage of farmers using on-off grazing during the winter period.

Table 29. Percentage of farmers who had specific calving targets.
Table 30. Percentage of farmers who fully fed cows and supplements in early lactation. 60

Table 31. Percentage of different types of farm drainage between Affected and Unaffected farms. 61
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Effect of stage and duration of underfeeding in early lactation on mean daily milk yields.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2</td>
<td>The relationship between pasture accumulation rate and pasture cover during May to August.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Monthly Rainfall Totals for years 1993 - 1995.</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Mean Daily Temperatures for the years 1993 - 1995.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Mean Monthly Soil Temperatures (10 cm depth) for the years 1993 - 1995.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Average Pasture Covers and Growth Rates for Tui Monitor Farms in 1994 and 1995.</td>
<td>45</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Milksolid Production (kgMS/farm) to the end of December and the Total Season Production for the years 1993 - 1995.</td>
<td>47</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Monthly Average Milksolid Production per farm for the years 1993 - 1995.</td>
<td>47</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Monthly Average Milksolid Production Per Hectare for the years 1993 - 1995.</td>
<td>49</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Monthly Average Milksolid Production Per Cow for the years 1993 - 1995.</td>
<td>49</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Monthly milksolid production up to December, expressed as a percentage of the total lactations production for the years 1993-1995.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Daily Milksolid Production Per Hectare for Affected (A) Farmers and Unaffected (U) Farmers for July to December in Years 1993-95.</td>
<td>55</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Daily Milksolid Production Per Cow for Affected (A) Farmers and Unaffected (U) Farmers for July to December in Years 1993-95.</td>
<td>56</td>
</tr>
</tbody>
</table>
List Of Abbreviations.

SR - Stocking rate
ha - Hectare
CS - Condition score
kgDM/ha - Kilogram(s) of dry matter per hectare
tDM/ha - Tonne(s) of dry matter per hectare
kgMS - Kilogram(s) of milksolids
kgMS/ha - Kilogram(s) of milksolids per hectare
kgMS/cow - Kilogram(s) of milksolids per cow
kgMF - Kilogram(s) of milk fat
kgMF/cow - Kilogram(s) of milk fat per cow
kgMF/ha - Kilogram(s) of milk fat per hectare
MJME - Mega joules of metabolisable energy
MJME/CS - Mega joules of metabolisable energy per condition score
$/ha - Dollars per hectare