Travelling Wave Solutions of Multisymplectic Discretisations of Wave Equations

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Mathematics

at Massey University, Manawatu,
New Zealand.

Fleur Cordelia McDonald
2013
Abstract

Symplectic integrators for Hamiltonian ODEs have been well studied over the years and a lot is known about these integrators. They preserve the symplecticity of the system which automatically ensures the preservation of other geometric properties of the system, such as a nearby Hamiltonian and periodic and quasiperiodic orbits.

It is then natural to ask how this situation generalises to Hamiltonian PDEs, which leads us to the concept of multisymplectic integration. In this thesis we study the question of how well multisymplectic integrators capture the long-time dynamics of multi-Hamiltonian PDEs. We approach this question in two ways—numerically and through backward error analysis (BEA). As multi-Hamiltonian PDEs possess travelling wave solutions, we wish to see how well multisymplectic integrators preserve these types of solutions.

We mainly use the leapfrog method applied to the nonlinear wave equation as our test problem and look for the preservation of periodic travelling waves. We call the resulting equation the discrete travelling wave equation. It cannot be solved exactly. Therefore, our analysis begins with numerically solving the discrete travelling wave equation for simplified nonlinearities.

Next, we move on to analysing periodic solution for a smooth nonlinearity. This results in the presence of resonances in the solutions for certain combinations of the parameters. Finally, we use backward error analysis to compare and back up our results from numerical analysis.
Acknowledgements

My biggest thanks goes to my supervisor Professor Robert McLachlan. Thank you for taking me on for the past few years and giving me the chance to learn something new. You have been great at steering me in the right direction throughout my research. Thanks for your enthusiasm and perseverance with me. Not only have you helped me with my research but you have helped me grow in other ways by encouraging me to attend many conferences and workshops within and outside of New Zealand. I would not have gone to any of these without your encouragement, but I am very glad that I did. They gave me confidence in presenting, the chance to work with others, and the opportunity to meet many people within the mathematical community. I appreciate all the opportunities you have given to me.

Thanks also to the Marsden Fund of the Royal Society of New Zealand for funding my PhD. I would have not been able to continue my studies without this funding.

I largely have Associate Professor Brian Moore to thank for the topic of my research. Brian came to visit Massey University in early 2010 from Florida. He was working on travelling waves and while he was here we looked at travelling waves for a semi-discrete semi-linear wave equation using the McKean caricature. We moved on to looking at the fully discrete system with Brian and when he left Robert and I continued on with our study of discrete travelling waves by varying the nonlinearity. Thanks Brian more for giving us the idea for such an interesting topic.

Next, I would like to thank Professor Reinout Quispel. It has been good to meet you at various conferences in New Zealand and Australia throughout the years. You always seemed quite interested in our research and were very happy to give your ideas on these. I remember you visiting Massey University soon after Robert found our equation was like a multistep method. It was then that you gave us the idea of applying backward error analysis (BEA) to our equation. I am very grateful for your input over the last few years.

Next, I would like to thank my two co-supervisors, Associate Professor
Matt Perlmutter and Associate Professor Bruce van Brunt. Thanks Matt for being my co-supervisor for the first part of my PhD until you had to move overseas. I know we did not get a chance to talk much while you were my co-supervisor, but thanks for the discussions we had when we met again at a conference down south and then back in Palmerston North. I enjoyed getting to know you during this time. Thank you Bruce for being my co-supervisor throughout the remainder of my studies. You are always very approachable and happy to discuss anything with me.

Next, I would like to thank Professor Brynjulf Owren, Professor Elena Celledoni and their students. It was so good to meet you all and spend time with you when you all came to New Zealand in 2012. Thank you all for all the research discussions and social catch-ups we had.

