Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Student Perspectives and Roles in an Inquiry Mathematics Classroom

A thesis presented in partial fulfilment of the requirements for the degree of Master of Education at Massey University, Palmerston North, New Zealand

Generosa Angela Leach

2013
ABSTRACT

This study examines the perspectives and roles of students aged 9-10 years old learning mathematics in an inquiry classroom. It builds on previous work which has advocated students learning mathematics through collaborative interaction as opposed to passive transmission of knowledge and skills. In this study the students’ beliefs about what they consider to be important in learning mathematics is compared to the ways in which they engage in mathematics activity. The varying roles students assume while learning mathematics and how this affects their agency are considered.

This investigation is situated in an inquiry classroom. A sociocultural perspective provides the framework for the classroom context. Relevant literature is examined to provide a rationale for how students engaged in mathematical reasoning within this environment. The pedagogic approach of the teacher in developing effective student participation in mathematical reasoning by facilitating the even distribution of authority in the classroom is offered as an alternate to customary practice. Active student engagement in mathematical discussion and debate are all viewed as highly important for the enhancement of mathematical understanding.

A qualitative research approach was implemented. The case study supported a classroom based investigation. Data were collected through individual interviews, participant and video-recorded observations and classroom artefacts. To develop the findings as one classroom case study, on-going and retrospective analyses of data were made.

Significant changes were revealed in the relationship between the students’ espoused beliefs about learning mathematics and their enacted beliefs. The investigation illustrated that students were able to develop positive positional identities through active engagement in mathematical reasoning. The interaction patterns created in the classroom explicitly affected the construction of mathematical knowledge. From these findings insights are made into the type of environment which supports enhanced mathematics learning.
I would like to acknowledge and thank the many people who made this study possible. Most importantly I wish to thank the teacher who so willingly gave of himself and his time. His personal belief in this study and collaborative spirit contributed greatly to this project and was a source of strength for me. I would also like to thank the students in his classroom for their enthusiasm and keen participation in the mathematics learning.

I wish to acknowledge and thank my main supervisor, Dr Roberta Hunter who offered invaluable support in the writing of this study by showing unstinting interest and providing important professional suggestions and input. My thanks extend to Jodie Hunter, my second supervisor, who aided in the writing process through her interest and supportive professional suggestions and comments.

Finally, I must acknowledge members of my family, my supportive, caring husband Peter for his unwavering confidence and belief in me, and my parents Susan and Juan Legaz-Clua for their perpetual belief and pride. Their support enabled me to believe in my ability to complete this project.
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Introduction 1
1.2 Background to the study 1
1.3 Research objectives 2
1.4 Overview 3

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction 5
2.2 Sociocultural theory 5
 2.2.1 Zone of proximal development 6
2.3 Inquiry classrooms 8
 2.3.1 The role of the teacher in inquiry classrooms 9
 2.3.2 Discourse in inquiry classrooms 10
2.4 Classroom norms 11
 2.4.1 Social norms 11
 2.4.2 Sociomathematical norms 12
2.5 Student perspectives 13
2.6 Student identity 14
2.7 Student agency 17
2.8 Summary 19

CHAPTER 3: RESEARCH DESIGN

3.1 Introduction 21
3.2 Justification for methodology 21
3.3 Researcher role 23
3.4 Data collection
 3.4.1 The questionnaire
 3.4.2 Observation
 3.4.3 Interviews
 3.4.4 Classroom artefacts
3.5 The research study: Setting, sample and schedule
 3.5.1 The setting and the sample
 3.5.2 The research study schedule
3.6 Data analysis
3.7 Validity and reliability
3.8 Ethical considerations
3.9 Summary

CHAPTER 4: THE PERSPECTIVES OF STUDENTS LEARNING MATHEMATICS IN AN INQUIRY CLASSROOM

4.1 Introduction
4.2 The questionnaire
4.3 Summary statement
4.4 Likert attitude scale
4.5 Summary

CHAPTER 5: THE ROLES OF STUDENTS LEARNING MATHEMATICS IN AN INQUIRY CLASSROOM

5.1 Introduction

THE FIRST PHASE

5.2 The classroom context
 5.2.1 The structure of the learning sessions
5.3 Student roles within the classroom context
 5.3.1 Assuming identity through student positioning
5.4 Student agency within the classroom context
5.5 The role of the teacher
5.6 Students use of social and sociomathematical norms
5.7 Collaborative discourse
5.8 Summary of the first phase

THE SECOND PHASE
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9 The classroom context</td>
<td>57</td>
</tr>
<tr>
<td>5.10 Student roles within the classroom context</td>
<td>57</td>
</tr>
<tr>
<td>5.10.1 Assuming identity through student positioning</td>
<td>57</td>
</tr>
<tr>
<td>5.11 Student agency within the classroom context</td>
<td>60</td>
</tr>
<tr>
<td>5.12 The role of the teacher</td>
<td>61</td>
</tr>
<tr>
<td>5.13 Students use of social and sociomathematical norms</td>
<td>61</td>
</tr>
<tr>
<td>5.14 Collaborative discourse</td>
<td>63</td>
</tr>
<tr>
<td>5.15 Summary</td>
<td>64</td>
</tr>
</tbody>
</table>

CHAPTER 6: DISCUSSION AND CONCLUSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>6.2 Student perspectives</td>
<td>65</td>
</tr>
<tr>
<td>6.3 Student identity</td>
<td>66</td>
</tr>
<tr>
<td>6.4 Student agency</td>
<td>68</td>
</tr>
<tr>
<td>6.5 Inquiry classrooms</td>
<td>69</td>
</tr>
<tr>
<td>6.5.1 The role of the teacher</td>
<td>70</td>
</tr>
<tr>
<td>6.6 Communication and participation patterns</td>
<td>71</td>
</tr>
<tr>
<td>6.6.1 Developing social and sociomathematical norms</td>
<td>71</td>
</tr>
<tr>
<td>6.6.2 Collaborative discourse</td>
<td>73</td>
</tr>
<tr>
<td>6.7 The complex nature of teaching and learning</td>
<td>73</td>
</tr>
<tr>
<td>6.8 Opportunities for further research</td>
<td>74</td>
</tr>
<tr>
<td>6.9 Concluding thoughts</td>
<td>74</td>
</tr>
</tbody>
</table>

REFERENCES

APPENDICES:

- Appendix A: The questionnaire (both phases) 88
- Appendix B: Likert attitude scale (both phases) 89
- Appendix C: Mathematics problems 91
- Appendix D: Interview questions 92
- Appendix E: Teacher information sheet and consent form 93
- Appendix F: Student and parent information sheet and consent form 96
LIST OF TABLES

4.1 Students’ responses from phases one and two to the questions: what is mathematics and why should we learn it? 35

4.2 Students’ responses from phases one and two to the questions: how do we know if someone is good at mathematics and how do you think real mathematicians do mathematics? 36

4.3 Students’ responses from phases one and two to the questions: when you do mathematics in your class: who does the teaching and the talking; and who asks the questions and gives the answers; and what do you do if you get stuck? 37

4.4 Students’ responses from phases one and two to questions about working collaboratively to solve mathematics problems 38

4.5 Students’ responses from phases one and two to questions about the most difficult and the most fun about doing mathematics 40

4.6 Percentage of students’ responses to passive statements about learning mathematics 40

4.7 Percentage of students’ responses to active statements about learning mathematics 41