Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE EPIDEMIOLOGY OF YERSINIA INFECTIONS
IN GOAT FLOCKS

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF PHILOSOPHY
AT MASSEY UNIVERSITY

EUGENE BATICADOS LAÑADA
January, 1990
ABSTRACT

Due to the increasing frequency of yersiniosis in goats, it was considered necessary to study the behaviour of *Yersinia* species in goat flocks. The aim of this study, carried out in several phases among goat farms in the Manawatu, was to identify factors involved in the epidemiology of *Yersinia* infections, which might eventually lead to the formulation of effective control measures.

The first phase of the study was the screening of goat flocks for the presence or absence of *Yersinia* species infections. This phase was considered necessary, since prior to the study the prevalence of such infections among apparently healthy goats were unknown. The results of this phase showed that 18 of the 30 farms screened (60%) were positive for the infection.

Concurrent with the screening phase, a postal survey was undertaken involving the farmers of the thirty goat farms. This survey gave an indication of the production and health management practices implemented on goat farms in the region, and how these related to the presence of *Yersinia* species infections in the goat flocks. The results of the survey (97% response rate) showed that farmers generally managed goats in the same manner as sheep, and that the farmers' knowledge of the presence of gastrointestinal bacterial infections such as yersiniosis was almost nonexistent. Stress-related management practices which might be associated with the presence of *Yersinia* species infections were also identified in this phase of the study.

The farms found positive during screening were included in the next phase of the study, the prevalence survey. This phase involved the sampling of three age groups from each flock: kids (less than one year old), hoggets (one to two years old), and adults (two to five years old). The results of this phase showed that the mean level of *Yersinia* prevalence of all the combined age groups from the 18 farms was 15%. In kids, the prevalence was 24.7%, in hoggets 11.8%, and in adults 9.6%. The predominant *Yersinia* species recovered from kids was *Y. enterocolitica* biotype 5, comprising 94.5% of all the isolates. Among hoggets, *Y. enterocolitica* biotype 5 and the environmental strains (*Y. frederiksenii*, *Y. kristensenii* and *Y. intermedia*) were about equal in prevalence, while among the adults, the environmental strains predominated, comprising 92.7% of all the isolates in that group.
The prevalence survey also revealed that infection levels among the
different goat flocks were extremely variable, and since sampling was conducted
only once, the results were obviously only minimum estimates of flock infection
levels.

In order to explain the inherent drawbacks associated with a single
sampling event, it was decided to carry out repeated samplings on the same
group of animals over time, particularly as *Yersinia* species infections had been
reported in the past to be commonest during the colder months of the year.
Thus a cohort study was implemented, where selected groups of goats stratified
into three age groups (kids, hoggets and adults) were subjected to repeated
monthly samplings for at least 12 months.

Several key points were brought to light by the cohort study. It was shown
that the incidence of potentially pathogenic *Yersinia* species (*Y. pseudotuberculosis*
and *Y. enterocolitica* biotypes 2, 3 and 5) appeared to have a distinct seasonal
variation, a characteristic which was absent in the incidence of the majority of
the environmental strains (*Y. enterocolitica* biotype 1A, *Y. frederiksenii*, *Y.
kristensenii*, *Y. intermedia* and *Y. rohdei*). Of the climatic factors studied, low
daily minimum temperatures were particularly influential on the incidence of the
potentially pathogenic strains, while increased monthly precipitation levels were
highly influential on the incidence of the environmental strains. Age was also
an important factor in the incidence of the infections, with the younger age
groups showing a higher incidence of the potentially pathogenic strains and the
older age groups showing a higher incidence of the environmental strains. The
ability of the animals to develop apparent immunity against subsequent
reinfection by the potentially pathogenic *Yersinia* species was another finding of
the cohort study.

The numerous strains of *Yersinia* isolated throughout the study exhibited
heterogeneity in their reactions to biochemical testing, even among strains within
the same species. An attempt was therefore made to classify these strains using
numerical taxonomy. This procedure indicated that the pathogenic and
environmental *Yersinia* strains were quite different, as shown by a number of
distinct clusters.
ACKNOWLEDGEMENTS

This work involved many individuals who contributed, in one way or another towards the completion of this work, and I would like to express my sincere thanks to:

Professor Roger Morris, my major supervisor, for his enormous help and guidance not only in the formulation and completion of this work, but also in the development of my epidemiological way of thinking. His willingness to take me on as a post-graduate student without his prior knowledge of my arrival in New Zealand was also greatly appreciated.