Finally, I would you like to thank my family, close friends, and my treasured animal friends Coco, Tammy, Tortie, Stripes, Muzbie, Toby, Jake, Ferghus and Flynn, for always supporting me and bringing happiness to my life throughout my many years of university study.
Contents

1 Geometric Integration of Ordinary Differential Equations

1.1 Introduction to Ordinary Differential Equations (ODEs)
 1.1.1 Flow Map

1.2 Numerical Solutions of ODEs
 1.2.1 Errors in Numerical Methods
 1.2.2 Other One-Step Methods
 1.2.3 Runge–Kutta Methods
 1.2.4 Errors for Runge–Kutta Methods
 1.2.5 Splitting and Composition Methods

1.3 Hamiltonian Systems
 1.3.1 N-Body Newtonian Gravitational Problem
 1.3.2 Molecular Dynamics
 1.3.3 Poisson Systems

1.4 Symplecticity

1.5 Conserved Quantities

1.6 Symmetries

1.7 Reversible Differential Equations

1.8 Geometric Integrators
 1.8.1 Symplectic Integrators
 1.8.2 Preserving First Integrals
 1.8.3 Symmetric and Time-Reversible Integrators

1.9 N-Body Simulations Using a Symplectic Integrator

iv
3 Introduction to Travelling Waves

3.1 Travelling Waves

3.1.1 Travelling Wave Solutions for the Multi-Hamiltonian Formulation

3.1.2 Travelling Wave Solutions for the Nonlinear Wave Equation

3.2 Travelling Wave Solutions in the Literature

3.2.1 Lattice Dynamical Systems (LDSs)

3.2.2 Coupled Map Lattices (CMLs)

4 Travelling Wave Solutions for Multisymplectic Discretisations of Wave Equations with Simplified Nonlinearities

4.1 A Multisymplectic Discretisation of the Nonlinear Wave Equation (3.4)

4.1.1 The Discrete Travelling Wave Equation

4.2 Discrete Travelling Wave Equation with McKean Nonlinearity

4.2.1 The Continuous Case

4.2.2 Symmetric PDEs and Symmetric Methods: An Example

4.2.3 The Semi-Discrete Case

4.2.4 The Discrete Case

4.2.5 Summary of Results

4.2.6 Periodic Travelling Wave Solutions

4.3 Discrete Travelling Wave Equation with Sawtooth Nonlinearity

4.3.1 Analytic Solution

4.3.2 Discrete Solution

5 Numerical Solution of the Discrete Travelling Wave Equation with Smooth Nonlinearity

5.1 The sine-Gordon equation

5.2 Numerical Method for Periodic Travelling Wave Solutions

5.2.1 Checking our Numerical Solution

5.3 Resonance
List of Figures

1.1 First step in the formation of the rooted tree for the elementary differential $f'f''(f, f)$. .. 11
1.2 Second step in the formation of the rooted tree for the elementary differential $f'f''(f, f)$. .. 11
1.3 Final step in the formation of the rooted tree for the elementary differential $f'f''(f, f)$. .. 12
1.4 Illustration of lower and upper vertices in a rooted tree. 12
1.5 Illustration showing the leaves of rooted trees. 13
1.6 Labeling of a rooted tree τ for the related polynomial $\phi(\tau)$. 13
1.7 Labeling of a rooted tree τ for the related polynomial $\phi(\tau)$, with factors assigned to each label. 14
1.8 Labeling of a rooted tree τ for the related polynomial $\phi(\tau)$, with factors assigned to each label and leaf. 14
1.9 Labeling of the leaves of a rooted tree τ for the related polynomial $\gamma(\tau)$. ... 15
1.10 Labeling of the leaves and other vertices of a rooted tree τ for the related polynomial $\gamma(\tau)$. 16
1.11 Flow of a Hamiltonian system, (the Pendulum), showing preservation of areas. This figure is reproduced from [53]. 25
1.12 The 2-form ω for $d = 1$. .. 26
1.13 Exact solution of the harmonic oscillator (left), compared with two numerical solutions, the Euler method - solution spirals out clockwise from the centre (middle) and a symplectic integrator (right). 34
1.14 Energy error of the Euler method (left) and a symplectic integrator (right) when applied to the harmonic oscillator. 35
1.15 The attractive and repulsive forces of the Lennard–Jones potential. 41
1.16 Results of the simulation: Snapshots of the dynamics of the two-dimensional Lennard–Jones system. 43
