Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ALLEVIATION OF THE DISTRESS CAUSED BY
RING CASTRATION PLUS TAILING OF LAMBS
AND DEHORNING OF CALVES.

A thesis presented in partial
fulfilment of the requirements
for the degree of
MASTER OF SCIENCE
in Physiology at
Massey University

Mhàiri Anne Sutherland
March 1999
Acknowledgements

This thesis was made possible thanks to the contribution of time, knowledge and support of many people all of whom I grateful to.

Professor David Mellor, Associate Professor Kevin Stafford and Professor Neville Gregory who as my supervisors provided me with guidance, experience and knowledge throughout my thesis.

Dr. Robert Bruce for his practical guidance during my trials and for his interesting conversations with Associate Professor Kevin Stafford which kept us all entertained.

Neil Ward for his help and experience prior to and throughout all the stages of the trial work. Also Brett Guthrie and Noel Rutherford for their help with the trial work.

Kerry Kilmister, manager of Massey University Keebles farm and Massey University Dairy No. 4, for supplying enough lambs and calves and for the use of their facilities.

Cheryl McMeekan for her hours of helpful discussions and advice pertaining to the calf component of my thesis and help throughout all my trials.

Special thanks to all the postgraduates Wei-hang Chua, Nadine Gibbs, Kate Littin, Rebecca Osborne, Jo Robins, Chris Rogers, David Simcock, Mark Simpson, David Thomas, Sarah Todd, and Erica Wesselin for their help during my trials and for encouragement and advice throughout my thesis.

Ministry of Agriculture (MAF Policy) who financed this study, and provided me with a much appreciated student stipend.
And finally to friends and family for their constant support and encouragement throughout my thesis and to Scott and his beloved Noodles for their tolerance.
Prior approval was obtained (from the Massey University Animal Ethics Committee) to conduct all experiments described in this thesis.
Abstract

There is increasing social and economic pressure to improve the welfare of animals in our care. In the present study plasma cortisol concentrations were measured to assess the pain-induced distress caused by ring castration plus tailing in lambs and dehorning in calves and the extent to which the distress caused by these procedures can be reduced by using different alleviation strategies.

Local anaesthetic injected into the neck of the scrotum just before ring application significantly reduced the cortisol response to ring castration plus tailing in lambs, but local anaesthetic injected into the testes just after ring application only marginally reduced this response. A castration clamp was applied across the full width of the scrotum of lambs for 6 or 10 seconds after ring castration plus tailing to disable the innervation from the scrotal area. The application of the castration clamp for 6 seconds after placement of the ring did not reduce the cortisol response to ring castration plus tailing, whereas application for 10 seconds slightly, but significantly, reduced the peak cortisol concentration. Healing of the castration wound was not complicated by the application of the castration clamp after ring castration plus tailing. Therefore injecting local anaesthetic into the neck of the scrotum just before ring castration plus tailing significantly alleviates the pain-induced distress associated with ring castration plus tailing, but applying the castration clamp in combination with ring castration plus tailing has little benefit.

Local anaesthetic given prior to dehorning virtually abolishes the cortisol response to dehorning for the duration of action of the local anaesthetic, but once the local anaesthetic wears off cortisol concentrations increase resulting in a delayed cortisol response equivalent to the overall cortisol response to dehorning when local anaesthetic is not used. This delayed cortisol response is thought to be stimulated by inflammation-related pain. The non-steroidal anti-inflammatory drugs (NSAIDs) ketoprofen and phenylbutazone and an endogenous cortisol surge stimulated by injecting ACTH were used to assess
whether this delayed cortisol response is associated with inflammation-related pain. Local anaesthetic (5 hour duration of action) plus ketoprofen given prior to scoop dehorning marginally reduced the delayed cortisol response observed once the local anaesthetic wore off, but giving local anaesthetic and phenylbutazone prior to dehorning had no significant effect on this delayed cortisol response. The antinociceptive action and a greater anti-inflammatory potency of ketoprofen compared to phenylbutazone may explain why ketoprofen was more effective than phenylbutazone in reducing this delayed cortisol response. ACTH plus local anaesthetic given prior to dehorning only marginally reduced the delayed cortisol response observed once the local anaesthetic wore off, suggesting that the delayed cortisol response seen when the local anaesthetic wears off is not due primarily to inflammation-related pain.

Giving local anaesthetic prior to dehorning and cauterising the amputation wounds prevented the delayed cortisol response after the local anaesthetic wore off and significantly reduced the overall cortisol response to dehorning.

