Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SPARROWS, FLIES, AND RODENTS AS RESERVOIRS OF
CAMPYLOBACTER SPP. ON A DAIRY FARM

A thesis presented in partial fulfilment of the requirements for the
degree of Master of Veterinary Science in Veterinary Public Health
and Meat Hygiene
At Massey University, Palmerston North,
New Zealand.

BIJAY ADHIKARI
2003
ERRATA

This study investigated (rather than investigates)

a sample size of 52 was taken

collected (rather than calculated)

Campylobacter in italics

Table 2 should be Table 1.2

C. jejuni subsp _doylei_ should be _hippurate V_

C. nitrofigillus should be catalase +, nitrate + and _hippurate_

C. upsaliensis should be catalase W

detection (rather than isolation)

contaminated (rather than contamination)

calves (rather than cattle)

remove since from the sentence beginning “Since sheep and goats…”

40-fold (rather than 40 times)

remove “(Fig 2.8)”

A 30μg nalidixic acid (NA30) and a 30μg cephalothin (C30) antibiotic disc

remove “and Table 3.2”

Campylobacter jejuni isolates were then classified into patterns A to V on

the basis of a one or more band difference.

shows (rather than showing)

Letters (rather than Alphabetes…)

C. jejuni in italics

proportion (rather than percentage)

there was a presence of _Campylobacter jejuni_ in some milking cows at

Massey No. 4 dairy farm over a 24 month period.

revision of conclusions as below:

Campylobacter jejuni has been isolated from most animal species worldwide. Despite its importance as a human and animal pathogen, relatively little is understood of the mechanisms of _C. jejuni_-associated disease in animals and humans.

This study suggested that dairy cows, rodents, sparrows and flies could be potential reservoirs of _Campylobacter_ on a dairy farm. The PFGE analysis of _C. jejuni_ isolates from the dairy farm showed a high degree of diversity of the organisms within a limited geographical area. Isolates with common restriction patterns (identical clones) infecting cattle, sparrows, flies and rodents suggested a common source of infection.

The high prevalence of asymptomatic carriage of _C. jejuni_ found in cows could be sufficient to maintain infections within the dairy farm ecology via environmental contamination. The number of campylobacters shed by cattle defaecating 25 kg of fresh faeces per animal per day (Matsuzaki, 1975) would exceed that shed by sparrows or rodents, and as such cattle would be expected to constitute a more significant source of environmental contamination. To determine the most likely and significant routes of transmission, further studies of the epidemiology of _Campylobacter_ in the farm ecology are needed.
This thesis is dedicated to my beloved parents
Shree Chiranjibi Adhikari
&
Tulasa D. Adhikari
ACKNOWLEDGEMENTS

This thesis is the result of two years of work during which I have been assisted and supported by many people.

The first person I would like to thank is my chief supervisor Joanne Connolly, who has been a sympathetic, and principle-centred person. Her enthusiasm, professional view on research and her mission for providing only high-quality guidance have made a deep impression on me. I owe her lots of gratitude for having helped me over the many hurdles of scientific research.

I would like to thank my supervisor Per Madie for his help and guidance throughout my studies, for keeping a watchful eye on the progress of my work and for always being available when I needed his advise. His role as a former chief supervisor was remarkable and noteworthy. I would also like to thank my other supervisor Professor Peter Davies who observed my work closely and provided me with valuable comments and inputs. His efforts and keenness on my research work was significant.

I would like to specially thank Professor Hugh Blair for his overall support of my study and particular support of my family during the study period. The completion of this thesis is also due to the support and advise provided by Allain Scott in matters of academic complexities and many practical difficulties. I am thankful to Cord Hugh and Nigel Perkin for their help and guidance during the study period.

Thanks are also due to Megan Leyland and Lynn Rogers for their help during the microbiological work, Jan Schrama for supplying media when required and Peter Wildbore for his administrative role.

I am also grateful to the farm manager Gareth Evans, No.4 Dairy Unit for giving permission to conduct research on the farm and to other farm staff for their cheerful assistance.
I would like to extend my gratitude to the Joint Japan World Bank Graduate Scholarship Program for providing financial support to carry out the masterate program at the Institute of Veterinary, Animal and Biomedical Sciences, Massey University.

I want to acknowledge the Institute of Veterinary, Animal and Biomedical Sciences, Massey University for giving me admission to the MVSc course, permission to do the necessary research work and to use departmental resources. The research has been supported and partly funded by Phil Journeaux, from Ministry of Agriculture and Forestry (MAF), New Zealand. I thank him for his confidence in the project and my work.

