Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE EFFECTS OF FASTING AND TRANSPORT ON CALVES.

A Thesis presented in partial fulfilment of the requirements for the degree of
MASTER OF SCIENCE
at Massey University

Sarah Elizabeth Todd
February 1998
ACKNOWLEDGEMENTS

Many people have provided invaluable input to this thesis. Their contributions of knowledge and inspiration, time, encouragement, and support - financial and otherwise, are gratefully acknowledged.

My supervisors Professor David Mellor, Dr Kevin Stafford and Professor Neville Gregory equipped me with the necessary skills to complete this thesis, maintained my focus and invested much time providing knowledge, encouragement and patience.

Ricci Wesselink, who provided moral support and empathy, together with Noel Rutherford, contributed many hours of assistance caring for calves and running experiments.

Robert Bruce provided practical advice on calf husbandry and much entertainment during experiments. Cheryl McMeekan, Kate Littin, Mark Simpson, Jo Robins, Chris Rogers, Rebecca Osborne, David Simcock and Geoff Orbell offered companionship and support and contributed generous amounts of time during experiments.

Neil Ward organised equipment, provided logistical advice, technical support and practical assistance.

Barry Parlane, Martin Chesterfield and Shaun Wilson provided the experimental site and animals. Bruce Cann provided the video recorders and Tony Fox took the photos. Glen Oroua Livestock provided the vehicle and driver for transportation of calves during the experiments.

Keith Thompson, Rosalind Power and Sheryl Bayliss analysed the samples at Massey University. Mariette Komene and Mary Lorier analysed the samples at the Animal Health Laboratory, Ruakura.
This thesis would not have been possible without the financial support of the Ministry of Agriculture (MAF Policy). The funding for this work and the support given by David Bayvel are gratefully acknowledged.

I would like to thank my family who, in different ways, have provided support and reassurance whenever it was needed, and Dave, who with much patience and understanding has been my mainstay during this time.

And finally, I would like to thank AWAC for providing the opportunity to establish an acceptable standard of living for bobby calves and all domestic animals in our care.
Prior approval was obtained (from the Massey University Animal Ethics Committee) to conduct all experiments described in this thesis.
ABSTRACT

The welfare of domestic animals is becoming increasingly important in New Zealand. Consequently, Codes of Recommendations and Minimum Standards are produced by the Animal Welfare Advisory Committee to maintain adequate standards of welfare for animals in our care. These Codes are updated to incorporate new knowledge which may improve welfare standards further. There is one such Code for the welfare of bobby calves. In New Zealand, calves born to dairy cows that are not required for replacements in the herd are slaughtered for human consumption. These ‘bobby calves’ are exposed to a number of factors which have the potential to compromise welfare. Work in this thesis is based on the recommendations and minimum standards given in the bobby calf code. The general aim of this work was to investigate the combined effects of transport and nutrition on bobby calves, and to assess the ability of the calves to operate within their physiological capacity without significant welfare compromise during the bobby process.

In this study the metabolic effects of feeding and fasting hand-reared dairy calves aged 1-2 weeks were examined over a period of 30 hours. Parameters used to assess the response to feeding and fasting included PCV and plasma concentrations of total proteins, glucose, triglycerides, beta-hydroxybutyrate and urea. In mild climatic conditions and with access to water at all times, it was found that feeding calves the recommended volume of colostrum or milk at 12 hourly intervals was sufficient to maintain high glucose concentrations between feeds. A period of 30 hours without food had minimal adverse effects on calves as they were able to maintain energy levels during this time without excessive use of endogenous energy reserves. There was no evidence to suggest that significant dehydration had occurred.

