Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
RENEWABLE ENERGY POTENTIAL IN NEW ZEALAND
– BY THE NUMBERS

A thesis presented in partial fulfilment of the requirements for the Degree of
Master of Science
in
Mathematics
at Massey University, Manawatu,
New Zealand

Shaza Eltayeb
2013
Abstract

Renewable energy plays a very important role in New Zealand’s energy supply system, with approximately 39% of energy supply from renewable sources. The idea of the thesis was inspired by the book *Sustainable Energy—Without The Hot Air* by David MacKay. The book uses basic physics and mathematics to estimate the amount of sustainable sources that are physically available before considering their economic feasibility. The goal of the thesis is to transfer some of MacKay’s ideas to New Zealand, and estimate an upper limit to the energy we can get from the following renewable resources: hydro, geothermal, wind, solar and waves, then compare this to New Zealand’s energy use, and hence answer the question Can New Zealand live on Renewables?

In this thesis, hydroelectricity potential was estimated using Hydroelectricity Image Processing Approach. This method is original to this thesis, and involved using some image processing to estimate an upper limit of the total hydro available using the Rainfall Map and New Zealand 100 m Digital Elevation Model. Also, some image processing has been done to estimate solar thermal and solar photovoltaic potential for every region in New Zealand using the Solar Radiation Map. Furthermore, Wind Resource Map and Rayleigh distribution were used to estimate the wind power density which is an important measure in wind industry for every region in New Zealand.

The results from this research show that it is possible for New Zealand to supply all of its energy requirements from renewable sources alone. In fact, the renewable resource available is around 9 times our current energy use. However, in reality there are many environmental, economic and social limitations that would need to be considered.
Acknowledgments

First and foremost, I would like to express my sincere gratitude and appreciation to my supervisors Professor Robert McLachlan and Professor Stephen Marsland for their continuous support, motivation, and encouragement in writing this thesis. I could not have asked for more supportive and encouraging supervisors, without your guidance and support, it wouldn’t have been possible to complete this research.

Furthermore, I would like to express my deepest gratitude to my family and friends for their unlimited support. Special thanks to mom, dad, brother Nidal and sister-in-law May Chanapha for all the encouragement and support you gave me throughout my study. I would also like to thank my amazing friends Fatima Bashir and Huda Fareh for always being there for me and encouraging me to complete this thesis.
Contents

Abstract i
Acknowledgments ii
Contents v
List of Figures vi
List of Tables vii

1 Introduction
1.1 Background ... 1
1.1.1 **Sustainable Energy—Without The Hot Air** 1
1.1.2 Renewable Resources in New Zealand 4
1.2 Thesis Outline 5

2 Data and Useful Numbers
2.1 Data Sets ... 7
2.2 Preferred Units 8
2.2.1 Useful Unit Conversions 8
2.3 Useful Numbers 9

3 Hydroelectricity
3.1 Hydroelectricity—MacKay’s Approach 10
3.1.1 Hydroelectricity in the UK 10
3.1.2 Hydroelectricity in New Zealand 10
3.2 Hydroelectricity Image Processing Approach 12
3.2.1 What Do We Want to Calculate? 12
3.2.2 Image Registration 13
3.3 Comparisons .. 20
3.3.1 New Zealand—MacKay’s Approach vs. Hydroelectricity Image Processing Approach 20
3.3.2 New Zealand vs. United Kingdom 21
3.4 Hydroelectricity Conclusion 21

4 Geothermal
4.1 Geothermal in the United Kingdom 22
4.2 Uses of Geothermal in New Zealand 23
CONTENTS

4.3 Geothermal Potential in New Zealand .. 23
4.4 Geothermal Renewability and Sustainability .. 25

5 Wind .. 27
5.1 Power of the Wind .. 27
5.2 Power Coefficient \(C_p \) and Betz’ law ... 28
5.3 Tip Speed Ratio (TSR) ... 31
5.4 Wind Power Density (WPD) and Wind Speed Distribution (Weibull and Rayleigh Distribution) ... 32
5.5 Wind - MacKay’s Approach ... 35
 5.5.1 Wind in the United Kingdom ... 35
 5.5.2 Wind in New Zealand ... 35
5.6 Onshore Wind Potential in New Zealand .. 37
 5.6.1 Wind in New Zealand-Rayleigh Distribution and Image Processing Approach ... 37
 5.6.2 Onshore Wind Potential—An Upper Limit 39

6 Solar .. 40
6.1 Factors Affecting Solar Radiation .. 40
6.2 Solar—MacKay’s Approach .. 42
 6.2.1 Solar in the United Kingdom ... 42
 6.2.2 Solar in New Zealand ... 43
6.3 Solar in New Zealand—The Numbers .. 45
 6.3.1 Solar Thermal ... 45
 6.3.2 Solar Photovoltaic .. 47
6.4 Solar Thermal vs. Solar Photovoltaic ... 48