Stan Fenwick, my second supervisor, for his guidance with the microbiological aspects of this work, and for editing the final drafts of this thesis. His enthusiasm for the search of the fastidious Yersinia was highly infectious. His work in organising the goat farms to be included in the study and his willingness to deal with the farmers contributed greatly towards the completion of this work.

Debbie Lovelock, for her indispensable help with the monthly collection of faecal samples. Her patience and willingness to help was remarkable.

Dirk Pfeiffer, for his constructive help with some statistical aspects of this work, as well as his help in solving computer problems; Chockchai Chaimongkol, for his help at some stages with the collection of faecal samples; Jan Schrama, for the preparation of special microbiological media; Peter Wildbore, for the procurement of laboratory supplies; Mike Delany, for his help with the collection of faecal samples during the screening survey; Dr. Ted Drawneck of the Computer Centre for his help with the cluster analysis; and Professor Misao Tsubokura of Tottori University, Japan for serotyping our Y. pseudotuberculosis isolates.

A special thanks are due to the goat farmers in the Manawatu, for allowing us to sample their goats, in particular Mr. and Mrs. Beagley, Mr. and Mrs. Carryer, and Mr. and Mrs. Ebbett for having the patience to allow monthly faecal samplings from their goats and the willingness to help with the sampling.

The Visayas State College of Agriculture, for encouraging me to go to New Zealand for this scholarship; and the New Zealand Government for providing for
our upkeep during our stay in this country.

All the other people, too numerous to mention, who have helped make my stay in New Zealand a happy one.

Our Filipino friends in New Zealand for their friendship and company, which made our stay in this country very enjoyable.

Lastly, my wife, Lela, and our son, Toto, for always being supportive of this work, and for having the patience and understanding during the long periods I spent away from home, periods which otherwise should have been spent with them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1: GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2: REVIEW OF LITERATURE</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Members of the Genus Yersinia</td>
<td>3</td>
</tr>
<tr>
<td>Yersinia pseudotuberculosis</td>
<td>4</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>4</td>
</tr>
<tr>
<td>Yersinia frederiksenii</td>
<td>4</td>
</tr>
<tr>
<td>Yersinia kristensenii</td>
<td>5</td>
</tr>
<tr>
<td>Yersinia intermedia</td>
<td>5</td>
</tr>
<tr>
<td>Yersinia aldovae</td>
<td>5</td>
</tr>
<tr>
<td>Yersinia rohdei</td>
<td>5</td>
</tr>
<tr>
<td>Yersinia mollaretii</td>
<td>5</td>
</tr>
<tr>
<td>Yersinia bercovieri</td>
<td>6</td>
</tr>
<tr>
<td>Yersiniosis in Man and Animals: The Global Situation</td>
<td>6</td>
</tr>
<tr>
<td>Human Infections</td>
<td>6</td>
</tr>
<tr>
<td>Yersiniosis in Animals</td>
<td>12</td>
</tr>
<tr>
<td>Isolation of Yersinia Species</td>
<td></td>
</tr>
</tbody>
</table>
from Environmental Sources 25
Isolation of *Yersinia* Species from Foods 26
Seasonality of Yersiniosis 26
Age Prevalence of Yersiniosis 26

Yersiniosis in New Zealand 26
Human Infections 27
Animal Infections 27

Yersiniosis in Goats 30
Yersinia pseudotuberculosis Infections 30
Yersinia enterocolitica Infections 32

Laboratory Isolation of Yersinia Species 34
Isolation from Clinical Material and Faeces 34
Enrichment Methods for *Yersinia* Species Isolation 35
Selective Plating Media for the Recovery of *Yersinia* Species 36
Incubation Temperature of Culture Media 38
Recommendations for the Optimal Recovery of *Yersinia* Species 39

Identification of Yersinia Species 39
The Genus *Yersinia* 39
Biochemical Characteristics of *Yersinia* Species 40
Biotypes of *Y. enterocolitica* 42

Pathogenesis of Yersinia Infection 43
Pathology 45
Treatment and Control of Yersiniosis 45
Public Health Significance of Yersiniosis 46

CHAPTER 3: CHARACTERISTICS OF GOAT FARMS
IN THE MANAWATU AS REPORTED
BY FARMERS IN A POSTAL SURVEY

Introduction

Materials and Methods
Selection of Goat Farms
The Questionnaire
Statistical Analyses