1.17 Energy error of the two-dimensional Lennard–Jones system. 44
1.18 The initial position of the outer planets relative to the sun. 45
1.19 Orbits of the outer solar system. 46
1.20 The energy error of the outer solar system after 10000 time steps. 46
1.21 The energy error of the outer solar system after 1000000 time steps. 47
1.22 The MDE as the exact solution of a perturbed problem. This diagram is reproduced from [37]. 50
1.23 Comparison of truncated solutions of the modified differential equation (1.34) and the numerical solution from Euler’s method (red) of the equation $\dot{y} = y^2$, $y(0) = 1$. The blue curve gives the truncation after the 1st term (or the exact solution), the green curve the truncation after the 2nd term, and the yellow curve the truncation after the 3rd term. 55
1.24 Solution of the pendulum and its modified Hamiltonian for the symplectic Euler method. 57
2.1 Snapshots in time of the leapfrog method applied to the semi-discretisation of the sine-Gordon equation. 70
2.2 Energy error for 50000 time steps of the leapfrog method applied to the sine-Gordon equation. 70
4.25 Phase portrait of the travelling wave equation of the nonlinear wave equation with sawtooth nonlinearity. 137
4.26 Phase portrait and expected solution of the nonlinear wave equation with sawtooth nonlinearity. 138
4.27 Exact solutions of the nonlinear wave equation with sawtooth nonlinearity. 141
4.28 Comparison of the analytic solution and the discrete solution of the nonlinear wave equation with sawtooth nonlinearity, for fixed periods and fixed c, for rational values of $\frac{\sigma}{\kappa}$. 144
4.29 Comparison of the analytic solution and the discrete solution of the nonlinear wave equation with sawtooth nonlinearity, for fixed periods and fixed c, for irrational values of $\frac{\sigma}{\kappa}$. 145

5.1 Phase portrait of the travelling wave equation of the nonlinear wave equation with smooth nonlinearity. 148
5.2 Numerical solution $\varphi(\xi)$ of the discrete travelling wave equation (5.3). ξ is on the x-axis and φ on the y-axis. 152
5.3 Two cases for numerical solutions of the discrete travelling wave equation. ξ is on the x-axis and φ on the y-axis. (5.3) 153
5.4 Left: An orbit for the leapfrog method applied to the reduced ODE (5.2), and, Right: the corresponding solution in red, with the numerical solution of the discrete travelling wave equation (5.3) for $\sigma = \kappa = 0.5$ superimposed in blue. 154
5.5 Left: An orbit for the leapfrog method applied to the reduced ODE (5.2), and, Right: the corresponding solution in red, with the numerical solution of the discrete travelling wave equation (5.3) for $\sigma = \kappa = 0.8$ superimposed in blue. 155
5.6 Continuation in T starting with $T = 2\pi$ for $\sigma = 1$, $\kappa = \frac{1}{\sqrt{2}}$, $c = 1.3$. 158
5.7 Continuation in T starting with $T = 2\pi$ for $\sigma = 1$, $\kappa = \frac{1}{\sqrt{2}}$, $c = 1.3$. 159
5.8 A chosen section of the solution φ. 161
5.9 A short continuation simulation showing one major resonance peak. The y-axis gives the size of the resonance defined by (5.6). 161

5.10 Comparison of the resonances for a rational ratio of $\frac{\sigma}{\kappa}$ and an irrational one. The y-axis gives the size of the resonance defined by (5.6). 162

5.11 Continuation in T starting with $T = 2\pi$ for different rational values of $\frac{\sigma}{\kappa}$. The y-axis gives the size of the resonance defined by (5.6). 163

5.12 Continuation simulation for $\sigma = 2\kappa$: resonances plotted against T and $\frac{T}{2\kappa}$. The y-axis gives the size of the resonance defined by (5.6). 164

5.13 Continuation in T starting with $T = 2\pi$ for different rational values of $\frac{\sigma}{\kappa}$. The y-axis gives the size of the resonance defined by (5.6). 165

