Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
WILLOW FODDER BLOCKS FOR GROWTH AND SUSTAINABLE
MANAGEMENT OF INTERNAL PARASITES IN GRAZING LAMBS

A thesis presented in partial fulfilment of requirements for the degree of
Master in Veterinary Science at Massey University, New Zealand

Carolina Macarena Diaz Lira

2005
ABSTRACT

A rotational grazing experiment was conducted for 14 weeks in the summer/autumn of 2004/2005 on the lower eastern North Island, New Zealand, to compare the efficacy of grazing willow fodder blocks containing condensed tannins (CT), for sustainable control of internal parasites in 180 Suffolk x Romney weaned lambs. One third of the lambs grazed control perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) pasture only, another third grazed pasture for 3 weeks followed by willow fodder blocks for 1 week (repeating the rotation; restricted access) and the last third of the lambs grazed on willow fodder blocks for the duration of the experiment (full access). All lambs were effectively treated with anthelmintics at the start of the experiment. Each group was divided into undrenched lambs and lambs regularly drenched every 4 weeks. Each of the six groups grazed separate areas at the same dry matter (DM) allowance, using rotational grazing with weekly breaks. Undrenched lambs would be triggered drenched if the faecal egg count (FEC) geometric mean of the group exceeded 1000 eggs/g wet faeces and/or liveweight gain (LWG) was reduced to zero and/or any one individual lamb exceeded 2500 eggs/g wet faeces, which never occurred.

Rectal faecal samples for FEC, larval counts (LC) and visual dag formation (Dag Score; DS) were assessed initially and at two week intervals throughout the experiment. All lambs were slaughtered at the end of the experiment, fatness (GR) and carcass weight (CW) measurements were recorded and representative samples of the abomasum, small intestine and large intestine were collected in the three undrenched treatments to determine total worm burdens.
Primary growth legume content in willow fodder blocks was similar to that of control pasture (20%), but willow fodder blocks secondary growth legume content (30%) was greater than in secondary growth control pasture (22%). Primary growth pre-grazing herbage mass (approximately 4800 kg DM/ha) and post-grazing herbage mass (approximately 3400 kg DM/ha) in willow fodder blocks (full and restricted access) was higher than that of control pasture (4400 and 3000 kg DM/ha respectively). Secondary growth pre and post-grazing herbage mass was similar in willow fodder blocks and control pasture (4200 and 3000 kg DM/ha respectively). Secondary growth mass of fodder trees (775 kg DM/ha) in the willow fodder block full access treatment was higher than primary growth (562 kg DM/ha). Pre-grazing herbage dead matter content was consistently higher in secondary growth (20-40%) than in primary growth (8-10%), for both control pasture and fodder blocks.

Condensed tannin concentration in willow fodder block herbage was 14.5 g/kg DM compared to the CT levels (6.2 g/kg DM) detected in control pasture diet selected. However, CT concentration in willow fodder block trees was particularly high (approximately 45.5 g/kg DM). In vitro OMD, DOMD and ME concentrations were higher for selected tree browse in willow fodder blocks (0.71; 0.65 g/kg DM; 10.6 MJ/kg DM respectively) when compared to herbage selected in either willow fodder blocks or control pasture (0.65; 0.60 g/kg DM; 9.7 MJ/kg DM respectively).

Regularly drenched lambs had significantly higher LWG and carcass weight gain (CWG) than undrenched lambs (p < 0.05) in all three groups. Lambs in willow fodder block full access had the highest LWG in drenched as well as undrenched lambs of 182 g/day and 154 g/day respectively.
Due to hot and dry summer conditions, growth rates of all treatments declined in the second half of the experiment as herbage nutritive value declined. Undrenched willow fodder block full access had the highest CWG amongst all undrenched treatments. Carcass weight gain reduction of undrenched lambs versus drenched lambs for the full access to willow fodder block group (12 g/day) was half of the reduction between control pasture groups (24 g/day).

Dag score increased with time until Day 70 of the experiment, with no differences between the six treatment groups. From Day 70 until the end of the experiment, dag scores of lambs grazing willow fodder block full access were consistently lower than lambs grazing willow fodder block restricted access or control pasture and were lower for drenched than for undrenched lambs. Drenched groups maintained low FECs throughout the experiment, whereas FECs of undrenched groups progressively increased with time. Both DS and LWG were similar for drenched lambs grazing control pasture and undrenched lambs grazing willow fodder block full access.

