Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECTS OF MATERNAL BROMOCRIPTINE AND MELATONIN TREATMENTS ON FETAL DEVELOPMENT

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Animal Science at Massey University Palmerston North New Zealand

SRI WIGATI
1996
ACKNOWLEDGEMENTS

I am extremely grateful to my supervisors, DR. S.W. Peterson and Professor S.N. McCutcheon, for their guidance and help during the experimental work and the preparation of this manuscript. The advice and encouragement they offered me were invaluable.

My special thanks are due to the large team of staff, graduate students and volunteers who helped at various times with slaughtering, blood sampling, wool sampling and weighing of the animals: Sam Peterson, Catriona Jenkinson, Yvette Cottam, Barry Parlane, Duncan Mackenzie, Penny Back, Barbara Kuhn, Chandana Herath, Min B.R., Hamsun Husein, Nini Widjaja, Irvan Adrian, Vitri Suhattanti, Larry Wongsonegoro, Aderina, Heru Wardana, Arturo, Paul Charteris, Cesar Pinares, Jiai Chen, Nigel Meads and John Williamon.

I am equally grateful to my team of dedicated placentome disectors: Yuli Indrawati, Fillipe, Yohanes Usboko, Sandra Atkinson and Lynn Berry. Thank you also to Margaret Scott, Kathy Morton and Kate Fleming for your excellent technical assistance with laboratory analyses.

I gratefully acknowledge the New Zealand Ministry of Foreign Affairs and Trade (MFAT) for providing me a scholarship and the Massey University Agricultural Research Foundation for financial support for the research program.

Finally, but most importantly, my very special thanks to my husband Eko Wiyanto, my parents Rihana and Chamim Sugiarito, my brothers and my sisters for their prayer and moral support.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii
TABLE OF CONTENTS ... iii
LIST OF TABLES .. iv
LIST OF FIGURES .. v
LIST OF ABBREVIATIONS ... vi

CHAPTER ONE INTRODUCTION .. 1

1. PREAMBLE ... 1

2. AUTUMN-LAMBING SYSTEMS ... 1
 2.1. Background ... 1
 2.2. Autumn-born lambs .. 2
 2.3. Perinatal and neonatal mortalities .. 4
 2.4. Growth rate to weaning .. 5
 2.5. Milk production and udder size ... 6
 2.6. Wool growth ... 8

3. SEASONAL EFFECTS ON PROLACTIN SECRETION .. 9
 3.1. Seasonal prolactin secretion ... 9
 3.2. Control of seasonal prolactin secretion .. 9
 3.2.1. Melatonin .. 9
 3.2.2. Dopamine ...10
 3.2.3. Other factors ...12

4. REGULATION OF FETAL GROWTH .. 14
 4.1. Placental development ... 14
 4.1.1. Placental size ... 15
 4.1.2. Regulation of placental metabolism by glucose supply 17
 4.1.3. Endocrine control of placental growth ... 18
 4.2. Fetal development .. 20
 4.2.1. Fetal growth ... 20
 4.2.2. Placental control of fetal growth and development 22
 4.3. Hormonal regulation of fetal growth .. 22
 4.3.1. Growth hormone (GH) ... 23
 4.3.2. Insulin-like growth factors (IGFs) ... 25
 4.3.3. Prolactin (PRL) and PRL/GH gene family 30
4.3.4. Other hormones ... 32
 4.3.4.1. Insulin ... 32
 4.3.4.2. Thyroid hormones 33
 4.3.4.3. Glucocorticoids 34

5. PURPOSE AND SCOPE OF STUDY 34

CHAPTER TWO EFFECTS OF MATERNAL BROMOCRIPTINE AND MELATONIN TREATMENTS ON FETAL DEVELOPMENT ... 36

1. ABSTRACT .. 36
2. INTRODUCTION .. 38
3. MATERIALS AND METHODS ... 40
 3.1. Animals and treatments 40
 3.2. Grazing management and weighing 42
 3.3. Blood sampling .. 42
 3.4. Wool sampling .. 43
 3.5. Slaughtering procedures 43
 3.6. Assays .. 44
 3.7. Statistical analysis ... 45

4. RESULTS .. 46
 4.1. Maternal traits .. 46
 4.2. Fetal traits ... 51
 4.3. Lamb traits ... 53

5. DISCUSSION .. 54

CHAPTER THREE GENERAL DISCUSSION .. 61

1. EVALUATION OF THE PRESENT STUDY 61
2. FUTURE RESEARCH ... 63
3. APPLICATIONS TO THE ANIMAL INDUSTRY 65
4. CONCLUSION .. 66

