Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The effect of external teat seals on mastitis incidence during the dry period under experimental challenge with *Streptococcus uberis*

A thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Animal Production at Massey University, Palmerston North, New Zealand.

CECILIA FERNANDEZ

2007
To

Manuel and Pilar
ACKNOWLEDGEMENTS

I wish to thank the following people that made my studies possible. To my supervisors, Norm Williamson, Alex Grinberg and Colin Holmes, thanks for their help, direction and support. Their assistance goes well beyond what words can express.

To Dr Leo Timms, from Iowa State University, who was my mentor in dairy production in the USA and continued with his support during my studies in New Zealand. Thanks are also due to Mark Stevenson for his help in the statistical analysis.

A special thanks is also extended to Kim Dowson for her hard work when checking and sampling cows during the whole period of the field trial, to the staff of the No. 4 Dairy Farm of Massey University for their patience, to Hamish Mack for all his help in the microbiology laboratory of IVABS and to Rebecca Pattison for her tolerance when teaching and helping me to do PFGE.

I would like to thank Allain Scott from IVABS and Sue Flynn from the International Office for their support and advice regarding academic matters. My appreciation also to the Government of New Zealand, Bomac Laboratories and the IVABS Postgraduate Research Fund for providing the financial support to undertake this program of study.

I want to especially thank Sharon and Ross Wrenn, for their friendship and kindness. They have been my ‘kiwi family’, making me feel like at home while living in New Zealand.

Of course, I would not have completed this study without the support, encouragement and patience of my family, Mom, Dad, my sister Karina and my brothers Alberto, Diego and Tati.
I want to acknowledge with deep appreciation the indispensable aid and encouragement of my husband, Manuel; without his wisdom, support and infinite tolerance this study would not have come into being. He has encouraged me to always keep the hope even at the most difficult times.

Finally, I am very grateful to our daughter Pilar, for introducing us in the exciting journey of being parents, with lots of magical times and challenges.

Thanks to all of you.
ABSTRACT

Despite decades of research and steady progress in control, mastitis remains one of the most economically important diseases of dairy cattle. The two main periods of high susceptibility to mastitis during the dry period are the first two or three weeks after drying-off and two weeks pre-calving. Dry-cow therapy (DCT), consisting of the use of long-acting antibiotics after the last milking of lactation, has been practiced since the 1960s in order to eliminate existing intramammary infections and prevent new intramammary infections (IMI) during the dry period. The extensive use of antibiotics to treat and control mastitis has possible consequences for human health through an increased threat of emergence of antibiotic-resistant microorganisms that may enter the food chain. Non-antibiotic formulations for the treatment and prevention of mastitis have the potential to reduce the need for antibiotics. The objective of this study was to evaluate the effects of an external teat seal based on tetrahydrofuran (DryFlex (DF)) and a commercially available wound sealant for humans based on 2-octylcyanoacrylate (Band-Aid (BA)) in protecting against mastitis caused by experimental challenge with Streptococcus uberis after dry-off, under dairy farming conditions in New Zealand. Cows (175) with a somatic cell count (SCC) of less than 200,000 SCC/ml, four functional quarters, and no signs of clinical mastitis or teat abnormalities were enrolled at dry-off. Single-quarter milk samples were taken for bacteriological culture, four days and one day before dry-off and again on two occasions within four days after calving. After the last milking before dry-off, 88 cows received DF and 87 cows received BA, with pairs of the contra-lateral quarters left front/right back (LF-RB) and right front/left back (RF-LB) assigned to the treatment or the untreated-control groups. All cows were challenged by experimental exposures by dipping all quarters in a bacterial broth of
Streptococcus uberis (1.27 x 10^8 cfu/ml and 1.02 x 10^8 cfu/ml for the first and second experimental exposures, respectively), two and four days after dry-off. Subsequently, assessment for clinical mastitis was performed daily on all quarters. Individual quarters were observed and palpated for the presence of clinical signs consistent with mastitis, i.e., heat, swelling, a painful udder and if required, by an examination for the presence of clots and flakes in the secretions. Following bacterial challenge with Strep. uberis, in the DF group, clinical mastitis developed in 35 of the treated quarters and 83 of the untreated quarters. The corresponding data for the BA group are 67 of the treated quarters and 64 of the untreated quarters. The incidence of mastitis was greatest between days 6 and 11 after dry-off for both groups. The risk of mastitis in the DF group was higher in control quarters than in the quarters treated with DF (RR: 2.37, 95% CI 1.70 - 3.32, P = 0.000). There was no significant difference between the treated and untreated quarters in the BA group in the number of new clinical mastitis acquired during the dry period (RR: 0.96, 95% CI: 0.73, 1.25, P = 0.74). Strep. uberis was the most prevalent bacterium on days 6-7 and from day 9 onwards, and it was detected in 160 (95%) single-quarter milk samples. The use of pulsed-field gel electrophoresis (PFGE) in a subset of isolates showed that 11 of 19 of the intramammary infections found between six and eleven days after dry-off (peak of infection) were caused by the challenge strain. DryFlex was visible on 50% of the teat-ends for four days. The average number of days for which the teat-ends remained covered with DF was 5.2 for all quarters. The experimental challenge model developed and used in this study appeared to be successful in generating intramammary infections during the dry period of dairy cows and proved a robust test of teat seals. The application of DryFlex at the end of lactation was beneficial in reducing mastitis in dairy cows after dry-off. The octylcyanoacrylate used in the
present study showed no benefit in reducing the incidence of mastitis after dry-off when compared with quarters left untreated. It would appear from the results of this experiment that a teat seal of the DryFlex type would have a role to play in the prevention of mastitis during the early dry period. However, further work is required to improve the persistence of DryFlex on teats of non-lactating dairy cows.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT .. v