The parasites established in greatest numbers in undrenched lambs grazing control pasture were Teladorsagia trifurcata, Nematodirus spathiger, Trichostrongylus vitrinus, Trichostrongylus colubriformis followed by Trichostrongylus axei and Teladorsagia circumcincta. At slaughter, undrenched lambs grazing on willow fodder block full access had significantly lower Nematodirus spathiger, Trichostrongylus vitrinus and Trichostrongylus colubriformis worm burdens when compared to undrenched lambs grazing control pasture (p < 0.05), but greater burdens of Haemonchus contortus (p = 0.0299).
Undrenched lambs grazing willow fodder block with restricted access had significantly lower *Teladorsagia circumcincta*, *Teladorsagia trifurcata*, *Trichostrongylus vitrinus* and *Trichostrongylus colubriformis* worm burdens than undrenched lambs grazing control pasture (p < 0.05).

It was concluded that parasitism restricted lamb growth in all three undrenched grazing systems, showing a progressive increase in FEC over time. However, the reduction in carcass weight gain was greatest for undrenched control lambs and least for undrenched lambs with full access to willow fodder blocks. Grazing undrenched lambs on restricted and full access willow fodder blocks showed lower burdens of some parasites at slaughter compared to undrenched lambs grazing control pasture, which could be due firstly to an increased CT present in both willow and in fodder block herbage and their possible effects in increasing protein absorption. Secondly, CT could have interrupted parasite life cycles and/or, thirdly, decreased L₃ larval consumption could have occurred due to taller plant morphology of the trees, hence reducing the reinfection rate. There seemed to be no direct effect on killing established parasites, as if that had happened, there should have been a decrease in FEC in the first half of the experiment, before any effects of reinfection took place.

CT-containing forages could be used in conjunction with live weight gain monitoring and/or body condition score for the control of gastrointestinal nematodes, but it still needs further evaluation and a close collaboration of researchers and farmers.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my Chief Supervisor Professor Tom Barry for his support, encouragement and dedication, on both professional and personal levels. I also wish to thank my Co-Supervisor, Associate Professor Bill Pomroy for his expert veterinary guidance, support and technical advice given throughout this thesis. It has been a pleasure and an honour to work and learn from them during these years. I appreciate the help and assistance provided by Co-Supervisor Dr. Eileen McWilliam.

I am extremely grateful to Dr. Nicolás López-Villalobos for going far beyond the call of duty in providing statistical advice and encouragement at all times. Mrs. Barbara Adlington and Mrs. Anne Tunnicliffe are gratefully thanked for their time, understanding and constant technical and personal support and friendship.

Mr. Geoff Purchas, Mr. Colin Morgan and Mr. Nathan Crombie, of Massey University’s Riverside farm are thanked for their valuable help to this project. I am extremely grateful to New Zealand Ministry of Foreign Affairs and Trade, NZAID agency, for the postgraduate scholarship programme, in particular Mrs. Sue Flynn. I would also like to thank the Institute of Veterinary, Animal and Biomedical Science Massey University, Meat and Wool Innovations and Novartis Animal Health Division for their financial support.

Thanks to my son Teodoro for being such a good boy and for spending the first two years of his life understanding that mom was working on the computer and allowing me time to work at home while he was playing like an angel with his toys and his dog Pluto. To my son Ambrosio, I hope that there were not too many stressful moments while I was pregnant, but now that I am finished, I will have all the time for my sons.

Finally, there are no words to express how much I love my husband Andrés, who has always been there for me throughout this journey and I will always consider myself the luckiest woman on earth for his unconditional love, support, sacrifice and understanding.
TABLE OF CONTENTS

TITLE
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
ABBREVIATIONS USED
LIST OF TABLES AND FIGURES
LIST OF PLATES
CHAPTER 1. LITERATURE REVIEW
1. INTRODUCTION
2. SHEEP PRODUCTION AND GRAZING SYSTEMS IN NEW ZEALAND
 2.1 Sheep production
 2.2 Sheep grazing systems
 2.3 Recommended pasture allowances
3. WILLOW TREES ON NEW ZEALAND FARMS
 3.1 Origin
 3.2 Uses
 3.2.1 Soil conservation
 3.2.2 Shade and shelter
 3.2.3 Feed for livestock
 3.3 Establishment, growth and management of willow fodder blocks
4. WILLOW FODDER
 4.1 Chemical composition and nutritive value of willow fodder
 4.2 Edible fodder production
5. PLANT SECONDARY COMPOUNDS PRESENT IN WILLOW FODDER
 AND ITS ROLE IN RUMINANT NUTRITION
 5.1 Condensed and hydrolysable tannins
 5.2 Beneficial and detrimental effects of condensed tannins
 5.3 Effect of condensed tannins on voluntary feed intake and upon nitrogen and carbohydrate digestion.
ABBREVIATIONS USED

