Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Harvesting Electrical Energy from a Stationary Bike: An Experimental Approach

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Engineering

in

Electronics and Computer Systems Engineering

By

Sanjay Samuel David

Supervised by Professor Subhas Mukhopadhyay

MASSEY UNIVERSITY
TE KUNENGA KI PŪREHUROA

SCHOOL OF ENGINEERING AND ADVANCED TECHNOLOGY
MASSEY UNIVERSITY
PALMERSTON NORTH
NEW ZEALAND
JANUARY 2014
Abstract

In any gym there are people on treadmills, stationary bikes, elliptical or rowing machines producing power in order to burn calories. The power being produced is dissipated primarily as heat. Human energy, if captured and used as an alternative to fossil fuel could supply a gym with clean sustainable energy that would be good for the environment and save the gym money. The process of capturing, converting and storing this energy is known as Energy Harvesting (EH).

This project examines the use of a stationary bike to harvest energy with the use of magnets and an electromagnet. The aim was to create a device that would not require modifications to be made to a standard stationary bike, thus making it affordable and easy to use. A prototype of a stationary bike was designed using SolidWorks and experiments conducted to test the feasibility of this method of EH, results were positive. A typical stationery bike was acquired, experiments were conducted to determine the ideal set up for optimum EH and modifications were made as required. Based on the findings of these experiments the final set-up of the stationary bike incorporated an electromagnet made with high permeability, magnets were attached to a flywheel of a stationary bike with their poles alternating to enhance production of flux, suitable number of magnets were determined and the air gap in the circuit was adjusted to control reluctance. After the set-up was complete the bike was ridden and power output recorded, the findings showed that while energy was harvested the quantity was not significant. Therefore this method of EH is not efficient on a stand-alone machine; however with further research and in conjunction with other forms of EH it could be used. This project was successful in creating a method of EH from a stationary bike using magnets and an electromagnet, without modifying the bike; it is a step in research, in the journey towards capturing and converting wasted energy.
Acknowledgements

First of all I would like to thank God for giving me this opportunity. I would like to acknowledge my supervisor, Professor Subhas Mukhopadhyay, for his continuous support, encouragement, patience, valuable advice, technical help and supervision of my project without which I would not have been able to achieve completion; thank you sir.

I would also like to acknowledge Ken Mercer, Colin Plaw, Bruce Collins, Anthony Wade and Asif Iqbal Zia for their assistance with technical matters and their valuable input and advice that improved my experimental work. I would also like to thank Ian Thomas for helping with the building of the prototype model at the workshop and for teaching me the function of various equipment. I would like to thank Morio Fukuoka for sharing his extensive knowledge regarding designing and producing a number of parts for the project and also for teaching the use of the CNC machine. I would also like to thank my fellow students at Massey University for their help and support.

I would like to thank my parents for their unconditional love and support. Thank you for always believing in me and for the sacrifices you made in giving me this opportunity. I thank my brother and sisters for always being available to help in any way possible. Special thanks to Sneha Selvaraj for her input into the project and assistance with proof reading. I would also like to thank all my friends and extended family for your love, support and prayers without which I would not have been able to accomplish this.

Last but not least I would like to acknowledge baby Nadia my little niece who added laughter to my study breaks.
Contents

Abstract ... ii

Acknowledgements .. iii

Contents ... iv

List of Figures .. vii

List of Tables ... x

Chapter 1. INTRODUCTION ... 1
 1.1. Introduction ... 1

Chapter 2. LITERATURE REVIEW ... 3
 2.1. The energy problem ... 3
 2.2. Energy Harvesting ... 4
 2.2.1. What is Energy Harvesting? .. 4
 2.2.2. Why Energy Harvesting? ... 6
 2.2.3. Sources of Energy Harvesting .. 7
 2.2.4. Applications of Energy Harvesting .. 8
 2.3. Green Gym ... 9
 2.3.1. Who’s doing it and how are they doing it? ... 9
 2.4. Example of a regular gym ... 13
 2.4.1. Power Consumption of the gym .. 13
 2.4.2. Power Generation .. 14
 2.5. Electromagnetic Energy Harvesting ... 15
 2.5.1. Rotational Energy Harvesters .. 16

