YIELDS AND QUALITY COMPONENTS OF MAIZE HYBRIDS FOR SILAGE

A thesis
presented in partial fulfilment of the requirements
for the degree of
Master of Agricultural Science
in
Agronomy
at
Massey University

Ronaldo C. Villaver
1996
Seven maize hybrids were evaluated at Frewens Block, Massey University, Palmerston North to determine the effects of hybrid and plant population on yield and yield components, nutritive value, dry matter (DM) partitioning and N%. The range of maturity of the seven hybrids varied from early to full season. The seven hybrids were P3902, Janna, CF1, Furio P3751, P3585 and CG900 each planted at 75,000; 100,000 and 140,000 plants/ha. Plant height, leaf number and yield were measured at 50% silking. Three subsequent samples were taken for estimation of yield, the final yield being at 30-35% whole crop dry matter %. "In Vitro" Digestibility and Kjeldahl N analysis was done by Animal Nutrition Laboratory, Massey University on the grain, leaf, stem and husk components for the 100,000 plants/ha population only.

The effect of hybrid on crop development was closely related to relative maturity. P3902 and Janna, both early maturing hybrids were quickest to reach 50% silking and blacklayer, followed by medium (CF1, P3751, Furio) and late maturing (CG900, P3751) hybrids. Heat unit accumulation of each hybrid followed a similar pattern. Plant height and leaf number differed significantly among hybrids and was related to maturity ranking.

Hybrid CF1 achieved the highest (20,046 kg/ha) whole crop DM yield at final harvest while Janna produced the lowest (15,776 kg/ha) yield. The 75,000 plants/ha plant population yielded significantly less than 100,000 and 140,000 plants/ha. There was no difference between the 100,000 and 140,000 plant populations. This study confirmed the present recommended plant population of 100,000 plants/ha for maize.
silage. Dry matter partitioning at final harvest revealed the highest proportion in the grain component followed by the stem, husk and leaf. Total metabolizable energy (ME) content ranged from 11.3 MJME/kg DM to 10.28 MJME/kg DM. The ME content of CF1 was significantly higher than all other hybrids.

Final yield was not correlated with the relative contribution to yield in any of the components or with N% in the crop. However, total metabolisable energy content was correlated with its ME components in the grain, leaf, husk and stem.

There were no significant hybrid differences in whole crop N% which ranged from 1.07 to 1.16%. Nitrogen % of total DM was strongly correlated to N% in the grain and moderately correlated to N% in the stem and in the leaf. NHI was highly correlated with % grain.

CF1 was the best performing hybrid, having highest yield, metabolizable energy and N%. However, among six commercial maize silage hybrids (CF1 is excluded being a non-commercial hybrid at the time of experiment) tested, P3902, Furio, P3585 are the preferred hybrids for early, medium and full season, respectively. The performance of CF1 suggests that there is considerable potential for improving the agronomic characteristics of maize hybrids for silage production in New Zealand through local plant breeding programmes.
ACKNOWLEDGEMENTS

I wish to express my gratitude for the assistance, encouragement, supervision and constructive criticism that I received from my supervisor, Mr. James Millner, Department of Plant Science, Massey University, during the course of my study.

To Mr. Allan Hardacre, Crop and Food Ltd., Palmerston North, I also extend my thanks for his interest and supervision of this project.

I wish also to extend my thanks to the Department of Plant Science Field Technicians, Massey University for their help during the establishment and harvesting of the trial.

To my friends who became involved at various stages of the field and laboratory work I extend my thanks.

My thanks to the New Zealand Government for funding my study under the New Zealand Official Development Assistance Study Award Programme; to the Department of Science and Technology and to the Philippine Government for allowing me to go on study leave.

