Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
OVINE CEROID-LIPOFUSCINOSIS

A thesis presented in partial fulfilment (70%) of the requirements for the degree of Master of Veterinary Science at Massey University

Antonie Janmaat
1979
to my parents

..."Ie heb 't good edôan"...
ABSTRACT

Ovine ceroid-lipofuscinosis is a rare inherited neurological disease which has only been diagnosed in one family of the South Hampshire breed of sheep. This breed is of relative recent origin and was established from an initial cross between Southdown and Hampshire Down sheep. Affected sheep show loss of vision and behavioural abnormalities starting at 11-12 months of age, with motor dysfunction commencing soon afterwards. The clinical signs increase in severity as the disease progresses and under field conditions affected animals are not expected to live beyond 2 years.

Ovine ceroid-lipofuscinosis is characterized histologically by the intracytoplasmic accumulation of PAS and Sudan black positive autofluorescent lipopigment material in neurons and a wide variety of other cell types. The process leading to the accumulation of lipopigment seems only to damage neurons and there is degeneration and loss of neurons, especially in the cerebral cortex and the visual neuroepithelium of the retina i.e. retinal atrophy. Grossly, affected brains show reduction in size and weigh on average 66% of those of normal sheep.

Ultrastructurally, the typical lipopigment inclusion is a round or oval body 0.2 - 5.0 μm in size, of varying electron density, in which a wide variety of membranous profiles may be seen. Some of the membranous patterns have received special names such as curvilinear, fingerprint and crystalloid.
Pathological examination of liver, skin and rectal biopsy material of lambs at 4 - 5 months of age shows the presence of accumulated lipopigment, and is a means of early diagnosis before the onset of clinical signs. This observation and the fact that lipopigment has been demonstrated in affected lambs at birth, show ovine ceroid-lipofuscinosis to be associated with a true inborn error of metabolism.

The family tree of all affected sheep and the results of sire-daughter matings of a heterozygous ram show the disease to be inherited as a simple autosomal recessive trait. The deleterious gene for ovine ceroid-lipofuscinosis is unlikely to be of economic importance to the sheep industry as the South Hampshire breed was developed to supply sires for terminal crosses associated with table lamb production.

The objects of this study were to define ovine ceroid-lipofuscinosis in clinical, pathological and genetic terms, and to compare it with similar diseases in man and domestic animals. It is concluded that the ovine disease does indeed belong to the heterogeneous group of diseases of man and domestic animals known as Batten's disease or the neuronal or generalised ceroid-lipofuscinoses. Of these the ovine entity most closely resembles the late infantile and the juvenile forms of the human syndrome, and the canine disease. It is proposed that ovine ceroid-lipofuscinosis would make a useful experimental model for Batten's disease.
ACKNOWLEDGEMENTS

This thesis reflects a substantial part of the research I did while employed as a Research Officer in the Department of Veterinary Pathology and Public Health at Massey University over a period of 3 years. I am grateful to Prof. B.W. Manktelow, as Head of Department, and to Dr R.D. Jolly, as leader of the research team, firstly for allowing me to use the research findings in this thesis and secondly for the pertinent advice, particularly Dr Jolly's, proffered in their rôles as supervisor in its preparation. A number of people gave professional advice and technical assistance during the course of my study into ovine ceroid-lipofuscinosis.

Mr D.M. West gave generously of his time with the clinical examination of the animals and supervised the anaesthetic, surgical and post-operative procedures involved in the taking of skin, liver and rectal biopsies. He also supplied the normal retinograph used in figure 2.3 as a control. Dr R.H. Sutton and his staff performed the haemogram estimations. Ms. K. Cato took the radiographs which were interpreted by Dr M. O'Callaghan.

Preparation of tissues for light and fluorescent microscopy was carried out by Mr C. Fletcher, Mr R.P. Hansen, Ms. S.L. Malloch and Mrs P.M. Slack. I thank them for their cheerful and friendly cooperation. Mr A.S. Craig and Mr D. Hopcroft of the Department of Scientific and Industrial Research gave very helpful advice on the preparation of tissues for electronmicroscopy and printed the electronmicrographs. Mr T. Law most obligingly printed the other
photographs used in this thesis. I am indebted to Mrs E. Bristol and Alison for typing the first draft of the manuscript, and to Mrs F.S. Wicherts for typing the final copy.

Finally, I would like to thank the farm and hospital technical staff for their care of and interest in the animals, and especially Mr A.T. DeCleene for his cheerful and knowledgeable assistance with the handling of the sheep in the field, hospital and post-mortem room.

The research project in which I was involved was supported by the United States National Institutes of Health Grant No. RO1 NS11238-04 and 5 from the National Institute of Neurological Disorders and Stroke.
TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Review - the neuronal ceroid-lipofuscinoses.</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>Clinical findings.</td>
<td>43</td>
</tr>
<tr>
<td>III</td>
<td>Pathology.</td>
<td>63</td>
</tr>
<tr>
<td>IV</td>
<td>Genetics.</td>
<td>104</td>
</tr>
<tr>
<td>V</td>
<td>General discussion.</td>
<td>109</td>
</tr>
</tbody>
</table>