I feel a deep sense of gratitude to my father and mother who formed part of my foresight, taught me the good things that really matter in life and always provide inspiration for my journey through life. I am grateful to my three brothers Jay Ram, Bhim and Achyut for rendering me the sense and the value of brotherhood. I am glad to be their brother. I also would like to extend sincere thanks to all my relatives.

Additional energy and vitality for this research was provided externally through my involvement in several social activities. I would like to say big thank to Soloman Ramabu and Tara Pande for their help and to all friends for direct and indirect support.

Specially, I would like to give special thanks to my wife Bijaya (Biju) whose support and patient love greatly facilitated the completion of this work. Very special thanks to our lovely son Brishank for his patience and for coping with me in every challenging situation during the study. One of the best experiences that we lived through in this period was the birth of our second son Barnan Adhikari who provided an additional and joyful dimension to our life mission.

My chain of gratitude would be incomplete if I were to forget to acknowledge the first cause of this chain, the Lord Shree Pashupatinath.
ABSTRACT

The reported numbers of human *Campylobacter jejuni* infections have increased considerably in many countries during the last few years. In New Zealand, the current annual incidence rate (302.5 cases/100 000) of human campylobacteriosis is higher than that of any other notifiable disease, and surpasses the incidence of campylobacteriosis reported by other developed countries. Although *Campylobacter jejuni* has been isolated from poultry at high prevalence rates worldwide, poultry are probably not the only important source of human campylobacteriosis as it is well documented that many other animal species (sheep, pigs, cattle and free-living birds and mammals) can be carriers of zoonotic campylobacters. The high incidence of the disease in people could be related to the consumption of poorly cooked meat, drinking contaminated water, overseas travel and animal contact.

This study investigates the potential role of free-living animals (sparrows, rodents and flies) as potential reservoirs of *Campylobacter* spp. and was carried out at Massey University No. 4 dairy farm. We isolated *Campylobacter* from the faeces of cattle and from other samples, and used pulsed-field gel electrophoresis (PFGE) typing of the organisms to determine the similarity between isolates. This study also includes a comparision of the prevalence and genetic diversity of *Campylobacter* isolated from sparrow populations on the farm and from an urban environment.

Based on the results of a previous study on the same farm, sample size of 52 were taken for the dairy cows in order to obtain results at the 90% confidence level within 10% accuracy. Faecal samples from 53 farm sparrows, 65 rodents and 56 flies were calculated and examined for the presence of thermophilic *Campylobacter* spp. Faecal samples were also collected from 53 urban sparrows from “The Square” in the central urban area of Palmerston North city about 7 km from the dairy farm. A convenient number of samples of five of grass silage and two from each of water, worker’s boots and aprons were collected with the aim to determine the presence of campylobacters in these samples.
All samples were collected between the 5th April 2002 and 25th May 2002. Random samples of rectal contents from 52 Friesian dairy cows were collected during milking time. Rodents were trapped in the feed storage premises approximately 15m from the milking shed using standard spring loaded, baited traps. Flies were captured around the milking shed using standard fly-traps. Bird samples were collected from an 8×10 feet tarpaulin placed on the ground under a tree where sparrows were roosting about 50m from the milking shed. Feed was provided to attract the birds. The same method was used to collect sparrow droppings in the urban area about 7 km from the farm.

Campylobacter jejuni was the only *Campylobacter* species isolated from the 290 samples collected at the dairy farm and from sparrows in the urban area. The highest isolation rate was found in dairy cows (54%), followed by urban sparrows (40%), farm sparrows (38%), rodents (11%) and flies (9%). Other samples from the farm environment such as grass silage, water, worker’s apron and boots were also found to be positive for *C. jejuni*. Most of the rodents caught during the study period were mice. The high isolation rate in this study of *Campylobacter* from dairy cows (54%) and sparrows (40%) supports the notation that these species are important reservoirs of infection. Overall the results of the present and previous study show that at least some dairy cows from the same farm can be asymptomatic carriers (intermittent or persistent) of *Campylobacter jejuni* for at least 24 months.