Finally, to my wife, Pacit and my two children, May Angela and Monica Joy who made considerable sacrifices; to my old mother, who patiently waited on me; my brothers and sisters, my uncle and aunt in-laws and to my sister who passed away while I was in New Zealand, this work is humbly dedicated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER I Introduction
- Objectives of the Study 1

CHAPTER II Review of Literature
- 2.1 Introduction 3
- 2.2 History and Development of Maize 3
- 2.3 Maize Growth and Development 6
- 2.4 The Effect of Environment on Maize 12
 - 2.4.1 Temperature 12
 - 2.4.1.2 Prior to Planting 12
 - 2.4.1.2 Planting to Emergence 12
 - 2.4.1.3 Emergence to Tasselling 14
 - 2.4.1.4 Tasselling and Silking 15
 - 2.4.1.5 Maturity 16
- 2.4.2 Rainfall, Hail and Wind 19
- 2.5 Management Factors Affecting Maize Production 24
 - 2.5.1 Sowing Date 24
 - 2.5.2 Soil and Fertility 26
 - 2.5.3 Hybrids 34
- 2.6 Maize Silage 40
 - 2.6.1 Factors Influencing Components and Composition of Maize Grown for Silage 41
 - 2.6.1.1 Plant Maturity at Harvest 41
 - 2.6.1.2 Hybrid Selection 43
 - 2.6.1.3 Plant Population 46
- 2.7 Nutritive Value of Maize Silage 52
 - 2.7.1 Digestibility and Energy Value 52
 - 2.7.2 Protein Content and Minerals 57
 - 2.7.3 Fibre Content and Fibre Digestibility 58
 - 2.7.4 Maize Silage Moisture Content 61
- 2.8 Accumulation and Partitioning of Dry Matter in Maize 62
 - 2.8.1. Environmental Influence on DM Partitioning 66
 - 2.8.1.1 Temperature 67
 - 2.8.1.2 Light 70
LIST OF TABLES

Table 2.1 The arrangement of the parental inbred lines for different hybrid types 37
2.2 Typical composition, digestibility and metabolisable energy value of forage maize at the time of harvest 59
3.1 Hybrid characteristic 77
3.2 The 7 x 3 factorial combinations of seven maize hybrids and three plant population levels 79
3.3 Agronomic characteristics, yield and yield components and quality measured in the study 82
4.1 Monthly mean temperature, heat units and rainfall data for the 1994/95 maize growing season at Palmerston North compared with the 30 year mean 86
4.2 The effect of hybrid on time and heat unit requirements from sowing to 50% silking and black layer formation 88
4.3 The effect of plant population on time and heat unit requirements from sowing to 50% silking and black layer formation 88
4.4 The effect of hybrid on plant height and leaf number 91
4.5 The effect of plant population on plant height and leaf number 91
4.6 The effect of hybrid on whole crop yield and percent of yield present as stem, leaf and husk at 50% silking 94
4.7 The effect of plant population on whole crop yield and percent of yield present as stem, leaf and husk at 50% silking 94
4.8 The effect of hybrid on whole crop DM yield; crop DM%; percent yield present as stem, leaf, husk and grain, at final harvest 96
4.9 The effect of plant population on whole crop DM yield; crop DM%; percent yield present as stem, leaf, husk and grain, at final harvest 96
4.10 The variation in metabolizable energy content of among hybrids planted at 100,000 plants per hectare 108
4.11 The variation in overall N% and its corresponding percentage in plant components, NHI and N yield among maize hybrids planted at 100,000 plants per hectare 110
4.12 Simple correlation coefficients for final yield, % yield in grain, stem, leaf and husk, total metabolisable energy and metabolisable energy of different plant fractions 113
4.13 Simple correlation coefficients for final yield, nitrogen %, yield components, total nitrogen %, nitrogen harvest index, nitrogen yield, grain yield and % grain 115
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The effect of hybrid on DM accumulation between 50% silking and final harvest</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>The effect of plant population on DM accumulation between 50% silking and final harvest</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>Dry matter partitioning in maize hybrids at final harvest</td>
<td>102</td>
</tr>
<tr>
<td>4.4</td>
<td>The effect of hybrid on percent stem between 50% silking and final harvest</td>
<td>104</td>
</tr>
<tr>
<td>4.5</td>
<td>The effect of hybrid on percent leaf between 50% silking and final harvest</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daily temperature data with the corresponding heat unit for the 1994/95 maize growing season at Palmerston North</td>
<td>169</td>
</tr>
<tr>
<td>2</td>
<td>Rainfall data for the 1994/95 maize growing season at Palmerston North</td>
<td>175</td>
</tr>
</tbody>
</table>