Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE CHEMILUMINESCENCE OF
OVINE NEUTROPHILS

A thesis presented in partial fulfilment
of the requirement for the degree of
Master of Veterinary Science at
Massey University

Jane Eagleson
November 1984
ABSTRACT

The development, structure and function of polymorphonuclear leucocytes (PMN) is reviewed and methods for determining neutrophil competence are discussed.

A technique, based on differential centrifugation and red blood cell lysis, is described for isolating neutrophils of 80 to 90% purity from ovine blood. A standardised, luminol-enhanced chemiluminescence (CL) assay was developed for ovine neutrophils using latex beads as the phagocytic stimulus and some conditions influencing the level of CL generated are described.

Normal sheep of similar age, housed under identical conditions and bled at approximately the same time on different days produced CL responses ranging from 386 to 3084 millivolts (mV). Animals sampled once daily over 5 days showed large fluctuations in CL values both between and within individuals. Furthermore, sheep bled at 4 hourly and 6 hourly intervals for 48 and 96 hrs respectively produced CL responses in a single individual with a range of 618 to 2946 mV. There was no evidence of periodicity in CL activity over the time periods examined.

Since peak CL responses showed such large variations between individuals, integrated CL values were also measured. Variations between and within individuals similar to those recorded by peak CL were seen in these results.
To examine the possible role of genetic differences in neutrophil function on the variability of CL, pairs of bovine monozygous twins were sampled. There was no correlation in CL response between genetically identical animals with the CL values from pairs of animals differing by as much as 2943 mV.

The effect of cortisol on PMN CL was assessed. Synthetic corticosteroid *in vivo* and *in vitro* did not increase the peak CL response from isolated neutrophils.

Profiles produced by recording CL against time were examined. Some cell isolates produced single peaked profiles while others gave a double peaked response. Single and double peaked profiles were recorded from the same donor at different times during a 24 hr period. Storage of the cells for prolonged periods sometimes resulted in an increase in the magnitude of the first peak possibly indicating an increase in the amount of more readily available myeloperoxidase (MPO). Prominent first peaks were still displayed after the cells were washed and resuspended in fresh media suggesting that the more readily available MPO was cell attached rather than truly extracellular.

Neutrophils from ceroid lipfuscinosis-affected sheep produced peak CL responses and CL profiles similar to those given by normal sheep. These results did not confirm the postulated myeloperoxidase deficiency of this condition.
It is concluded that ovine neutrophil CL is subject to large variations which cannot be controlled by standardising the cell isolation and CL analysis techniques. The assay is therefore unsuitable as a measure of neutrophil function where single samples are examined. Where there are consistent differences between individuals over a number of days, then CL may be of use when considered in conjunction with other tests of PMN function.
ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisor, Dr K.M. Moriarty, for his advice, enthusiasm and above all, for his encouragement throughout this study.

I would also like to thank the following people within the Veterinary faculty:

Professor B.W. Manktelow for the original encouragement to undertake postgraduate study.

Dr K.R. Lapwood and Mr J. Elgar for their assistance with the cortisol assays.

Dr R.D. Jolly for providing the CLF-affected sheep and offering advice on the chapter involving these animals.

Mr M. Thomas for assistance in handling the animals.

Mr P. Wildbore for obtaining reagents and coping with my impatience when these were unavoidably delayed.

Finally, I wish to thank the Phyllis Irene Grey Fellowship for providing the financial assistance without which this project could not have been undertaken.
CONTENTS

ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vi
INDEX OF FIGURES ix
INDEX OF TABLES xi

1. THE POLYMORPHONUCLEAR NEUTROPHIL GRANULOCYTE 1
1.1 Origin 1
1.2 Development 7
1.3 Structure 9
1.4 Kinetics 12
1.5 Chemotaxis 16
1.6 Phagocytosis 20
1.7 Degranulation 22
1.8 Respiratory burst 23
1.9 Oxidative metabolism 29
1.10 Microbial killing 31
 a. Oxidative bactericidal mechanisms 34
 b. Non-oxidative bactericidal mechanisms 36
1.11 Neutrophil function tests 37
 a. Nitroblue tetrazolium reduction 37
 b. Microbial killing tests 38
 c. Chemiluminescence 39

2. THE DETERMINATION OF OPTIMAL CHEMILUMINESCENCE ASSAY CONDITIONS USING OVINE POLYMORPHONUCLEAR LEUCOCYTES 46
2.1 Introduction 46
2.2 Materials and Methods 47
 a. Animals 47
 b. Harvesting of PMN 47
 c. Luminol 48
 d. Latex beads 48
 e. Haemoglobin 49
 f. Chemiluminescence analysis 49
2.3 Results 50
 a. Effect of cell concentration 50
2.4 Discussion

3. VARIATION IN NEUTROPHIL CHEMILUMINESCENCE ACTIVITY

3.1 Introduction

3.2 Materials and Methods
 a. Animals
 b. Blood collection
 c. Harvesting of PMN
 d. Chemiluminescence analysis
 e. Blood leucocyte counts and plasma cortisol determinations
 f. The effect of corticosterone in vivo on CL
 g. The effect of corticosterone in vitro on CL