7 Marine .. 49
7.1 Marine in the United Kingdom ... 49
7.2 Marine in New Zealand .. 50

8 Conclusions and Future Work Recommendations 53
8.1 Research Process .. 53
8.2 Conclusions ... 54
8.3 Future Work .. 56

Appendix A Haversine Formula .. 63

Appendix B Wind .. 65
 B.1 Derivation of Kinetic Energy Equation, \(E=\frac{1}{2}mv^2 \) [41] 65
 B.2 Continuity Equation (Conservation of Mass)[41] 66
 B.3 Newton’s Second Law for Fluids[55] .. 67
 B.4 Wind Velocity at the Rotor \(v[52] \) ... 68
 B.5 Optimal Tip Speed Ratio \(\lambda_{optimal} \) ... 69
 B.5.1 Some Useful Definitions [41] ... 69
 B.5.2 Optimal Tip Speed Ratio — The Proof [52] 70
 B.6 Average Wind Speed in New Zealand .. 72
 B.7 Rayleigh Distribution and Image Processing Approach 73
CONTENTS

B.7.1 Wind speeds Rayleigh Distribution Tables 73
B.7.2 Matlab Code .. 76

Appendix C Solar ... 78
C.1 Solar Intensity vs. Time of day 78
C.2 Solar Thermal .. 78
C.3 Solar Photovoltaic ... 81
C.4 Mean Daily Global Radiation (MJ/m^2) 84

Appendix D Waves .. 85
List of Figures

3.1 New Zealand Annual Rainfall (mm) .. 13
3.2 New Zealand 100 m Digital Elevation Model 14
3.3 Line segments d1,d2 and d3 ... 15
3.4 The alignment of the Rainfall and Altitude maps 18
3.5 The alignment of the Rainfall and Altitude maps after the translation step ... 19
5.1 Betz' law: The Performance Coefficient C_p as a function of $b = \frac{v_2}{v_1}$ 31
5.2 Rayleigh Distribution for various mean wind speeds v 35
5.3 Wind Resource Map .. 37
5.4 Wind Power Density (WPD) at 10-m height estimated using Rayleigh Distribution 38
6.1 Average Solar Intensity vs.Time of the day .. 41
6.2 Average solar intensity in Auckland, Wellington and Invercargill as a function of time of year ... 41
6.3 Solar Radiation in New Zealand (MJ/m2/day) 45
6.4 Solar Thermal Potential in New Zealand .. 46
6.5 Solar Photovoltaic Potential in New Zealand ... 47
7.1 Coastline Length in km .. 51
B.1 Summary Climate Information for Selected New Zealand Locations 72
C.1 Mean Daily Global Radiation (MJ/m2) ... 84
List of Tables

2.1 Useful Conversions .. 9
3.1 Distance in km for the three line segments: d1,d2 and d3 16
3.2 Distance in Pixels for d1,d2 and d3 16
3.3 Distance per pixel (km/pixel) for d1,d2,d3 16
3.4 MacKay’s Approach vs. Our Approach 20
4.1 Geothermal Resource that would be sustainable forever: New Zealand vs. United Kingdom .. 24
4.2 Assessment of New Zealand’s High Temperature Geothermal Resources ... 24
4.3 Geothermal Potential in New Zealand (kWh/d/p) 25
5.1 Classes of Wind Power Density (WPD) 33
6.1 Solar Intensity (W/m2) for Auckland, Wellington and Invercargill ... 40
6.2 Solar Potential in the United Kingdom 43
6.3 New Zealand vs. United Kingdom solar potential: solar thermal, photovoltaic and solar farming ... 44
7.1 Power per unit length of wave front $P_{\text{wavefront}}$... 50
7.2 Raw incoming wave power P_{incoming} in kWh/d/p 51
8.1 Renewable potential (kWh/d/p): New Zealand vs. United Kingdom 55
B.1 Wind Power Density (WPD) in W/m2 estimated using Rayleigh distribution for average wind speeds $v = 2,3,4$ and $5.$... 74
B.2 Wind Power Density (WPD) in W/m2 estimated using Rayleigh distribution for average wind speeds $v = 6,7,8,9$ and $10.$... 75
B.3 Wind Power Density (WPD) in W/m2 estimated using Rayleigh Distribution .. 76
C.1 Solar Thermal (kWh/d/p) .. 80
C.2 Photovoltaic (kWh/d/p) .. 82
D.1 New Zealand’s four regions based on the range of the long-term mean for significant wave height (H_{av}), the average wave period between wave crests (T_{av}) and wind direction. .. 85