Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
AN ECONOMIC ANALYSIS OF
LEAST-COST LAYER RATIONS

A thesis presented in partial fulfilment
of the requirements for the degree of
Master of Agricultural Science in Farm
Management at Massey University.

OLIVER PATRICK RYAN
1974
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER TWO: NUTRITIONAL RELATIONSHIPS IN LAYER PRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Expression of the energy relationships in layer nutrition</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Energy utilization by laying hens and its relation to voluntary feed consumption</td>
<td>9</td>
</tr>
<tr>
<td>2.4 The relationship between energy intake and production responses</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Protein utilization by laying hens and its relation to voluntary feed consumption</td>
<td>13</td>
</tr>
<tr>
<td>2.6 The relationship between protein intake and production responses</td>
<td>15</td>
</tr>
<tr>
<td>2.7 Amino acid relationships in layer nutrition</td>
<td>19</td>
</tr>
<tr>
<td>2.8 The relationship between amino acid intake and production responses</td>
<td>22</td>
</tr>
<tr>
<td>2.9 Calcium and phosphorus utilization by laying hens</td>
<td>28</td>
</tr>
<tr>
<td>2.10 Factors affecting egg size</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER THREE: LAYER NUTRITION TRIAL 32-EXPERIMENTAL DETAILS</td>
<td>32</td>
</tr>
<tr>
<td>3.1 Aims</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Experimental design</td>
<td>32</td>
</tr>
</tbody>
</table>
3.3 Materials and methods
3.4 Preliminary research
3.5 Ration formulation
3.6 Changes in trial design
3.7 Measurements
 3.7.1 Body weight
 3.7.2 Feed consumption
 3.7.3 Mortality
 3.7.4 Egg number
 3.7.5 Egg weight and grading
3.8 Experimental results
 3.8.1 Results 1-315 days

CHAPTER FOUR: DATA ANALYSIS, ESTIMATION PROCEDURES AND PROBLEMS

4.1 Introduction
4.2 Specification of the model
4.3 Analysis of variance
4.4 Estimation procedure
4.5 Goodness of fit
4.6 Testing forms of the production function
4.7 Multicollinearity
4.8 General nature of the production model