Chapter 3. THE PROTOTYPE .. 18
 3.1. Introduction ... 18
 3.2. Stationary bike .. 18
 3.3. Design of a prototype ... 19
 3.4. Flywheel ... 22
 3.5. Electromagnet ... 23
 3.6. Motor ... 24
 3.7. Magnets ... 25
 3.8. Experiments .. 28
 3.8.1. Pole orientation of the magnets ... 30
3.8.2. Number of magnets .. 33
3.8.3. Placement of magnets .. 36
3.9. Electronic Circuits... 40
3.9.1. Boost Converter .. 40
3.9.2. Power Calculations.. 44
Chapter 4. THE STATIONARY BIKE: METHODOLOGY .. 49
4.1. Introduction ... 49
4.2. Stationary Bike ... 49
4.2.1. Flywheel .. 50
4.2.2. On-board computer .. 52
4.3. Electromagnet .. 53
4.3.1. Mild Steel Electromagnet .. 54
4.3.2. Electrical Steel Electromagnet .. 55
4.3.3. Magnetic Circuit Analysis .. 57
4.3.3.1. Mild Steel ... 59
4.3.3.2. Electrical Steel .. 62
4.3.4. Electromagnet Mount ... 64
4.4. Magnets ... 68
4.5. Circuits ... 70
Chapter 5. THE STATIONARY BIKE: EXPERIMENTS, RESULTS AND ANALYSIS 75
5.1. Introduction ... 75
5.2. Relationship of the electromagnet material on the Output .. 75
5.2.1. Experimental Setup ... 76
5.2.2. Effect of Mild Steel .. 78
5.2.3. Effect of Electrical steel ... 79
5.2.4. Comparison of Results ... 81
5.3. Effect of the orientation of the magnet pole ... 83
5.3.1. Experimental Setup ... 83
5.3.2. Results and Discussion .. 84
5.4. Effect of the number of magnets ... 87
5.4.1. Experimental Setup ... 87
5.4.2. Results and Discussion .. 88
5.5. Effect of the strength of the magnet .. 90
5.5.1. Experimental Setup ... 90
List of Figures

Figure 2.1: Fossil Fuel consumption of the world..4
Figure 2.2: Process of Energy Harvesting...5
Figure 2.3: Ambient Energy Systems ..8
Figure 2.4: ReRev’s strategy to generate power...10
Figure 2.5: Energy Harvesting Modules built by The Green Revolution11
Figure 2.6: The Human Dynamo ...12
Figure 2.7: The Team Dynamo ..12
Figure 3.1: Stationary Bike ..19
Figure 3.2: First design of prototype in CAD software ..20
Figure 3.3: Side angle view of the prototype ..21
Figure 3.4: Final Design of Prototype model ..21
Figure 3.5: CAD design of the Flywheel for the prototype model22
Figure 3.6: 3D Model and Initial Design of the Electromagnet23
Figure 3.7: 3D Model and Final Design of the Electromagnet ...24
Figure 3.8: 12V DC Motor ..25
Figure 3.9: 10mm Disc Magnet ...26
Figure 3.10: Pull Force of Magnet ..27
Figure 3.11: Magnetic Field of D62 Magnet ..27
Figure 3.12: BH characteristics of the magnet ...28
Figure 3.13: 3D model of the Prototype ...29
Figure 3.14: Prototype Model running ..30
Figure 3.15: Process diagram of the experiment ...30
Figure 3.16: Magnet displaying magnetic field lines ...31
Figure 3.17: Prototype with all the magnets facing same poles31
Figure 3.18: Magnets with alternating poles ..32
Figure 3.19: Magnets with same poles and alternating poles at 200RPM32
Figure 3.20: Placement of magnets on the disc ...34
Figure 3.21: Relationship between number of magnets and the speed35
Figure 3.22: Waveforms of the outputs with 8, 10, 12 & 14 magnets at a speed of 212RPM 36
Figure 3.23: Magnets in line with the electromagnet and to the edge of disc37
Figure 3.24: Magnet to the edge of disc and Magnet in line with the electromagnet38
Figure 3.25: Waveforms for magnet placed in line with Electromagnet to the edge of disc 39
Figure 3.26: Relationship between magnet placement and speed39
Figure 3.27: Step-up Circuit from data sheet ...41
Figure 3.28: Internal Block Diagram of LTC3105 ..41
Figure 3.29: Boost Converter Schematic ..42
Figure 3.30: Waveform for LTC3105 at start-up mode and normal operation mode42
Figure 3.31: Printed Circuit Board design in Altium ..43
Figure 3.32: Boost Converter with parts mounted on board ..44
List of Tables

Table 2.1: Sources of Energy Harvesting .. 7
Table 2.2: Communal power consumption at ALC gym ... 14
Table 3.1: Magnet Specifications ... 26
Table 3.2: Peak-peak voltage with 8, 10, 12 and 14 magnets 34
Table 3.3: Peak-Peak voltages of magnets to the edge and in line with the electromagnet .. 38
Table 3.4: DC outputs from Rectification and Boost Circuits 45
Table 3.5: Power values at different speeds ... 47
Table 4.1: Magnet Specifications .. 69
Table 5.1: Generated Voltage and Power outputs using a mild steel electromagnet .. 78
Table 5.2: Generated Voltage and Power outputs using a electrical steel electromagnet .. 80
Table 5.3: Power outputs of both M1 & M2 magnets using mild steel & electrical steel electromagnet .. 81
Table 5.4: Power Generated by having magnets with different pole orientation 85
Table 5.5: Voltage and Power output for 18, 20 and 22 M1 magnets .. 88
Table 5.6: Voltage & Power outputs for magnets of different strength at various speeds .. 92
Table 5.7: Voltage and Power output when an air gap is reduced 97
Table 5.8: Voltage output with different Load resistance .. 102
Table 5.9: Power outputs across varied loads at different speeds 103
Table 5.10: Energy outputs from experiment .. 105
Table 5.11: Charge and Discharge of Battery voltage over time 107