Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Iron bioavailability for piglets:
The effects of iron status, vitamin C and cooked or uncooked meat

A thesis presented in partial fulfilment of the requirements for the
Degree of Master of Science (Nutritional Science)
at Massey University, Palmerston North, New Zealand

Patricia J. Clayton 2002
Abstract

Worldwide, iron deficiency affects more than 1 billion people. People with iron deficiency have symptoms of fatigue, intolerance to the cold and poor behaviour and psychomotor development problems. This is partly because the amount of iron present in food is not the amount that is available to the body.

The bioavailability of iron is a key component in understanding the complexities of iron deficiency.

Using an animal model involving 4-week old anaemic piglets, this study investigated several aspects of iron bioavailability. These were:

- The relationship between iron status and iron absorption, the difference in bioavailability of meat iron and non-haem iron and whether supplementary vitamin C can aid in the absorption of dietary iron, and the effect of temperature and cooking of meat on iron bioavailability.
- Dietary iron bioavailability was measured both in iron deficient and non-iron deficient piglets, by measuring changes to the composition of the red cell mass, serum iron concentrations and the binding capacity of iron transport proteins over a period of 28-days.

Experiment 1 showed that meat iron was more bioavailable than the inorganic iron in a vegetable based diet. Also, in the anaemic piglet, 500 ppm of vitamin C in the diet was able to enhance the availability of the non-haem iron from a diet consisting of food choices from a typical human diet.

Experiment 2 showed that a diet containing meat iron was able to return iron deficient piglets to haematologic normality more readily than a diet consisting of milk protein and inorganic iron. Also, cooking meat in a steam-heated circulating water bath was beneficial in increasing the digestibility of the diet and also increasing the availability of the meat iron.

The findings of this study reflect the conclusions drawn from similar human studies, thereby providing further evidence of the suitability of the piglet as a model for the human in future studies of iron bioavailability.
Acknowledgements

Sincere appreciation is expressed to my supervisors, Dr. P. C. H. Morel and Associate Professor R. W. Purchas for their guidance and encouragement throughout the study.

I would also like to thank Mrs. Rosalind Power in analysing blood samples. Dr. Philip Pearce for laboratory analysis of serum and UIBC iron. Dr. David Simcock for laboratory analysis of the iron content of feed samples. Also Ms. Karin Weidgraaf, Ms. Jo Melai, Ms. Laurence De Coster and Mr. Edward James in helping to care for the animals used in this study and also in the collection of blood samples.

The Animal Ethics Committee at Massey University, Palmerston North, approved the experimental protocols of the studies described herein. Application Numbers: MU Ethics (01/25) and (01/82)

This study was Funded by Meat New Zealand
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1:</td>
<td>Proposed mechanisms that could aid the absorption of non-haem iron by vitamin C.</td>
<td>23</td>
</tr>
<tr>
<td>Table 2:</td>
<td>A summary of several studies that evaluated the effectiveness of vitamin C in increasing the bioavailability and absorption of non-haem iron from the diet.</td>
<td>24</td>
</tr>
<tr>
<td>Table 3:</td>
<td>Proposed mechanisms that could explain why histidine can increase the bioavailability of haem iron</td>
<td>27</td>
</tr>
<tr>
<td>Table 4:</td>
<td>A summary of the effects of heat processing on iron content of meat and meat products.</td>
<td>28</td>
</tr>
<tr>
<td>Table 5:</td>
<td>Accepted physiological values of red blood cell parameters in the healthy pig.</td>
<td>29</td>
</tr>
<tr>
<td>Table 6:</td>
<td>Accepted physiological values of white cell parameters in the normal healthy pig.</td>
<td>30</td>
</tr>
<tr>
<td>Table 7:</td>
<td>Characteristic of the pig that make it an appropriate model for studies of iron availability.</td>
<td>31</td>
</tr>
<tr>
<td>Table 8:</td>
<td>Characteristics of the five treatment groups used in experiment 1.</td>
<td>36</td>
</tr>
<tr>
<td>Table 9:</td>
<td>Characteristics of the five treatment groups used in experiment 2.</td>
<td>36</td>
</tr>
<tr>
<td>Table 10:</td>
<td>The composition of the experimental diets % on an as-fed basis, including additional mixing water.</td>
<td>37</td>
</tr>
<tr>
<td>Table 11:</td>
<td>Estimated analysis of the experimental diets used in Experiment 1</td>
<td>38</td>
</tr>
<tr>
<td>Table 12:</td>
<td>The composition of the experimental diets % on an as-fed basis, including additional mixing water.</td>
<td>38</td>
</tr>
</tbody>
</table>
Table 13: Estimated analysis of the experimental diets used in Experiment 2

Table 14: Red blood cell parameters, units and abbreviations.

Table 15: Red cell classification using a 3 x 3 matrix

Table 16: White blood cell parameters, units and abbreviations.

Table 17: The significance of dietary treatment on feed intake and growth rate.