Results
Response Rate
General Farm Information
Goat Management Practices
Farmers' Comments

Discussion

CHAPTER 4: SCREENING OF GOAT FARMS FOR
THE CARRIAGE OF YERSINIA SPECIES

Introduction

Materials and Methods
Selection of Goat Farms
Determination of Sample Sizes
Collection of Faecal Material
Inoculation Into M/15 Phosphate-Buffered Saline (PBS)
Incubation of Faecal Suspensions
Plating of Cold-Enriched Samples
Preparation of Media for Biochemical Tests
Screening for Yersinia Species
Identification of Yersinia Species
Data Storage and Statistical Analyses
CHAPTER 5: PREVALENCE OF YERSINIA SPECIES INFECTION IN GOAT FLOCKS

Introduction
Materials and Methods

Results

Location of Goat Farms
CHAPTER 6: COHORT STUDY OF YERSINIA SPECIES INFECTION IN THREE GOAT FLOCKS

Introduction

Materials and Methods

The Goat Flocks
Flock History of Yersiniosis
Sampling Design
Collection of Faecal Samples
Isolation of Yersinia Species
Collection of Serum Samples
Biotyping of Y. enterocolitica
Serotyping of Y. pseudotuberculosis
Serotyping of Y. enterocolitica
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of Dead or Sick Sample Animals</td>
<td>93</td>
</tr>
<tr>
<td>Meteorological Data</td>
<td>93</td>
</tr>
<tr>
<td>Analysis of Infection Rates</td>
<td>94</td>
</tr>
<tr>
<td>Determination of Incidence Differences Between and Within Cohorts</td>
<td>95</td>
</tr>
<tr>
<td>Determination of Climatic Influences on Yersinia Species Incidence</td>
<td>95</td>
</tr>
<tr>
<td>Results</td>
<td>96</td>
</tr>
<tr>
<td>Sampling Results</td>
<td>96</td>
</tr>
<tr>
<td>Fate of Missing Animals</td>
<td>98</td>
</tr>
<tr>
<td>Flock Incidence of Yersinia Species</td>
<td>99</td>
</tr>
<tr>
<td>Age Group Incidence of Yersinia Infection</td>
<td>109</td>
</tr>
<tr>
<td>Overall Incidence</td>
<td>114</td>
</tr>
<tr>
<td>Results of the Repeated Measures Regression Analysis</td>
<td>116</td>
</tr>
<tr>
<td>Climatic Influences on Yersinia Incidence in the Different Cohorts</td>
<td>119</td>
</tr>
<tr>
<td>Age Group Point Prevalence of Yersinia Species</td>
<td>128</td>
</tr>
<tr>
<td>Mean Overall Species-Specific Prevalence of Yersinia Infection</td>
<td>129</td>
</tr>
<tr>
<td>Mean Cohort Prevalence of Yersinia Species</td>
<td>131</td>
</tr>
<tr>
<td>Mean Flock Prevalence of Yersinia Species</td>
<td>131</td>
</tr>
<tr>
<td>Mean Seasonal Prevalence of Yersinia Species</td>
<td>131</td>
</tr>
<tr>
<td>Distribution of Yersinia Species Isolated in the Cohort Study</td>
<td>132</td>
</tr>
<tr>
<td>Flock Distribution of Pathogenic and Environmental Yersinia Species Isolates</td>
<td>134</td>
</tr>
<tr>
<td>Cohort Distribution of Pathogenic and Environmental Yersinia Species Isolates</td>
<td>135</td>
</tr>
<tr>
<td>Seasonal Isolations of Yersinia Species</td>
<td>135</td>
</tr>
</tbody>
</table>
Apparent Duration of the Infection and Frequency of Reinfection 138

Discussion 140

Variations in Incidence 140
Climatic Effects on Incidence 141
Mean Prevalence Levels 142
Distribution of Yersinia Species Isolated in the Study 142
Approximation of the Duration of Yersinia Infection 143

CHAPTER 7: CULTURAL, BIOCHEMICAL AND IN VITRO VIRULENCE CHARACTERISTICS OF YERSINIA SPECIES ISOLATED FROM GOATS 145

Introduction 145

Materials and Methods 145
Bacterial Strains 145
Enrichment and Preliminary Screening Procedures 146
In Vitro Virulence Tests 146