TABLE OF CONTENTS ... viii

LIST OF TABLES ... xi

LIST OF FIGURES ... xii

1. INTRODUCTION .. 1
 1.1. The importance of mastitis .. 1
 1.2. Microorganisms that cause mastitis ... 4

2. LITERATURE REVIEW ... 7
 2.1. New Zealand dairy systems ... 7
 2.2. Dry period: time of susceptibility to mastitis .. 8
 2.3. Factors affecting new intramammary infections ... 10
 2.3.1. Teat canal .. 10
 2.3.2. Teat-end integrity .. 12
 2.3.3. Parity of cows ... 13
 2.3.4. Milk production at time of dry-off and method of milk cessation 13
 2.3.5. Environment ... 15
 2.4. Mammary defence mechanisms against mastitis pathogens 15
 2.4.1. Cellular immunity against infection .. 16
 2.4.2. Soluble defences against infection ... 17
 2.5. Management strategies to prevent new intramammary infections 19
 2.5.1. Seasonal Approach to Managing Mastitis (SAMM) plan in NZ 19
 2.5.2. Dry-cow therapy .. 20
 2.5.3. Internal teat seals ... 25
 2.5.4. External teat seals ... 27
 2.5.5. Immunization regimes ... 33
 2.6. Use of cyanoacrylates in animals ... 34

3. AIM OF THIS STUDY ... 37

4. MATERIALS AND METHODS ... 38
4.1. Study design...38
4.2. Selection of herd ...38
4.3. Selection of cows ...39
4.4. Pre-treatment milk sampling ..39
4.5. Treatments ...41
4.6. Bacterial challenge ...43
4.7. Post-challenge clinical assessments46
4.8. Pre-calving treatment ..48
4.9. Post-calving milk sampling ...48
4.10. Bacteriological analysis ..48
 4.10.1. Bacterial isolation ..48
 4.10.2. Bacterial identification49
4.11. Additional data collection ...50
4.12. Animal ethics ..50
4.13. Pulsed-field gel electrophoresis of \textit{Streptococcus uberis} chromosomal DNA macrorestriction fragments ..50
 4.13.1. DNA plug preparation ..51
 4.13.2. DNA digestion ..53
 4.13.3. PFGE conditions and gel analysis53
4.14. Statistical analyses ..54
5. RESULTS ..56
5.1. Clinical assessment of mastitis56
 5.1.1. Pre dry-off clinical assessment56
 5.1.2. Post dry-off clinical assessment56
 5.1.3. Post-calving clinical assessment64
5.2. Bacteriological results ..65
 5.2.1. Pre-dry-off bacteriological results65
 5.2.2. Post-dry-off bacteriological results66
 5.2.3. Post-calving bacteriological results67
5.3. DryFlex persistence on teats69
5.4. Pulsed-field gel electrophoresis69
6. DISCUSSION ..71
7. CONCLUSIONS ...77
LIST OF TABLES