Work in this study included examination of the metabolic effects of transport duration and stocking density in calves that were deprived of food for 30 hours. PCV and plasma concentrations of total proteins, glucose, triglycerides, beta-hydroxybutyrate, urea, creatine phosphokinase and lactate were measured. Three hours of transport at the recommended stocking density (0.2m²/calf) caused minimal adverse effects in food-
deprived calves. Food-deprived calves transported for 12 hours at the recommended density maintained normoglycemia for 6 hours longer than non-transported food-deprived calves. This was thought to be caused by a mild increase in physical activity resulting from the need to maintain balance during transport. Thus the physical activity probably produced a glucose-sparing effect by mobilising muscle glycogen. The response of food-deprived calves transported for 12 hours at half the recommended density (0.4m²/calf) was similar to that of non-transported, food-deprived calves. This suggests minimal physical activity occurred at the lower stocking density and this was attributed to the fact that most of these calves lay down during transport.

In this study the initial metabolic responses of calves to feeding were evaluated after 30 hours of food-deprivation in transported and non-transported calves, and immediately after transport of 3 or 12 hours duration. Parameters measured included PCV and plasma concentrations of total proteins, glucose, triglycerides, urea and lactate. Feeding after 30 hours without food apparently caused a decrease in glucose clearance. It is thought that this may have resulted from a metabolic overcompensation due to delayed adjustment of hormones and metabolites from the starved state to the fed state. Feeding immediately after transport restored plasma glucose levels to be within the normal range within 3 hours.

As indicated by the parameters measured in this study, hand-reared dairy calves appear to tolerate the combined effects of transport and food-deprivation quite well. However the present experiments were conducted in mild climatic conditions. Air temperatures ranged from 7-13 °C and there was little wind or no rain. In situations of climatic extremes, the physiological capacity of calves to withstand the bobby process may not be as great. At higher temperatures there is a risk of dehydration. At lower temperatures, especially combined with wind and rain, an increased metabolic rate may be required to fuel heat production so that endogenous body reserves may not last as long during times of food-deprivation.
TABLE OF CONTENTS

THE EFFECTS OF FASTING AND TRANSPORT ON CALVES................................. i
ACKNOWLEDGEMENTS... ii
ETHICAL APPROVAL... iv
ABSTRACT.. v
TABLE OF CONTENTS.. vii
LIST OF FIGURES... x
LIST OF TABLES.. xv

CHAPTER 1: GENERAL INTRODUCTION.. 1
1.1 WELFARE OF THE BOBBY CALF.. 1
1.2 METABOLIC TRANSITIONS IN PRE-RUMINANT CALVES......................... 3
1.3 USE OF METABOLIC PARAMETERS... 9
1.4 OUTLINE OF THESIS.. 10

CHAPTER 2: THE EFFECTS OF FEEDING AND FASTING HAND-REARED DAIRY CALVES AGED 1-2 WEEKS... 12
2.1 SUMMARY.. 12
2.2 INTRODUCTION... 13
2.3 MATERIALS AND METHODS... 16
 2.3.1 Animals... 17
 2.3.2 Groups... 20
 2.3.3 Experimental Procedures.. 21
 2.3.4 Methods.. 22
 2.3.5 Blood Plasma Measurements... 23
 2.3.6 Presentation of Results... 23
2.4 RESULTS.. 28
 2.4.1 General Clinical State At Pick-Up... 28
 2.4.2 Indices Hydration State... 29
 2.4.3 Indices of Metabolic State... 30
2.4.4 General Clinical State Throughout the Experiment 31
2.5 DISCUSSION .. 39

CHAPTER 3: THE EFFECTS OF ROAD TRANSPORT ON UNFED, HAND-
REARED DAIRY CALVES AGED 1-2 WEEKS .. 47
3.1 SUMMARY ... 47
3.2 INTRODUCTION ... 48
3.3 MATERIALS AND METHODS .. 49
 3.3.1 Transportation .. 49
 3.3.2 Groups .. 50
 3.3.3 Experimental Procedures ... 52
 3.3.4 Blood and Plasma Measurements ... 52
 3.3.5 Presentation of Results ... 53
3.4 RESULTS ... 58
 3.4.1 Duration of Transport ... 58
 3.4.2 Stocking Density During Transport ... 60
 3.4.3 Noise Level During Transport .. 62
3.5 DISCUSSION .. 76