Table 18: Least-squares means of feed intake (g/week).

Table 19: Least-squares means of growth rate (g/day)

Table 20: The significance of dietary treatment on blood parameters.

Table 21: Least-squares means of red blood cells count ($x 10^{12}$ / L).

Table 22: Least-squares means of blood haemoglobin concentration (g/L)

Table 23: Least-squares means of hematocrit (L/L)

Table 24: Least-squares means of mean cell volume (f/L)

Table 25: Least-squares means of mean cell haemoglobin ($x 10^{12}$ / L)

Table 26: Least-squares means of mean corpuscle, haem concentration (MCHC g / L)

Table 27: Least-squares means of corpuscular haemoglobin constant (g/L)

Table 28: The significance of dietary treatment on red blood cell characteristic

Table 29: The Least-squares means of red blood cell characteristics
Table 30: The significance of dietary treatment on serum iron and iron binding proteins

Table 31: The least-squares means of serum iron content (µmol / L)

Table 32: The least-squares means of unsaturated iron binding capacity (µmol / L).

Table 33: The least-squares means of body HGB Fe content (mg) for each of the treatment groups.

Table 34: The significance of dietary treatment on a differential white blood cell counts.

Table 35: The least-squares means values for white blood cells (10^9 cells / L).

Table 36: The least-squares means values for neutrophil cells (10^9 cells / L).

Table 37: The least-squares means values for lymphocyte cells (10^9 cells / L).

Table 38: The least-squares means values for monocyte cells (10^9 cells / L).

Table 39: The least-squares means values for Eosinophil cells (10^9 cells / L).

Table 40: The least-squares means values for basophil cells (10^9 cells / L).

Table 41: The significance of dietary treatment on feed intake and growth rate

Table 42: Least-squares means of feed intake (g/day)

Table 43: Least-squares means of growth rate (g/day)
Table 44: The significance of dietary treatment on complete blood counts
Table 45: Least-squares means of red blood cells count (x 10^{12}/L).
Table 46: Least-squares means of blood haemoglobin concentration (g/L)
Table 47: Least-squares means of hematocrit (L/L)
Table 48: Least-squares means of mean cell volume (f/L)
Table 49: Least-squares means of mean cell haemoglobin (x 10^{12}/L)
Table 50: Least square means of mean corpuscle, haem concentration (pg)
Table 51: Least-squares means of corpuscular haemoglobin constant (g/L)
Table 52: The significance of dietary treatment on red blood cell characteristic
Table 53: The Least-squares means of red blood cell characteristics
Table 54: The significance of dietary treatment on serum iron.
Table 55: The least-squares means of serum iron content (μmol/L)
Table 56: The least-squares means of body HGB Fe content (mg) for each of the treatment groups.
Table 57: The significance of dietary treatment on a differential white blood cell counts.
Table 58: The least-squares means values for white blood cells (10^9 cells/L).
Table 59: The least-squares means values for neutrophil cells (10^9 cells/L).
Table 60: The least-squares means values for lymphocyte cells \((10^9 \text{ cells / L})\). 93

Table 61: The least-squares means values for monocyte cells \((10^9 \text{ cells / L})\). 94

Table 62: The least-squares means values for Eosinophils cells \((10^9 \text{ cells / L})\). 94

Table 63: The least-squares means values for basophil cells \((10^9 \text{ cells / L})\). 95

Table 64: A comparison of changes in blood parameters experiment 1. 106

Table 65: A comparison of changes in blood parameters experiment 2. 108

Table 66: A comparison of changes in blood parameter in the human and piglet model. 109
List of Figures

<table>
<thead>
<tr>
<th>Figure 1:</th>
<th>Least-squares means of total feed intake (g) by week for each of the five treatment groups.</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2:</td>
<td>Least-squares means of growth rate (g / day) for each of the five treatment groups.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3:</td>
<td>Least-squares means of red blood cells (RBC) x 10.e12 /L by week for each of the five dietary treatment groups.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4:</td>
<td>Least-squares means of haemoglobin (HGB) g / L by week for each of the five treatment groups.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 5:</td>
<td>Least-squares means of hematocrit (HCT) L / L by week for each of the five treatment groups.</td>
<td>53</td>
</tr>
<tr>
<td>Figure 6:</td>
<td>Least-squares means of mean cell volume (MCV) f L by week for each of the five treatment groups.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 7:</td>
<td>Least-squares means of mean cell haemoglobin (MCH) pg by week for each of the five treatment groups.</td>
<td>55</td>
</tr>
<tr>
<td>Figure 8:</td>
<td>Least Squares mean of red blood cell characteristic (volume and haemoglobin conc.) as a percentage of the total for each of the five treatment groups at the beginning of the trial.</td>
<td>61</td>
</tr>
<tr>
<td>Figure 9:</td>
<td>Least Squares mean of red blood cell characteristic (volume and haemoglobin conc.) as a percentage of the total for each of the five treatment groups at the end of the trial.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 10:</td>
<td>Least-squares means of serum iron values (µmol /L) by week for each of the five treatment groups.</td>
<td>63</td>
</tr>
</tbody>
</table>
Figure 11: Least-squares means of unsaturated iron binding capacity (UIBC) μmol/L by week for each of the five treatment groups.

