Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Can Velocity Management be introduced to the repair chain of a utilities monopoly?
Abstract

Background The challenge of introducing Velocity Management which is a performance improvement technique may be too much for a repair chain of a regulated utility monopoly which provides one of the basic core needs of society. The need to increase repairs, water saved and income within existing staff numbers, whilst reducing repair backlogs and delivering high returns for shareholders and mitigating an increasing capital challenge of aging infrastructure does create a situation resulting in velocity management becoming a burden to the company. A three year study of whether Velocity Management could be successfully introduced into the repair chain of a utility monopoly is reported here.

Results Statistical analysis was used to determine if Velocity Managements introduction improved the repair chains performance against some Key Performance Indicators (KPI’s). The KPI’s were an increase in the number of repairs, Mega Litres a day saved, income, and a decrease in age of the backlog, average age of repairs and personnel all achieved the targets that were set at the beginning of the study. This showed that velocity management could be introduced to a utilities monopoly and markedly improved the repair chain performance of the organisation.

Conclusion A theoretical analysis supported by statistical results that are independently verified by the utilities regulator shows that Velocity Management can be introduced successfully into the repair chain of a utilities monopoly. Future research would be beneficial to assess which tools and techniques can be embedded into other utility organisations, when additional training is required and what is the value for money increase for the whole utility and not just the repair chain in areas such as customer complaints and repair rework.
Acknowledgements

I wish to acknowledge the support of my wife Kate Powney, whom without, I would have fallen short.
TABLE OF CONTENTS

ABSTRACT ... II

ACKNOWLEDGEMENTS ... III

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

CHAPTER 1 OVERVIEW ... 8

1.1 INTRODUCTION ... 8
1.2 THESIS QUESTION .. 10
1.3 KEY OBJECTIVES .. 11
1.4 CHAPTER FORMAT ... 12

CHAPTER 2. INDUSTRY BACKGROUND .. 14

2.1 INTRODUCTION ... 14
2.2 CUSTOMER SIDE LEAKAGE ORGANISATIONAL STRUCTURE 23
2.3 CUSTOMER SIDE LEAKAGE CURRENT PROCESS ... 25
2.4 THE CHALLENGES .. 29

CHAPTER 3 LITERATURE REVIEW .. 32

3.1 INTRODUCTION ... 32
3.2 CHALLENGES.. 32
3.3 CRITICAL SUCCESS FACTORS ... 36
3.4 OLIGOPOLY .. 39

CHAPTER 4 METHODOLOGY ... 41

4.1 INTRODUCTION ... 41
4.2 COLLECTION METHODS .. 41
4.3 DATA SOURCE .. 44
4.4 IMPLEMENTING VELOCITY MANAGEMENT ... 46
4.5 FUTURE PROCESS ... 47
4.6 LIMITATIONS .. 53

CHAPTER 5 ANALYSIS AND DISCUSSION ... 56

5.1 INTRODUCTION ... 56
5.2 TYPE AND NUMBER OF REPAIRS CONDUCTED.. 57
5.3 MEGA LITRE PER DAY (MLD) SAVED ... 78
5.4 INCOME GENERATION BY CUSTOMER SIDE LEAKAGE .. 83
CHAPTER 6 CONCLUSIONS

6.1 INTRODUCTION

6.2 OBJECTIVES

6.3 INCREASE IN REPAIRS

6.4 MEGALITRES PER DAY SAVED

6.5 INCOME

6.6 THE AGE OF THE BACKLOG

6.7 THE AVERAGE AGE OF ALL REPORTABLE REPAIRS

6.8 PERSONNEL

6.9 LIMITATIONS

6.10 FUTURE RESEARCH

REFERENCES AND BIBLIOGRAPHY

APPENDIX A: CSL SUMMARY DATA 1 APRIL 2005 TO 31 MARCH 2008
List of Figures

- Figure 2.01: Customer Side Leakage Organisational Structure Pre September 2006
- Figure 2.02: Customer Side Leakage Organisational Structure Post September 2006
- Figure 2.03: CSL Detection and Repair Process
- Figure 3.01: Continuous Improvement Management System Framework
- Figure 5.01: Annual Summary of Customer Repairs
- Figure 5.02: Breakdown of Customer Repairs
- Figure 5.03: Monthly Trend of Customer Repairs
- Figure 5.04: Comparison of monthly repair types
- Figure 5.05: Percentage breakdown of repair types
- Figure 5.06: Megalitres of Water saved from Customer Repairs
- Figure 5.07: Income of Customer Repairs
- Figure 5.08: CSL Repair jobs
- Figure 5.09: Breakdown of Customer Repairs over 365 days old
- Figure 5.10: Number of Customer Repairs over 365 days old
- Figure 5.11: Rolling Average of Repairs from Detection to Repair
- Figure 5.12: Comparison of Rolling Monthly Average from Detection to Raised
- Figure 5.13: Comparison of Rolling Monthly Average from Raised to Repair
- Figure 5.14: CSL OSVTB repairs and average age profile
- Figure 5.15: CSL MRRPB repairs and average age profile
- Figure 5.16: CSL repairs and average age profile
- Figure 5.17: CSL Relays and average age profile
- Figure 5.18: CSL commercial repairs average age profile
List of Tables

- Table 5.01: Summary of Repairs Contributing to Leakage Savings or Income for CSL
- Table 5.02: Five highest periods where repairs over 365 days were resolved
- Table 5.03: Increase of leakage repairs compared to the 2005/6 benchmark