CHAPTER 4: INITIAL PHYSIOLOGICAL RESPONSES OF HAND-REARED
DAIRY CALVES AGED 1-2 WEEKS TO REFEEDING AFTER FASTING AND
TRANSPORT ... 85
4.1 SUMMARY ... 85
4.2 INTRODUCTION ... 86
4.3 MATERIALS AND METHODS .. 88
 4.3.1 Groups .. 88
 4.3.2 Experimental Procedures ... 90
 4.3.3 Blood and Plasma Measurements ... 91
 4.3.4 Presentation of Results ... 91
4.4 RESULTS ... 94
 4.4.1 Refeeding After 30 hours Without Food 94
 4.4.2 Refeeding After Transport .. 95
4.5 DISCUSSION..104

CHAPTER 5: GENERAL DISCUSSION..111
5.1 GENERAL CONCLUSIONS...111
5.2 ASSESSMENT OF PARAMETERS..113
5.3 FUTURE RESEARCH...118

REFERENCES...120
LIST OF FIGURES

CHAPTER TWO

Figure 2.1 Pens in the calf shed. 25
Figure 2.2 Calf teat feeders. 25
Figure 2.3 Obtaining a blood sample by jugular venipuncture. 27
Figure 2.4 Taking rectal temperatures and recording behaviours before sampling. 27
Figure 2.5 a-e Subjective observations of calves at pick-up. 32
Figure 2.6 Weight of calves at pick-up. 33
Figure 2.7 Rectal temperature of calves at pick-up. 33
Figure 2.8 Plasma gamma-glutamyl transferase concentration in calves at pick-up. 33
Figure 2.9 Mean PCVs in fed calves and calves that were unfed for 30 hours. 34
Figure 2.10 Mean total plasma protein concentrations in fed calves and calves that were unfed for 30 hours. 34
Figure 2.11 Mean plasma glucose concentrations in fed calves and calves that were unfed for 30 hours. 36
Figure 2.12 Mean changes after 31 hours in plasma concentrations of beta-hydroxybutyrate, triglycerides and urea in fed calves and calves that were unfed for 30 hours. 36
Figure 2.13 a Change in weight after the experiment of individual fed calves and individual calves that were unfed for 30 hours. 37
Figure 2.13 b Mean change in weight after the experiment of fed calves and calves that were unfed for 30 hours. 38
Figure 2.14 Mean rectal temperatures of fed calves and calves that were unfed for 30 hours. 38
CHAPTER THREE

Figure 3.1 Layout of the truck. 50
Figure 3.2 Observing behaviour of the calves in pens on the truck before sampling. The noise meter is secured to the top of a gate. 54
Figure 3.3 a&b Calves in pens on the truck at different stocking densities. 55
Figure 3.4 Obtaining blood samples by jugular venipuncture from calves on the truck. 56
Figure 3.5 Unloading calves from the truck after transport. 56
Figure 3.6 Mean PCV in unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf). 65
Figure 3.7 Mean concentration of total plasma proteins in unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf). 65
Figure 3.8 Mean plasma concentrations of glucose in unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf). 66
Figure 3.9 Mean changes (0 to 31h) in plasma concentrations of beta-hydroxybutyrate, triglycerides and urea in unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf). 67
Figure 3.10 a Mean plasma concentrations of creatine phosphokinase in unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf). 68
Figure 3.10 b Mean plasma concentrations of creatine phosphokinase in unfed calves (12T) transported for 12 hours at the recommended stocking density (0.2m²/calf). 68
Figure 3.11 Mean plasma concentrations of lactate in unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf). 68
Figure 3.12 Mean change in weight (0 to 31h) of unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf).

Figure 3.13 Mean rectal temperatures of unfed calves transported for 3 or 12 hours at the recommended stocking density (0.2m²/calf).

Figure 3.14 Mean PCV in unfed calves transported for 12 hours at high (0.2m²/calf) and low (0.4m²/calf) stocking densities.