Results 149
Growth on CIN Agar 149
TSI Agar Reactions 154
LIA Agar Reactions 155
Biochemical Reactions 155

Discussion 165
CIN Agar as the Plating Medium 165
Biochemical Characteristics of Yersinia Species 166
In Vitro Virulence Markers 168

CHAPTER 8: A NUMERICAL TAXONOMY STUDY OF YERSINIA SPECIES ISOLATED FROM GOATS 170
Introduction 170

Materials and Methods 171
 Bacterial Strains Studied 171
 Microbiological Methods 171
 Numerical Analysis 171

Results 179
 Characteristics of the Strains Tested 179
 Results of Hierarchical Clustering 180

Discussion 181

CHAPTER 9: GENERAL DISCUSSION 185

APPENDICES 191

REFERENCES 218
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1</td>
<td>Location of Farms Screened for Yersinia Species Carriage</td>
<td>57</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Disposable Plastic Containers Used for Collecting Faeces</td>
<td>58</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Faecal Suspension in M/15 Phosphate Buffer</td>
<td>58</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Distribution of Yersinia Species Isolated in the Screening Survey</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Association Between Yersinia Infection and Flock Size</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Association Between Yersinia Infection and Shearing Frequency</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Association Between Yersinia Infection and Dog Use</td>
<td>64</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Location of Farms Included in the Prevalence Survey</td>
<td>67</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Yersinia Species Prevalence in 18 Goat Flocks</td>
<td>73</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Age-Group Prevalence of Yersinia Species</td>
<td>82</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Species of Yersinia Isolated in the Prevalence Survey</td>
<td>83</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Age-Group Distribution of Yersinia Species</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Distribution of "Pathogenic" and "Environmental" Yersinia Species</td>
<td>86</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Location of the Three Farms Included in the Cohort Study</td>
<td>89</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Yersinia Incidence in Flock A</td>
<td>103</td>
</tr>
</tbody>
</table>
Figure 6.3. *Yersinia* Species Incidence in Flock B

Figure 6.4. *Yersinia* Species Incidence in Flock C

Figure 6.5. *Yersinia* Species Incidence in Kids

Figure 6.6. *Yersinia* Species Incidence in Hoggets

Figure 6.7. *Yersinia* Species Incidence in Adults

Figure 6.8. Overall *Yersinia* Species Incidence (All Flocks)

Figure 6.9. Comparison of the Overall Incidence Levels of the Pathogenic and Environmental *Yersinia* Species

Figure 6.10. Comparison of levels of DEW and RAIN with *Y. pseudotuberculosis* Incidence

Figure 6.11. Comparison of the Levels of RAIN, MIN and NRD with the Incidence of *Y. enterocolitica* biotypes 2 and 3 (combined)

Figure 6.12. Comparison of the levels of RAIN, DEW, MAX and MIN with *Y. kristensenii* Incidence

Figure 6.13. Comparison of NTRD levels with *Y. rohdei* Incidence

Figure 6.14. Comparison of the Overall *Yersinia* Species Incidence with Levels of DEW, HUMID and NRD

Figure 6.15. Comparison of the Overall Monthly Point Prevalence with Incidence Levels of *Yersinia* Species

Figure 6.16. Comparative Point Prevalence Levels of the Pathogenic and Environmental *Yersinia* Species

Figure 6.17. Mean Cohort Prevalence of *Yersinia* Species Infection (Whole Study Period)

Figure 6.18. Mean Flock Prevalence of *Yersinia* Species Infection (Whole Study Period)

Figure 6.19. Mean Seasonal *Yersinia* Species Prevalence
Figure 6.20. Distribution of *Yersinia* Species Isolated in the Cohort Study

Figure 6.21. Flock Distribution of Pathogenic and Environmental *Yersinia* Species

Figure 6.22. Cohort Distribution of Pathogenic and Environmental *Yersinia* Species

Figure 6.23. Seasonal Isolations of *Yersinia* Species in Kids

Figure 6.24. Seasonal Isolations of *Yersinia* Species in Hoggets

Figure 6.25. Seasonal Isolations of *Yersinia* Species in Adults

Figure 6.26. Seasonal Isolations of *Yersinia* Species from All Ages Combined

Figure 7.1. Positive and Negative Reactions in the Autoagglutination Test (37°C)