Molecular characterisation of genomic DNA from 61 *C. jejuni* isolates from farm and urban sources obtained during the study was performed by PFGE after digestion with the enzyme *Sma* I. Of the 22 restriction patterns obtained seven were common to more than one source. The PFGE typing yielded seven, six, nine, six and three restriction patterns from dairy cows, farm sparrows, urban sparrows, rodents and flies respectively. PFGE analysis of the *C. jejuni* isolates shows a high degree of diversity of the organisms within a limited geographical area. But the finding of some common restriction patterns provides evidence of identical clones infecting cattle, sparrows, flies and rodents.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THESIS DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER ONE: LITERATURE REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Historical review</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1 Taxonomy</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Morphology</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Microbiology of Campylobacter</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Isolation</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 Identification</td>
<td>16</td>
</tr>
<tr>
<td>1.3.2.1 Phenotypic methods</td>
<td>18</td>
</tr>
<tr>
<td>1.3.2.1.1 Biotyping</td>
<td>18</td>
</tr>
<tr>
<td>1.3.2.1.1.1 Hippurate hydrolysis test</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2.1.1.2 Catalase test</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2.1.2 Phage typing</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2.1.3 Serotyping</td>
<td>20</td>
</tr>
<tr>
<td>1.3.2.2 General genetic techniques</td>
<td>21</td>
</tr>
<tr>
<td>1.3.2.2.1 Plasmid analysis</td>
<td>21</td>
</tr>
<tr>
<td>1.3.2.2.2 Restriction endonuclease analysis</td>
<td>22</td>
</tr>
</tbody>
</table>
1.4 Epidemiology of *Campylobacter*. ..29
 1.4.1 Human campylobacteriosis ..30
 1.4.2 Cattle ..32
 1.4.3 Milk ..35
 1.4.4 Water ..37
 1.4.5 Deer ..37
 1.4.6 Sheep and Goats ...38
 1.4.7 Pigs ..39
 1.4.8 Poultry ...40
 1.4.9 Dogs and Cats ...42
 1.4.10 Rabbits ...44
 1.4.11 Monkeys ...44
 1.4.12 Wild birds ...45
 1.4.13 Rodents ...46
 1.4.14 Flies ..48

1.5 Aims and objectives ..49

CHAPTER TWO: MATERIALS AND METHODS50

2.1 Project sites ..50
 2.1.1 No.4 Dairy Farm, Massey University50
 2.1.2 The Square, Palmerston North ..51
2.2 Specimen collection

2.2.1 Dairy cows

2.2.2 Sparrows

2.2.3 Rodents

2.2.4 Flies

2.2.5 Other animals

2.2.6 Other samples

2.3 Culture and identification of campylobacters

2.3.1 Culture of campylobacters

2.3.2 Identification of campylobacters

2.3.2.1 Presumptive identification of campylobacters

2.3.2.1.1 Gram stain

2.3.2.1.2 Oxidase test

2.3.2.1.3 Catalase activity

2.3.2.2 Confirmative identification of campylobacters

2.3.2.2.1 Nitrate reduction test

2.3.2.2.2 Sensitivity to antibiotics

2.3.2.2.3 Hippurate hydrolysis test

2.4 Storage of isolates

2.5 Pulsed-field gel electrophoresis of Campylobacter

2.5.1 Plug preparation – day 1

2.5.2 Plug washing – day 2

2.5.3 Restriction endonuclease digestion with Sma I – day 3

2.5.4 Gel running for pulsed-field gel electrophoresis – day 4

2.5.5 Staining and photographing the gel – day 5
CHAPTER THREE: RESULTS ...67
3.1 Isolation of Campylobacter spp from dairy cows, sparrows,
rodents and flies ..67
3.2 Isolation of Campylobacter spp from urban sparrows 69
3.3 Descriptive statistics study ...69
 3.3.1 Prevalence ...69
 3.3.1.1 Prevalence of C. jejuni in dairy cows, sparrows, rodents
 and flies on the farm ...69
 3.3.1.2 Prevalence of C. jejuni in farm and urban sparrows70
 3.3.2 Confidence intervals ..71
3.4 Pulsed-field gel electrophoresis ...73
 3.4.1 Pulsed-field gel electrophoresis on C. jejuni isolates 73
 3.4.2 Analysis of common restriction patterns of C. jejuni isolates from
 different sources ...79
 3.4.3 On-farm comparisons of PFGE profiles of C. jejuni over time82

CHAPTER FOUR: DISCUSSION / CONCLUSION84
DISCUSSION ..84
CONCLUSION ..89
APPENDIX I Preparation of Bolton’s broth91
APPENDIX II Preparation of mCCDA ..92
APPENDIX III Gram stain ..93
APPENDIX IV Preparation of blood agar74
APPENDIX V Preparation of nitrate broth (reagent)95
APPENDIX VI Preparation of ninhydrin reagent96
APPENDIX VII Preparation of agarose and buffers97
REFERENCES ..100
LIST OF TABLES

Chapter 1

1.1 Isolation rates of Campylobacter spp from diarrhoea specimens from children under five years of age in selected developing countries 4