Figure 3.15 Mean concentration of total plasma proteins in unfed calves transported for 12 hours at high (0.2m²/calf) and low (0.4m²/calf) stocking densities.

Figure 3.16 Mean plasma concentrations of glucose in unfed calves transported for 12 hours at high (0.2m²/calf) and low (0.4m²/calf) stocking densities.

Figure 3.17 Mean changes (0 to 31h) in plasma concentrations of beta-hydroxybutyrate, triglycerides and urea in unfed calves transported for 12 hours at high (0.2m²/calf) or low (0.4m²/calf) stocking densities.

Figure 3.18 Mean plasma concentrations of creatine phosphokinase in unfed calves transported for 12 hours at high (0.2m²/calf) and low (0.4m²/calf) stocking densities.

Figure 3.19 Mean plasma concentrations of lactate in unfed calves transported for 12 hours at high (0.2m²/calf) and low (0.4m²/calf) stocking densities.

Figure 3.20 Mean change in weight (0 to 31h) in unfed calves transported for 12 hours at high (0.2m²/calf) and low (0.4m²/calf) stocking densities.

Figure 3.21 Mean rectal temperatures of unfed calves transported for 12 hours at high (0.2m²/calf) and low (0.4m²/calf) stocking densities.

Figure 3.22 a-c Noise levels (dB) in the truck during transport expressed as the percentage of time spent at different
CHAPTER FOUR

Figure 4.1 Mean change (31 to 34h) in PCV after refeeding at 31h following 30h without food in transported and non-transported calves.

Figure 4.2 Mean change (31 to 34h) in total plasma protein concentration after refeeding at 31h following 30h without food in transported and non-transported calves.

Figure 4.3 a Mean change (31 to 34h) in plasma glucose concentrations after refeeding at 31h following 30h without food in transported and non-transported calves.

Figure 4.3 b Mean plasma glucose concentrations after refeeding following 30h of food deprivation in transported and non-transported calves.

Figure 4.3 c Mean incremental changes in plasma glucose concentrations after refeeding following 30h without food in transported and non-transported calves.

Figure 4.4 Mean change (31 to 34h) in plasma triglyceride concentrations after refeeding at 31h following 30h without food in transported and non-transported calves.

Figure 4.5 Mean change (31 to 34h) in plasma urea concentrations after refeeding at 31h following 30h without food in transported and non-transported calves.

Figure 4.6 Mean change in PCV in calves that were refed after transport (3TR & 12TR) and not refed after transport (3T &12T).

Figure 4.7 Mean change in plasma glucose concentrations in calves that were refed after transport (3TR & 12TR) and not refed after transport (3T &12T).

Figure 4.8 Mean change in plasma lactate concentrations in calves that were refed after transport (3TR & 12TR)
and not refed after transport (3T & 12T).
LIST OF TABLES

CHAPTER TWO
Table 2.1 Summary of treatments. 21
Table 2.2 Summary diagram of experimental protocol. 26
Table 2.3 Summary of the number of calves with diarrhoea. 28
Table 2.4 Initial mean values of metabolic parameters. 35

CHAPTER THREE
Table 3.1 Summary of treatments. 51
Table 3.2 Summary diagram of experimental protocol. 57
Table 3.3 Initial mean values of metabolic parameters. 64
Table 3.4 The amount of time spent above certain noise levels. 63

CHAPTER FOUR
Table 4.1 Summary of treatments. 88
Table 4.2 Summary diagram of experimental protocol. 93
Table 4.3 Mean concentrations of hydration parameters after refeeding at 31h and 3h later at 34h in transported and non-transported calves following 30h of food deprivation. 97
Table 4.4 Mean concentrations of metabolic parameters after refeeding at 31h and 3h later at 34h in transported and non-transported calves following 30h of food deprivation. 101
Table 4.5 Mean concentrations of parameters in calves that were refed after transport (3TR & 12TR) and not refed after transport (3T & 12T). 103