REFERENCES

115
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.I</td>
<td>Classification of the neuronal ceroid-lipofuscinoses.</td>
<td>9</td>
</tr>
<tr>
<td>2.I</td>
<td>Case histories of South Hampshire sheep affected with ceroid-lipofuscinosis.</td>
<td>46</td>
</tr>
<tr>
<td>3.I</td>
<td>List of South Hampshire sheep with ceroid-lipofuscinosis that were examined pathologically.</td>
<td>64</td>
</tr>
<tr>
<td>3.II</td>
<td>Distribution of lipopigment in ceroid-lipofuscinosis of sheep over 12 months of age.</td>
<td>71</td>
</tr>
<tr>
<td>4.I</td>
<td>Results of sire-daughter matings of a South Hampshire ram heterozygous for ceroid-lipofuscinosis.</td>
<td>107</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>South Hampshire ram, 24 months of age, affected with ceroid-lipofuscinosis.</td>
<td>52</td>
</tr>
<tr>
<td>2.2</td>
<td>Graham-Knoll technique to demonstrate peroxidase activity in sheep neutrophils. A partially reacted and a completely reacted cell are shown.</td>
<td>55</td>
</tr>
<tr>
<td>2.3</td>
<td>Retinographs of the ovine eye showing attenuation and straightening of retinal vessels in an affected 24 months old ram, when compared to a control sheep.</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Dorsal view of brains from two 13 months old ewe hoggets. The brain of the affected sheep is reduced in size and shows thinning of the cerebral gyri. The brain weight of the affected animal is 57.2g, compared with 86.2g for the normal control sheep.</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>Lateral view of brains from two 13 months old ewe hoggets. The cerebrum of the affected animal shows reduction in size, thinning of the cerebral gyri and a slight dorso-ventral flattening, when compared with the brain of the normal control sheep.</td>
<td>68</td>
</tr>
</tbody>
</table>
3.3 Transverse section of the cerebrum of an affected 13 months old ewe hogget and of an age and sex-matched control sheep. Note reduced size of cerebrum, marked thinning of cortex, thinning of corpus callosum and septum pellucidum and enlargement of lateral ventricles in the affected sheep.

3.4 Cerebral cortex of a 15 months old South Hampshire ewe hogget with ceroid-lipofuscinosis showing neurons laden with lipopigment granules.

3.5 Thalamus of a 25 months old affected ram. Lipopigment granules stain black and in some neurons appear to almost completely fill the cytoplasm.

3.6 Cerebral cortex of a 25 months old affected ram. The white structures are autofluorescent lipopigment granules, single or in clusters.

3.7 Cerebellar cortex of a 25 months old affected ram. Inclusions in a Purkinje cell are numerous and show variation in size.
Figure 3.8 Cerebral cortex of a 25 months old ram with ceroid-lipofuscinosis, showing a neuron surrounded by an increased number of glial cells. Astrocytes predominate and may show unusually shaped nuclei.

Figure 3.9 Cerebral cortices of two approximately 15 months old South Hampshire ewe hoggets. The affected animal shows an increase in number and size of astrocytes, compared to the control sheep.

Figure 3.10 The histology of the retina of an 18 months old South Hampshire ewe with ceroid-lipofuscinosis, compared with that of a normal sheep. The affected animal shows severe atrophy of the layer of rods and cones and the outer nuclear layer. The retinal pigment epithelium, inner nuclear layer and ganglion cell layer appear normal.

Figure 3.11 Lymphocytes from a 25 months old affected ram. Note absence of lymphocytic vacuolation.

Figure 3.12 Residual body in cortical neuron showing lobulated shape.
Figure

3.13 Storage material apparently free in the cytoplasm of a meningeal capillary endothelial cell. Short arrow points to a five-layered membrane, which at long arrow seems to be formed by the fusion of two tripartite membranes.

Page 85

3.14 Part of lipopigment body in retinal neuron showing granular matrix of varying electron density, and five-layered membranes. The arrow indicates a myelin pattern.

Page 85

3.15 Part of residual body in a ventral horn neuron showing stacks of alternating dense and light lines, with a periodicity of approximately 5.2nm.

Page 87

3.16 Pancreatic acinar cell with curvilinear inclusion bodies. The cellular architecture appears normal.

Page 87

3.17 Inclusion in cerebral cortical neuron showing fingerprint and crystalloid patterns.

Page 88

3.18 Storage body within a cerebral cortical neuron showing membranous profiles and tubular arrays.

Page 88

3.19 Part of ventral horn neuron of lumbar cord showing a large number of inclusions. The cytoplasm shows sparsity of normal organelles.

Page 89
3.20 Membranous inclusion body in cell at the cortico-medullary junction of the adrenal gland.

3.21 Membranous inclusion in a thick bundle of astrocyte fibres in the cerebral cortex of a 25 months old ram with ceroid-lipofuscinosis.

3.22 Pancreatic acinar cell showing two types of residual bodies. A curvilinear body typical for ovine ceroid-lipofuscinosis, and a granular, more electron dense, body which may also be seen in normal sheep.

3.23 Lymphoid follicle in rectal wall of a 5 months old ewe lamb. Macrophages contain nuclear remnants and lipopigment inclusions.

3.24 Ultrastructural detail of part of macrophage showing typical curvilinear bodies. Thin section obtained from same tissue as shown in figure 3.23.

3.25 Granular electron dense inclusion in a macrophage in the rectal wall of a 5 months old normal lamb. These inclusions are encountered in both normal and affected sheep, and carry no significance in the diagnosis of ovine ceroid-lipofuscinosis.
3.24 Autofluorescent material outlines the sweat glands in the skin of a 25 months old ram affected with ceroid-lipofuscinosis. Before the onset of clinical signs, this autofluorescence is already present in affected lambs at 4 - 5 months of age.

4.1. Family tree of affected individuals. Only matings of heterozygotes and other pertinent individuals are shown.