1.2 Differential characteristics of the species of the genus Campylobacter 17

Chapter 2

2.1 Gel running parameters .. 65

Chapter 3

3.1 Campylobacter spp. isolation from farm and urban sources
(5 April 2002 to 25 May 2002) .. 68

3.2 Comparision of Campylobacter carriage by cows sampled in the present study and in the study by Wu (2002) ... 69

3.3 Calculation of 95% confidence intervals for the prevalence of C. jejuni in different populations ... 72

3.4 PFGE restriction patterns and the subtype diversity index of C. jejuni from different sources ... 76

3.5 Percentage C. jejuni from different sources having PFGE patterns indistinguishable from cattle ... 79

3.6 Indistinguishable PFGE patterns of C. jejuni isolates in the present study and the study by Wu (2001) on the same farm and their sources 83
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Illustration of the processes of polymerase chain reaction</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Site location of each section at No. 4 dairy farm, Massey University</td>
<td>51</td>
</tr>
<tr>
<td>2.2 The Square study site, Palmerston North city</td>
<td>52</td>
</tr>
<tr>
<td>2.3 Thirty-six-bale rotary milking shed at No. 4 dairy, Massey University</td>
<td>53</td>
</tr>
<tr>
<td>2.4A Sample collection technique used for sparrows in the Massey No. 4 dairy farm</td>
<td>54</td>
</tr>
<tr>
<td>2.4B Sample collection techniques used for sparrows in the city</td>
<td>54</td>
</tr>
<tr>
<td>2.5 Rodents trapped in standard spring-loaded rat trap</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Silage used as supplementary feed on No. 4 dairy farm during the time of grass scarcity</td>
<td>56</td>
</tr>
<tr>
<td>2.7 Drinking water trough in a paddock in No. 4 dairy farm</td>
<td>57</td>
</tr>
<tr>
<td>2.8 Flow diagram of procedures for Campylobacter spp isolation, identification and storage</td>
<td>58</td>
</tr>
<tr>
<td>2.9A C. jejuni colonial morphology on selective mCCDA</td>
<td>59</td>
</tr>
<tr>
<td>2.9B C. jejuni colonial morphology on non-selective blood agar</td>
<td>59</td>
</tr>
<tr>
<td>2.10 A colour change from yellow to pink/red indicates the organism reduces nitrates to nitrites</td>
<td>60</td>
</tr>
<tr>
<td>2.11 Antibiotic sensitivity test using nalidixic acid disc (NA30) and cephalothin disc (C30) in blood agar</td>
<td>61</td>
</tr>
<tr>
<td>2.12 A deep purple, crystal violet-like colour indicates the presence of glycine from the hydrolysis of hippurate by C. jejuni</td>
<td>62</td>
</tr>
</tbody>
</table>
Chapter 3

3.1 Prevalence of *C. jejuni* in farm sources .. 67
3.2 Prevalence of *C. jejuni* in urban and farm sparrows .. 70
3.3 *Sma* I pulsed-field gel electrophoresis (PFGE) restriction patterns of 22 isolates of *C. jejuni* genomic DNA ... 73
3.4 *Sma* I PFGE restriction patterns of 25 isolates of *C. jejuni* genomic DNA 74
3.5 *Sma* I PFGE restriction patterns of 20 isolates of *C. jejuni* genomic DNA 75
3.6 Dendrogram of similarity between 61 *C. jejuni* PFGE patterns 80
3.7 Dendrogram of similarity between PFGE patterns of 47 *C. jejuni* genomic DNA determined by the UPGMA cluster analysis diversity database 82
3.8 Dendrogram comparing PFGE restriction patterns of *C. jejuni* genomic DNA in the present study and an earlier study on the same farm (Wu, 2001) 83

Chapter 4

4.1 Potential transmission routes of *Campylobacter* .. 86
BHI: Brain heart infusion
BRENDA: Bacterial restriction endonuclease DNA analysis
BS: Butzler selective
BU: Butzler
Campy-BAP: Campy brucella agar
CBFS: Campylobacter blood-free selective
CCD: Charcoal-cefazolin-sodium deoxycholate
CS: Charcoal-based selective
CVA: Campylobacter-cefoperazone-vancomycin-amphotericin
EDTA: Ethylenediamine tetra-acetic acid
GB: Guillain-Barré
Kb: Kilobase
Mb: Megabase
MBU: Modified Butzler
mCCD: modified charcoal-cefoperazone-deoxycholate
mCCDA: modified charcoal-cefoperazone-deoxycholate agar
MF: Miller-Fisher
MPN: Most probable number
MQ: Milli – Q
NARTC: Nalidixic-acid-resistant thermophilic Campylobacter
OD: Optical density
PR: Preston
REA: Restriction endonuclease analysis
rpm: Revolutions per minute
SK: Skirrow
TBE: Tris-Borate-EDTA
TE: Tris-EDTA
WHO: World Health Organisation