Figure 7.2. Negative CRMOX test at 37°C

Figure 7.3. Positive CRMOX test at 37°C

Figure 7.4. 24-hour Growth of *Y. pseudotuberculosis* on CIN (29°C)

Figure 7.5. 48-hour Growth of *Y. pseudotuberculosis* on CIN (29°C)

Figure 7.6. 24-hour Growth of *Y. enterocolitica* biotype 5 on CIN (29°C)

Figure 7.7. 48-hour Growth of *Y. enterocolitica* biotype 5 on CIN (29°C)

Figure 7.8. 24-hour Growth of *Y. enterocolitica* biotype 2 on CIN (29°C)

Figure 7.9. 48-hour Growth of *Y. enterocolitica* biotype 2 on CIN (29°C)

Figure 7.10. 24-hour Growth of *Y. frederiksenii* on CIN (29°C)

Figure 7.11. 48-hour Growth of *Y. frederiksenii* on CIN (29°C)
Figure 7.12. Reactions of *Y. enterocolitica* (all biotypes), *Y. frederiksenii*, *Y. intermedia* and *Y. rohdei* in TSI and LIA

Figure 7.13. Reactions of *Y. pseudotuberculosis* and *Y. kristensenii* in TSI and LIA

Figure 8.1. Dendrogram of 388 *Yersinia* Strains Obtained by Hierarchical Cluster Analysis Using UPGMA
LIST OF TABLES

Table 2.1. Characteristics of Some Genera of Enterobacteriaceae .. 40
Table 2.2. Comparative Biochemical Reactions of Yersinia Species ... 41
Table 2.3. Biogrouping of Y. enterocolitica .. 43
Table 3.1. Flock Sizes of the 29 Goat Flocks Categorised by Age Group .. 50
Table 5.1. Flock Sizes of the 18 Goat Farms ... 72
Table 5.2. Correlation Matrix of PREV and All Independent Variables .. 75
Table 5.3. Prevalence and Distribution of Yersinia Isolates in All Age Groups 76
Table 5.4. Prevalence and Distribution of Yersinia Isolates in Kids ... 77
Table 5.5. Prevalence and Distribution of Yersinia Isolates in Hoggets .. 78
Table 5.6. Prevalence and Distribution of Yersinia Isolates in Adults ... 79
Table 5.7. Correlation Matrix of PREV and Significant Independent Variables 80
Table 5.8. Flock and Farm Effects on Prevalence ... 81
Table 5.9. Comparison of Infection Levels Between Cohorts .. 83
Table 6.1. Seasonal Classification and Dates of Faecal Collections ... 100
Table 6.2. Yersinia Species Incidence in Flock A ... 102
Table 6.3. Yersinia Species Incidence in Flock B ... 105
Table 6.4. *Yersinia* Species Incidence in Flock C

Table 6.5. Age Group Incidence of *Yersinia* Species (3 Flocks)

Table 6.6. *Yersinia* Species Incidence Between and Within Cohorts

Table 6.7. Values of Climatic Factors Used in the Stepwise Regression Analysis

Table 6.8. Climatic Effects on *Y. pseudotuberculosis* Incidence

Table 6.9. Climatic Effects on *Y. enterocolitica* biotype 5 Incidence

Table 6.10. Climatic Effects on *Y. enterocolitica* biotypes 2 and 3 Incidence

Table 6.11. Climatic Effects on *Y. frederiksenii* Incidence

Table 6.12. Climatic Effects on *Y. kristensenii* Incidence

Table 6.13. Climatic Effects on *Y. rohdei* Incidence

Table 6.14. Climatic Effects on the Incidence of Pathogenic *Yersinia* Species

Table 6.15. Climatic Effects on the Incidence of All *Yersinia* Species Combined

Table 6.16. Age Group Point Prevalence of *Yersinia* Species (3 Flocks)

Table 7.1. Numbers and Sources of *Yersinia* Strains Tested

Table 7.2. Biochemical Characteristics of *Y. pseudotuberculosis* Isolates

Table 7.3. Biochemical Characteristics of *Y. enterocolitica* Isolates

Table 7.4. Biochemical Characteristics of Other *Yersinia* Species Isolates

Table 8.1. List of *Yersinia* Strains Studied
| Table 8.2. | Characteristics Positive for All the 388 *Yersinia* Strains | 179 |
| Table 8.3. | Characteristics Negative for all the 388 *Yersinia* Strains | 180 |