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of variance</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Carcass weight</td>
<td>CW</td>
</tr>
<tr>
<td>Carcass weight gain</td>
<td>CWG</td>
</tr>
<tr>
<td>Condensed tannins</td>
<td>CT</td>
</tr>
<tr>
<td>Crude protein</td>
<td>CP</td>
</tr>
<tr>
<td>Dag score</td>
<td>DS</td>
</tr>
<tr>
<td>Degrees Celsius</td>
<td>°C</td>
</tr>
<tr>
<td>Digestible organic matter in dry matter</td>
<td>DOMD</td>
</tr>
<tr>
<td>Dry matter</td>
<td>DM</td>
</tr>
<tr>
<td>Eggs per gram</td>
<td>epg</td>
</tr>
<tr>
<td>Essential amino acids</td>
<td>EAA</td>
</tr>
<tr>
<td>Faecal egg count</td>
<td>FEC</td>
</tr>
<tr>
<td>Faecal egg counts</td>
<td>FECs</td>
</tr>
<tr>
<td>Figure</td>
<td>Fig.</td>
</tr>
<tr>
<td>First larval stage</td>
<td>L₁</td>
</tr>
<tr>
<td>Fourth larval stage</td>
<td>L₄</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>GI</td>
</tr>
<tr>
<td>General linear model</td>
<td>GLM</td>
</tr>
<tr>
<td>Grams</td>
<td>g</td>
</tr>
<tr>
<td>Hectare</td>
<td>ha</td>
</tr>
<tr>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Larval culture</td>
<td>LC</td>
</tr>
<tr>
<td>Live weight</td>
<td>LW</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Liveweight gain</td>
<td>LWG</td>
</tr>
<tr>
<td>Metabolisable energy</td>
<td>ME</td>
</tr>
<tr>
<td>MegaJoules</td>
<td>MJ</td>
</tr>
<tr>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Millimetres</td>
<td>mm</td>
</tr>
<tr>
<td>Non ammonia nitrogen</td>
<td>NAN</td>
</tr>
<tr>
<td>Number</td>
<td>n</td>
</tr>
<tr>
<td>Organic matter digestibility</td>
<td>OMD</td>
</tr>
<tr>
<td>Post parturient rise</td>
<td>PPR</td>
</tr>
<tr>
<td>Second larval stage</td>
<td>L₂</td>
</tr>
<tr>
<td>Standard error</td>
<td>S.E.</td>
</tr>
<tr>
<td>Statistical Analysis system</td>
<td>SAS</td>
</tr>
<tr>
<td>Tannin protein complexes</td>
<td>TPC</td>
</tr>
<tr>
<td>Third larval stage</td>
<td>L₃</td>
</tr>
<tr>
<td>Tonne</td>
<td>t</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>N</td>
</tr>
<tr>
<td>Voluntary feed intake</td>
<td>VFI</td>
</tr>
<tr>
<td>Wet weight</td>
<td>W/W</td>
</tr>
</tbody>
</table>
LIST OF TABLES CH1

Table 1: Changes in the productivity of the New Zealand sheep industry from 1980 to
2003 ... 4

Table 2: Recommended post-grazing values for sward height with continuous
stocking and post grazing residual herbage mass under rotational grazing for New
Zealand sheep .. 7

Table 3: Beneficial effects of animals sheltered from cold climatic conditions on
animal production .. 10

Table 4: Chemical composition and nutritive value of the pasture diet selected by
ewes grazing low quality drought pastures when supplemented with willow
trimmings ... 12

Table 5: Chemical composition, nutritive value and secondary compound content of
pasture and willow diet selected (g/kg DM) by ewes grazing control drought pasture
and willow fodder blocks .. 14

Table 6: Important New Zealand nematode parasites of sheep .. 21

Table 7: Upper and lower temperature limits for egg hatching in gastrointestinal New
Zealand nematodes .. 27

Table 8: Average autumn liveweight gain, carcass weight, dressing % and
gastrointestinal nematode numbers of deer grazing either pasture (perennial ryegrass)
or chicory with anthelmintic drench (four weekly) or trigger drenched 42
LIST OF TABLES CH2

Table 1: Pre and post-grazing mass (kg DM/ha) and dead matter content of primary and secondary growth from control pasture and willow fodder block full access treatment grazed by drenched and undrenched lambs (mean values with standard error) ... 90

Table 2: Pre and post-grazing mass (kg DM/ha) and dead matter content of primary and secondary growth from willow fodder block restricted access treatment grazed by drenched and undrenched lambs (mean values with standard error) 91