5.14 The left plot shows the resonances for $\frac{\sigma}{\kappa} = \frac{m}{n}$ for the case $n = 1$ and $m = 1, 2, 3, 4$ and the plot on the right shows the case $n = 2$ and $m = 3, 5, 7$. The y-axis gives the size of the resonance defined by (5.6). 166

5.15 Continuation in T starting with $T = 2\pi$ for fixed rational values of $\frac{\sigma}{\kappa}$ for different values of σ. The y-axis gives the size of the resonance defined by (5.6). 167

5.16 Continuation in T tending to infinity starting with $T = 2\pi$. The y-axis gives the size of the resonance defined by (5.6). 169

5.17 Continuation in T tending to infinity starting with $T = 2\pi$. The y-axis gives the size of the resonance defined by (5.6). 170

6.1 The explicit Adams method with step size $h = 0.5$, initial value $(q_0, p_0) = (0.7, 0)$ and the explicit midpoint rule with $h = 0.4$, initial value $(q_0, p_0) = (0, 1.1)$, applied to the pendulum. 175

6.2 Energy error for three different linear multistep methods applied to the Kepler problem, reproduced from [37]. The x-axis gives the number of periods, and the y-axis gives the energy error. 182
6.3 The solution of the 2-step symmetric explicit midpoint rule plotted with the MDE. The blue solution curve corresponds to the same orbit of the numerical solution (also in blue).

6.4 Relabeling of the five grid points in (6.15) to match that of a multistep method (6.6) for $\sigma = 2\kappa$. The grid points are given as red dots with the spacing between each equal to κ. The labels of the grid points of (6.15) are in blue and those of (6.6) are in green.

6.5 Roots of the characteristic polynomial of the discrete travelling wave equation for $c = 1.3$—Case 1.

6.6 Roots of the characteristic polynomial of the discrete travelling wave equation for $c = 0.5$—Case 3. and 4.

6.7 Roots of the characteristic polynomial of the discrete travelling wave equation for $c = 0$—Case 2.

6.8 Phase portraits of the solution of the modified differential equation of the discrete travelling wave equation (6.23).

6.9 **Left:** Orbits of fixed period $T = 2\pi$, for increasing $\kappa = \sigma$. The blue orbit has very small value of $\sigma = 0$ and the black orbit has a large value of $\sigma = 1.5$. The curves in between these have increasing values of σ from the blue orbit to the black orbit. **Right:** Orbits of fixed amplitude equal to 1.6, for increasing $\kappa = \sigma$. The blue orbit has very small value of $\sigma = 0$ and the orange orbit has a large value of $\sigma = 1.8$. The curves in between these have increasing values of σ from the blue orbit to the orange orbit.

6.10 Truncated solutions of the modified differential equation for the discrete travelling wave equation: y_1 is the green curve, y_2, the red curve, and y_3 the orange curve. The numerical solution is given by the blue curve.
6.11 On the left we show the error (the difference between the numerical solution and the solution of the modified equation) of the three truncations of the modified equation for the discrete travelling wave equation: y_1-green, y_2-red, y_3-orange. On the right is a zoom of the graph on the left. 206

6.12 Resonances of the numerical solution from Chapter 5 given by the blue curve. Resonances of the modified differential equation for the discrete travelling wave equation given by the red curve. 207

6.13 Contour plot of the resonances for $T = 2\pi$ and $c = 1.3$. The lighter the shading the bigger the resonances are. 207

6.14 On the left is the modified Hamiltonian with small values of σ and κ and on the right the modified Hamiltonian with large values of σ and κ. 211

6.15 Modified Hamiltonian of the 1st order nonlinear wave system with change of coordinates. 223

6.16 Modified Hamiltonians of the leapfrog method applied to the nonlinear wave equation as a 1st order system for small σ and κ on the left and large σ and κ on the right. 225

6.17 Modified Hamiltonians of the Preissman box scheme applied to the nonlinear wave equation as a 1st order system for small σ and κ on the left and large σ and κ on the right. 226
List of Tables

1.1 Trees of order 3 with their elementary differentials and coefficients. 17

2.1 Conservation laws for ODEs and PDEs. 68