CHAPTER FIVE: PRODUCTION FUNCTION ANALYSIS FOR THE TOTAL LAYING PERIOD

5.1 Introduction
5.2 Feed consumption
 5.2.1 Discussion
5.3 Egg number

5.3.1 Discussion

5.4 Egg weight

5.5 Body weight gain

CHAPTER SIX: ECONOMIC ANALYSIS

6.1 Outline of the economic model

6.2 Method of analysis

6.3 Experimental design

6.4 Ration formulation

6.5 Egg and culled hen price

6.6 Experimental results

6.7 Net revenue function

6.8 Conclusion

CHAPTER SEVEN: ASPECTS OF LAYER RESPONSES

7.1 Introduction

7.2 Treatment 17

7.2.1 Feed intake

7.2.2 Egg number

7.3 Treatments 16, 18

7.3.1 Feed intake

7.3.2 Egg number

7.4 Analysis of the periods 1-140, 168-315 days in the laying cycle

7.5 Feed consumption
7.5.1 1-140 days
7.5.2 168-315 days
7.5.3 Discussion

7.6 Egg number

7.6.1 1-140 days
7.6.2 168-315 days
7.6.3 Discussion

CHAPTER EIGHT: CONCLUSION

APPENDIX A: VARIABLES USED AND THEIR NOTATION
APPENDIX B: EXPERIMENTAL RESULTS 1-140, 168-315 DAYS
APPENDIX C: AMINO ACID ANALYSES
APPENDIX D: ANALYSIS OF MINERAL AND VITAMIN ADDITIVE
APPENDIX E: ANALYSIS OF TREATMENTS 1-6
APPENDIX F: AN EXAMPLE OF THE RELATIONSHIP BETWEEN STRUCTURAL AND REDUCED FORM EQUATIONS
APPENDIX G: SIGNIFICANCE LEVELS
REFERENCES
LIST OF FIGURES:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Energy relationships in layer nutrition</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Essential amino acids</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>The response of egg yield to methionine intake</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Dietary energy and protein levels of the treatments in LN/32</td>
<td>40</td>
</tr>
<tr>
<td>5.1</td>
<td>Feed consumption vs. dietary energy concentration</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Energy consumption vs dietary energy concentration</td>
<td>85</td>
</tr>
<tr>
<td>5.3</td>
<td>Egg number vs. dietary energy concentration</td>
<td>97</td>
</tr>
<tr>
<td>5.4</td>
<td>Egg number vs. observed energy intake</td>
<td>100</td>
</tr>
<tr>
<td>5.5</td>
<td>Egg number vs. observed methionine intake</td>
<td>101</td>
</tr>
<tr>
<td>5.6</td>
<td>Predicted energy intake vs. observed energy intake</td>
<td>102</td>
</tr>
<tr>
<td>5.7</td>
<td>Egg number vs. predicted energy intake</td>
<td>103</td>
</tr>
<tr>
<td>5.8</td>
<td>Egg number vs. predicted methionine intake</td>
<td>104</td>
</tr>
<tr>
<td>5.9</td>
<td>Average egg weight vs. dietary energy concentration</td>
<td>109</td>
</tr>
<tr>
<td>5.10</td>
<td>Liveweight gain vs. dietary energy consumption</td>
<td>112</td>
</tr>
<tr>
<td>6.1</td>
<td>Relationships between estimated net revenue and energy density of layer rations</td>
<td>137</td>
</tr>
</tbody>
</table>
Figure 6.2: Relationship between estimated net revenue and energy density at different methionine intakes (gms.); isoleucine at 0.55%

7.1: Daily feed consumption vs. dietary energy concentration (1–140 days) 154
7.2: Daily feed consumption vs. dietary energy concentration (168–315 days) 157
7.3: Egg number vs. dietary energy concentration (1–140 days) 161
7.4: Egg number vs. dietary energy concentration (168–315 days) 163
ACKNOWLEDGEMENT

I would like to express my sincere appreciation of the advice and encouragement provided throughout this study by my supervisor, Professor R J Townsley, Professor of Agricultural Economics and Farm Management, Massey University.

I am grateful to Mr R Patchell, Director, Poultry Research Centre, Massey University for his cooperation in providing research facilities and assistance during the study.

Staff of the Poultry Research Centre have been most helpful.

Financial assistance was obtained from the Agricultural Economics and Farm Management Department, Massey University and Poultryman's Cooperative Limited, Auckland.

The manuscript was typed by Mrs P Reynolds and Mrs G P Percy and I am appreciative of this.

I wish to thank my wife Carolyn for her encouragement.

Finally, I would like to thank Alan, Stephen and others who helped develop, during the period of this study, the authors appreciation of non-academic pursuits.
Fifteen treatments, replicated once, each containing eighty four birds of three strains of White Leghorn layers (White Base a, White Base b, M. Line) were fed rations ad libitum of five different metabolisable energy levels (2315, 2535, 2756, 2976, 3197 k. cal. M.E. per kg.) and three different protein levels (16, 17, 18 gms. per hen per day, based on an energy intake of 305 k. cal. per hen per day) to obtain quantitative estimates of the physical input/output relationships of layer production. Three other treatments, plus a control, were fed to obtain data on the response of laying hens to restricted energy intake and improved protein quality. All rations were formulated to least cost using Linear Programming.

Least Squares multiple regression was used to obtain linear response functions for feed intake, egg number, egg weight and liveweight gain (the variables included in a net revenue function for layers under New Zealand production conditions).

Feed intake was expressed in terms of dietary energy concentration and initial liveweight. Statistical problems encountered dictated that predicted nutrient intakes were used as the independent variables in the estimation of the egg number and liveweight gain functions. Predicted energy intake and methionine intake accounted for differences in egg number, particularly for White Base b layers. Predicted energy intake, methionine intake and isoleucine intake accounted for differences in liveweight gain. There were no significant differences between average egg weights.
There were significant strain differences in *ad libitum* feed consumption, egg number, average egg weight and liveweight gain.

A net revenue function was estimated in terms of the endogenous variables (dietary nutrient concentrations) which were included in the layer response functions. This was analysed in terms of the endogenous variables for the then current egg and feed prices.