APPENDIX CALENDAR OF EVENTS ... 67
REFERENCES .. 69
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Mean birth weight (± SE) data for lambs born in autumn or spring</td>
<td>3</td>
</tr>
<tr>
<td>Table 2</td>
<td>Live weights (kg) of Control, Parlodel- and Regulin-treated ewes from 3 d prior to, until 200 d after, conception (Lsmeans ± s.e.m.). Data include means for both the “slaughter” and the “live birth” groups up to and including day 140, and subsequently for only the “live birth group”</td>
<td>47</td>
</tr>
<tr>
<td>Table 3</td>
<td>Maternal plasma concentrations (ng/ml) of prolactin from day -3 to day 140 of gestation and through to 60 days postpartum in Control, Parlodel-and Regulin-treated ewes (Lsmeans ± s.e.m.)</td>
<td>48</td>
</tr>
<tr>
<td>Table 4</td>
<td>Effect of Parlodel and Regulin treatments on live weights, carcass and pelt weights, organ and lower digestive tract segment weights of treated ewes compared to control ewes at day 140 of gestation (Lsmeans ± s.e.m.)</td>
<td>49</td>
</tr>
<tr>
<td>Table 5</td>
<td>Effect of Parlodel and Regulin treatments on mammary gland weights and dimensions of treated ewes compared to control ewes at day 140 of gestation (Lsmeans ± s.e.m.)</td>
<td>50</td>
</tr>
<tr>
<td>Table 6</td>
<td>Uterine components of Control, Parlodel- and Regulin-treated ewes at day 140 of gestation (Lsmean ± s.e.m.)</td>
<td>50</td>
</tr>
<tr>
<td>Table 7</td>
<td>Clean wool growth rate (mg/mm²/d) and fibre diameter (μm) of Control, Parlodel- and Regulin-treated ewes (Lsmean ± s.e.m.)</td>
<td>51</td>
</tr>
<tr>
<td>Table 8</td>
<td>Effect of maternal Parlodel and Regulin treatments on CRL, girth, body and organ weights of sheep fetuses compared to fetuses of control ewes at day 140 of gestation (Lsmeans ± s.e.m.)</td>
<td>52</td>
</tr>
<tr>
<td>Table 9</td>
<td>Circulating concentration of prolactin in fetuses from Control, Parlodel- and Regulin-treated ewes at day 140 of gestation (Lsmean ± s.e.m.)</td>
<td>52</td>
</tr>
<tr>
<td>Table 10</td>
<td>Effect of maternal Parlodel and Regulin treatments on birth weights of autumn-born lambs (Lsmeans ± s.e.m.)</td>
<td>53</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Schematic diagram to show the endocrine control of fetal growth and development; known pathways (—); possible pathway (---); stimulatory effects (+); inhibitory effects (−). GH, growth hormone; ACTH, adrenocorticotropic hormone; PGE, prostaglandin E; IGFs, insulin-like growth factors (Fowden, 1995).</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Live weights of Control (n=21), Parlodel (n=20) and Regulin (n=20) treated ewes in the “slaughter” (until day 140) and the “live birth” groups.</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Maternal plasma prolactin concentrations in Control (n=21), Parlodel (n=20) and Regulin (n=20) treated ewes of both the “slaughter” and the “live birth” groups from day -3 to day 140 of gestation, and through to 60 days postpartum of the “live birth” ewes (n=11, 10 and 10 for control, Parlodel and Regulin groups, respectively).</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Live weights of lambs from control (n=15), Parlodel (n=13) and Regulin (n=11) groups from birth until 60 days postpartum.</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

ACTH adenocorticotropic hormone
BN binucleate
°C degree Celsius
CIDR controlled internal drug releaser
CRL crown rump length
cm centimetre
d day
DNA deoxyribonucleic acid
EGF epidermal growth factor
g gram
GH growth hormone
bGH bovine growth hormone
hGH human growth hormone
GH-V placental growth hormone
GnRH gonadotrophin releasing hormone
h hour
IU international units
IGF insulin-like growth factor
IGF-I insulin-like growth factor-1
IGF-II insulin-like growth factor-2
IGFs insulin-like growth factors
IGFBPs insulin-like growth factor-binding proteins
kg kilogram
LWT live weight
MFD mean fibre diameter
mg milligram
ml millilitre
mm millimetre
μm micrometre
mRNA messenger ribonucleic acid
NaCl sodium chloride
ng nanogram
NZ New Zealand
O₂ Oxygen
PGE prostaglandin E
PIF prolactin inhibitory factor
PL placental lactogen
hPL human placental lactogen
oPL ovine placental lactogen
PMSG pregnant mare serum gonadotropin
PRF prolactin releasing factor
PRL prolactin
oPRL ovine prolactin
PRP prolactin-related protein
S/E starvation/exposure
SBCRU sheep and beef cattle research unit
T₃ triiodothyronine
T₄ thyroxine
TSH thyroid stimulating hormone
vs versus

Statistical:

GLM general linear model
LSM leastsquare mean
SAS statistical analysis system
s.e.m. standard error of the mean
n number of experimental units
* P<0.05
** P<0.01
*** P<0.001