3.3 Results
 a. Day-to-day variation in peak CL values
 b. Day-to-day variation in integrated CL values
 c. Variability in peak CL from samples taken at 4 and 6 hourly intervals
 d. CL, leucocyte counts and plasma cortisol
 e. Effect of corticosterone in vivo
 f. Effect of corticosterone in vitro
 g. Variations in neutrophil CL between animals of identical genetic composition

3.4 Discussion

4. PROFILES OF LUMINOL-ENHANCED CHEMILUMINESCENCE RESPONSES

4.1 Introduction

4.2 Materials and Methods
 a. Animals
 b. Neutrophil isolation
 c. Chemiluminescence analysis
 d. Post-equilibration washing
4.3 Results
 a. Profiles of the CL response in normal sheep 79
 b. Profiles of the CL response in samples taken at 4 hourly intervals 79
 c. Effect of incubation at 27°C on the CL profile 83
 d. Effect of post-equilibration washing on the CL profile 83

4.4 Discussion 83

5. CHEMILUMINESCENCE IN CERIOD LIPOFUSCINOSIS-AFFECTED SHEEP 91
 5.1 Introduction 93
 5.2 Materials and Methods 93
 a. Animals 93
 b. Neutrophil isolation 93
 c. Chemiluminescence analysis 93
 5.3 Results 93
 a. Peak CL values 93
 b. Profiles of the CL responses in ceroid lipofuscinosis-affected sheep 94
 c. Effect of incubation at 27°C on the CL profile of ceroid lipofuscinosis-affected sheep 94

5.4 Discussion 96

6. A CONCLUDING STATEMENT 103
REFERENCES 105
APPENDIX 153
INDEX OF FIGURES

1.1 Haematopoietic cell development 3
1.2 Suggested intracellular events following phagocytosis 28
1.3 Suggested oxidative interactions involved in respiratory burst activity 32
1.4 Possible interrelationship of the reactive oxygen species of the respiratory burst 33
1.5a Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) 42
1.5b Aminophthalate ion 42
2.1 The relationship between chemiluminescence and cell concentration 51
2.2 The effect of latex concentration on chemiluminescence 52
2.3 The effect of luminol concentration on chemiluminescence 52
2.4 The effect of haemoglobin on luminol-enhanced chemiluminescence from isolated neutrophils 55
2.5 Mean peak chemiluminescence from isolated neutrophils stored at 4°C 56
3.1 The mean peak chemiluminescence values from 3 sheep over 5 successive days 67
3.2 The mean peak chemiluminescence from 2 sheep bled at 4 hourly intervals for 48 hr 70
3.3 The mean peak chemiluminescence from 2 sheep bled at 6 hourly intervals for 96 hr 71
3.4 Neutrophil chemiluminescence, leucocyte counts and plasma cortisol from a single donor bled via an indwelling cannula at 6 hourly intervals 73
4.1 Profiles of chemiluminescence responses of neutrophils isolated from 4 different sheep 80
4.2a Sheep a, chemiluminescence profiles recorded at 4 hourly intervals 81
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2b</td>
<td>Sheep b, chemiluminescence profiles recorded at 4 hourly intervals</td>
<td>82</td>
</tr>
<tr>
<td>4.3a</td>
<td>Effect of incubation at 27°C on the chemiluminescence profiles from isolated neutrophils (normal sheep)</td>
<td>86</td>
</tr>
<tr>
<td>4.3b</td>
<td>Effect of incubation at 27°C on the chemiluminescence profiles from isolated neutrophils (normal sheep)</td>
<td>87</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of post-equilibration washing on the chemiluminescence profile</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Chemiluminescence profiles of ceroid lipofuscinosis-affected lambs</td>
<td>97</td>
</tr>
<tr>
<td>5.2</td>
<td>Chemiluminescence profiles of normal, Southdown lambs</td>
<td>98</td>
</tr>
<tr>
<td>5.3a</td>
<td>Effect of incubation on the chemiluminescence profiles of ceroid lipofuscinosis-affected animals</td>
<td>100</td>
</tr>
<tr>
<td>5.3b</td>
<td>Effect of incubation on the chemiluminescence profiles of ceroid lipofuscinosis-affected animals</td>
<td>101</td>
</tr>
</tbody>
</table>
INDEX OF TABLES

2.1 Replication of chemiluminescence values within samples 54
3.1 Mean integrated chemiluminescence values from 3 sheep recorded on 4 successive days 68
3.2 The effect of corticosteroid in vivo (2mg/kg body weight on mean peak chemiluminescence values 68
3.3 The effect of corticosteroid in vitro on mean peak chemiluminescence values 74
3.4 Mean peak chemiluminescence responses of pairs of bovine monozygous twins 74
4.1 Peak chemiluminescence values from the sheep from which chemiluminescence profiles were recorded at 4 hourly intervals over 24 hr 84
5.1 Peak chemiluminescence responses from 7 ceroid lipofuscinosis-affected sheep 95