Figure 12: Least-squares means of body haemoglobin Fe content (mg) by week for each of the treatment groups.

Figure 13: Least-squares means of white blood cell volume (μg/L) by week for each of the five treatment groups.

Figure 14: Least-squares means of feed intake (g) by week for each of the five treatment groups.

Figure 15: Least-squares means of growth rate (g/day) by week for each of the five treatment groups.

Figure 16: Least-squares means of red blood cells (RBC) x 10^12/L by week for each of the five dietary treatment groups.

Figure 17: Least-squares means of blood haemoglobin concentration (HGB) g/L by week for each of the five treatment groups.

Figure 18: Least-squares means of hematocrit (HCT) L/L by week for each of the five treatment groups.

Figure 19: Least-squares means of mean cell volume (MCV) fl by week for each of the five treatment groups.

Figure 20: Least-squares means of mean cell haemoglobin (MCH) pg by week for each of the five treatment groups.

Figure 21: Least Squares mean of red blood cell characteristic (volume and haemoglobin conc.) as a percentage of the total for each of the five treatment groups at the beginning of the trial.
Figure 22: Least Squares mean of red blood cell characteristic (volume and haemoglobin conc.) as a percentage of the total for each of the five treatment groups at the end of the trial.

Figure 23: Least-squares means of serum iron values (µmol /L) by week for each of the five treatment groups.

Figure 24: Least-squares means of body HGB Fe content (mg) by week for each of the treatment groups.

Figure 25: Least square means of white blood cell volume (ch) g / L by week for each of the five treatment groups.

Figure 26: Formation and destruction of red blood cells and recycling of the haemoglobin components.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>3</td>
</tr>
<tr>
<td>List of Tables</td>
<td>4</td>
</tr>
<tr>
<td>List of Figures</td>
<td>10</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>13</td>
</tr>
</tbody>
</table>

Chapter 1

1 Introduction

Chapter 2

2 Review of Literature
2.1 The physiological role of iron
2.2 Iron digestion
2.3 Iron absorption mechanisms
2.4 Iron absorption is related to iron status
2.5 Regulation of iron absorption
2.6 Vitamin C increases non-haem iron absorption
2.7 Effect of meat on iron bioavailability
2.8 The effect of heat processing of meat on iron availability
2.9 Measures of iron status
2.10 Using an animal model to study iron deficiency in the human
2.11 Summary

Chapter 3

3 Experiments 1 and 2
3.1 Introduction
3.2 Materials and methods
3.2.1 Animals
3.2.2 Housing
3.3 Experimental design
3.4 Diets and feed management
3.4.1 Diet
3.4.2 Feed management
3.5 Blood Samples
3.6 Data analysis

Chapter 4
4. Results experiment 1 45
4.1. Intake
4.2. Growth
4.3. Haematology
4.3.1 Red blood cells
4.3.2 Blood haemoglobin concentration
4.3.3 Hematocrit
4.3.4 Mean cell volume
4.3.5 Mean cell haemoglobin
4.3.6 Mean corpuscle haem concentration
4.2.1 Corpuscular haemoglobin constant
4.4 Red cell matrix
4.4.1 M1
4.4.2 M2
4.4.3 M3
4.4.4 M4
4.4.5 M5
4.4.6 M6
4.4.7 M7
4.4.8 M8
4.4.9 M9
4.5 Iron
4.5.1 Unsaturated iron binding capacity
4.6 Iron retention
4.7 White cells
4.7.1 Neutrophil
4.7.2 Lymphocytes
4.7.3 Monocyte
4.7.4 Eosinophil
4.7.5 Basophil
Chapter 5

5. Results experiment 2

5.1 Intake
5.2 Growth rate
5.3 Haematology
5.3.1 Red blood cells
5.3.2 Blood haemoglobin concentration
5.3.3 Hematocrit
5.3.4 Mean cell volume
5.3.5 Mean cell haemoglobin
5.3.6 Mean corpuscle haem concentration
5.3.7 Corpuscular haemoglobin constant
5.4 Red cell matrix
5.4.1 M1
5.4.2 M2
5.4.3 M3
5.4.4 M4
5.4.5 M5
5.4.6 M6
5.4.7 M7
5.4.8 M8
5.4.9 M9
5.5 Iron
5.6 Iron retention
5.7 White cells
5.7.1 Neutrophil
5.7.2 Lymphocytes
5.7.3 Monocyte
5.7.4 Eosinophil
5.7.5 Basophil

Chapter 6

6. Discussion
Chapter 7
7. The utilisation of findings 115

8. References 117

9. Appendices 123