Table 3: Chemical composition, nutritive value and condensed tannin concentration of pasture and willow diet selected (g/kg DM) by drenched and undrenched lambs grazing control pasture and willow fodder block full access (mean values with standard errors) ... 92

Table 4: Chemical composition, nutritive value and condensed tannins concentration of the pasture and willow diet selected (g/kg DM) by drenched and undrenched lambs grazing willow fodder block restricted access (mean values with standard errors)........ 93

Table 5: Live weight and carcass characteristics of drenched and undrenched lambs grazing perennial ryegrass/white clover (control) or willow fodder blocks (full and restricted access)(mean values and pooled standard errors) 98

Table 6: Square root transformed worm counts in undrenched groups grazing control pasture and willow fodder blocks (restricted and full access) over the summer/autumn season of 2005 on the East Coast of the North Island, New Zealand (mean values and pooled standard errors) ... 108
Table 7: Arcsin square root transformed proportion of male and female worm counts in undrenched groups grazing control pasture and willow fodder blocks (restricted and full access) over the summer/autumn season of 2005 on the East Coast of the North Island, New Zealand (mean values and pooled standard errors)110

Table 8: The effect of grazing on willow fodder block full access, *Lotus corniculatus* or perennial ryegrass/white clover (control pasture) on liveweight change and carcass weight gain with regularly anthelmintic drenched lambs, in two Experiments conducted on Riverside Farm over the same time interval (summer) but in different years...113

Table 9.: Chemical composition (g/kg DM) and nutritive value of the diet selected for lambs grazing pasture and willow fodder blocks in the Experiments conducted on Riverside Farm...114

Table 10: Pre and post-grazing mass (kg DM/ha) and dead matter content (%) of control pasture and willow fodder block grazed during different experiments.......115
LIST OF FIGURES CH1

Figure 1: Chemical structure of condensed and hydrolysable tannins. The hydrolysable tannin represented is the toxic compound (punicalagin) from Terminalia oblongata...17

Figure 2: Duodenal NAN flow...20

Figure 3: Representation of the seasonal interrelationship between pasture contamination by untreated ewes and lambs and the pattern of infective larvae availability on pasture..23

Figure 4: Seasonal faecal egg output (a) and pasture contamination with L3 larvae (b) with undrenched and five times drenched ewes and lambs..29
LIST OF FIGURES CH 2

Figure 1: Change in (a) leader shoot diameter chewdown and (b) basal shoot diameter chewdown in samples of willow selected by drenched or undrenched lambs grazing willow fodder block (full access). (□) full access drenched; (■) full access undrenched. Vertical bars represent standard error of the mean..........................95

Figure 2: Mean values of right and left flank GR measurements adjusted by carcass weight. The solid line indicates regression in left flank GR measurements. The broken line indicates regression in right flank GR measurements. (▲) left flank GR measurement; (□) right flank GR measurement..............................100

Figure 3: Changes in least square mean values of dag score units in drenched or undrenched groups grazing control pasture and willow fodder blocks (restricted and full access). The solid line indicates undrenched lambs. The broken line indicates drenched lambs. (△) control pasture; (□) full access; (O) restricted access. Vertical bars represent standard error of the mean.▲ Indicates oral anthelmintic given......101

Figure 4: Changes in (a) least square mean values and (b) back-transformed square root values of FECs (eggs/g wet faeces) in drenched or undrenched groups grazing control pasture and willow fodder blocks (restricted and full access). The solid line indicates undrenched lambs. The broken line indicates drenched lambs. (△) control pasture; (□) full access; (O) restricted access. Vertical bars represent standard error of the mean.▼ Indicates oral anthelmintic given.................................103

Figure 5: Comparative square root transformed means of faecal egg counts allocated to genera in drenched and undrenched lambs at 30 days (a), 60 days (b), 90 days (c) and 120 days (d). (○) control undrenched; (●) control drenched; (□) willow undrenched; (■) willow drenched; (●) restricted undrenched; (■) restricted drenched...106
LIST OF PLATES

Plate 1: Willow fodder block herbage/tree association75
Plate 2: Lambs individually tagged and weighed on scales76
Plate 3: General view of fodder blocks/electric fences/control pasture78
Plate 4: Pasture cages for diet selected ..79
Plate 5: Willow cages for diet selected ..80
Plate 6: Willow fodder block before grazing ..81
Plate 7: Willow fodder block after grazing ...81
Plate 8: Drenched and undrenched lambs grazing separate areas83
Plate 9: Post-mortem measurements of GR and carcass weight84
Plate 10: Dissection of gastrointestinal tract ..84