Table 2.1. Control measures of mastitis for each period of the dairy season recommended by the SAMM plan (adapted from Anon., 2006) ... 21

Table 2.2. Number of new intramammary infections (IMI) over the dry period and at calving in quarters of untreated cows (negative control) and of cows treated with a dry cow antibiotic (positive control), teat seal or antibiotic plus teat seal (Adapted from Woolford et al., 1998) .. 26

Table 2.3. Number of new intramammary infections (IMI) at calving in quarters treated with the external teat seal plus antibiotic at dry-off and reapplied pre-calving (treated), and untreated quarters (untreated) (Adapted from Timms, 2001) ... 31

Table 2.4. Number of non-infected quarters and total intramammary infections (IMI) in control, external teat seal (ETS), dry cow therapy (DCT) and external teat seal plus dry cow therapy at dry-off (ETS/DCT) quarters during the early dry period, without experimental bacterial challenge (Adapted from Timms, 2001) ... 32

Table 4.1. Number of cows in each group, stratified by lactation number, with the number of quarters treated with each product shown in brackets .. 40

Table 5.1. Number of quarters detected with clinical mastitis by treatments on each day after dry-off ... 57

Table 5.2. For the DryFlex group: Cox proportional hazards model showing the effect of treatment (DryFlex treated or control) and bacteriological status before dry-off on the daily hazard of experiencing clinical mastitis .. 62

Table 5.3. For the Band-Aid group: Cox proportional hazards model showing the effect of treatment (Band-Aid or control), lactation number and bacteriological status of milk samples pre-dry-off on the daily hazard of experiencing clinical mastitis 63

Table 5.4. Number of quarters by infection status and treatment at four and one day(s) before the application of DryFlex or Band-Aid treatments at drying-off 65

Table 5.5. Description of bacterial species isolated from quarters with clinical mastitis after dry-off by treatment ... 66

Table 5.6. Number of non-infected quarters and bacterial species isolated from quarters one day after calving and four days after calving .. 68
LIST OF FIGURES

Figure 4.1. Diagram showing dates and treatments of the experiment...................... 41

Figure 4.2. Image of an udder showing the contralateral scheme used for the
application of the treatments. Left front and right back quarters received the DryFlex
treatment, while the right front and left back quarters were left untreated.......... 42

Figure 4.3. Diagram representing the five-point visual assessment score for teat seal
adherence reported by Hemling et al. (2005)... 46

Figure 5.1. Number of new quarters found with clinical mastitis after dry-off. DF:
DryFlex; BA: Band-Aid.. 58

Figure 5.2. Kaplan-Meier survival curves showing the cumulative proportion of
quarters that remained mastitis-free as a function of the number of days from
treatment for DryFlex treated quarters... 59

Figure 5.3. Kaplan-Meier survival curves showing the cumulative proportion of
quarters that remained mastitis-free as a function of the number of days from
treatment for Band-Aid treated quarters.. 60

Figure 5.4. Error bar plot showing the point estimate and 95% confidence intervals of
the hazard estimated for the 88 cows included in the DryFlex group, in order of rank
(lowest hazard to highest hazard, left to right).. 64

Figure 5.5. Proportion of quarters with DryFlex after a single application at dry-off... 69