Thus, in the present study long acting local anaesthetic (5 hour duration of action) in combination with NSAIDs had minimal alleviating effects on the pain-induced distress caused by dehorning compared to local anaesthetic alone, but local anaesthetic and cauter provided effective pain-relief.
Table of Contents

Acknowledgements ..ii
Abstract ...v
Table of Contents ..vii
List of Figures ..ix
List of Tables ...xii

CHAPTER ONE: General Introduction ..1

1.1 Animal Welfare ...2
1.2 Physiology of noxious input ..4
 1.2.1 Consequences of tissue damage as a result of different husbandry procedures8
1.3 Assessment of Distress ...11
 1.3.1 Physiological indices of distress ..11
 1.3.2 Behavioural indices of distress ...14
1.4 Outline of Thesis ..15

CHAPTER TWO: Alleviation of the Distress Caused by Ring Castration and
Tailing of Lambs ...16

2.1 Chapter Summary ..16
2.2 Introduction ...16
 2.2.1 Distress ...17
 2.2.2 Different methods of castration and tail docking ...20
 2.2.3 Aims of this study ...25
2.3 Materials and Methods ...28
 2.3.1 Animals ...28
 2.3.2 Blood sampling ..29
 2.3.3 Treatments ..32
 2.3.4 Plasma cortisol assay ..34
 2.3.5 Integrated cortisol responses ...34
 2.3.6 Statistical analysis ...38
2.4 Results ...38
2.5 Discussion ..50
List of Figures

Figure 1.1: Innervation of the lamb scrotum and testes and the sites and volumes of local anaesthetic injected. ... 6

Figure 1.2: Innervation of the calf horn and the site and volume of local anaesthetic injected. ... 7

Figure 2.1: Pen layout during trials to separate lambs from their mothers... 35

Figure 2.2: Elastrator and rings.. 36

Fig. 2.3: Ring castration and method of holding lambs for treatment........ 36

Fig. 2.4: Castration clamp. .. 37

Fig. 2.5: Application of the castration clamp following ring castration. 37

Fig. 2.6: Relationship between plasma cortisol concentration and the order in which the pretreatment blood samples were taken (A – study 1; B – study 2). ... 39

Fig. 2.7: Changes in plasma cortisol concentration in lambs in response to control handling, the administration of local anaesthetic, and ring castration plus tailing.. 42

Fig. 2.8: Changes in plasma cortisol concentration in lambs in response to ring castration plus tailing and injection of local anaesthetic into the scrotal neck immediately before ring castration plus tailing................................. 43

Fig. 2.9: Changes in plasma cortisol concentration in lambs in response to ring castration plus tailing and injection of local anaesthetic into each testis immediately after ring castration plus tailing.. 43

Fig. 2.10: Changes in plasma cortisol concentration in lambs in response to injection of ACTH and to ring castration plus tailing. 44

Fig. 2.11: Changes in plasma cortisol concentration in lambs in response to ring castration plus tailing and rRing castration plus tailing and clamp 6 seconds.. ... 45

Fig. 2.12: Changes in plasma cortisol concentration in lambs in response to ring castration plus tailing and ring castration plus tailing and clamp 10 seconds. ... 45
Fig. 2.13: Change in healing score of castration wounds in lambs in response to ring castration plus tailing and ring castration plus tailing and clamp over 6 weeks. ...46

Fig. 2.14: Healing of scrotal wounds: (A) scrotum lost, but lesion is not completely healed (0.0); (B) lesion is completely healed (H).47

Fig. 3.1: Pen layout during trials...72

Fig. 3.2: Scoop dehorner...73

Fig. 3.3: Horn amputation using the scoop..73

Fig. 3.4: Injection of local anaesthetic...74

Fig. 3.5: Cauterising iron ...74

Fig. 3.6: Relationship between plasma cortisol concentration and the order in which the pretreatment blood samples were taken........79

Fig. 3.7: Changes in plasma cortisol concentration in calves in response to control handling, local anaesthetic administration, NSAIDs administration, and ACTH administration..86

Fig. 3.8: Changes in plasma cortisol concentration in calves in response to control handling, dehorning and local anaesthetic plus dehorning.87

Fig. 3.9: Changes in plasma cortisol concentration in calves in response to dehorning, local anaesthetic plus dehorning, local anaesthetic plus ketoprofen and dehorning, and local anaesthetic plus ketoprofen...........88

Fig. 3.10: Changes in plasma cortisol concentration in calves in response to dehorning, local anaesthetic plus dehorning, local anaesthetic plus phenylbutazone, and local anaesthetic plus phenylbutazone and dehorning ..89

Fig. 3.11: Changes in plasma cortisol concentration in calves in response to local anaesthetic plus ACTH, local anaesthetic plus dehorning, and local anaesthetic plus ACTH and dehorning.................................90

Fig. 3.12: Changes in plasma cortisol concentration in calves in response to local anaesthetic plus ACTH, local anaesthetic plus ACTH and dehorning, and ACTH (t=0) plus ACTH at 6 hours ..91

Fig. 3.13: Changes in plasma cortisol concentration in calves in response to dehorning and ACTH (t=0) plus dehorning at 6 hours.92
Fig. 3.14: Changes in plasma cortisol concentrations in calves in response to local anaesthetic plus dehorning, local anaesthetic plus ketoprofen and dehorning, and local anaesthetic plus ACTH and dehorning.

Fig. 3.15: Changes in plasma cortisol concentration in calves in response to dehorning, local anaesthetic plus dehorning and injection of local anaesthetic plus dehorning and cautery.
List of Tables

Table 2.1: Different castration and tail docking methods in lambs, and how they are conducted. ... 27
Table 2.2: Pretreatment (t=0) cortisol concentrations (mean ± SEM) in lambs and the mean (± SEM) integrated cortisol response 30
Table 2.3: Injury/ healing scale for lamb scrotums after ring castration and ring and clamp castration... 31
Table 2.4: The total number of lambs in each week of observation after castration. .. 48
Table 3.1: Description of different methods of dehorning and disbudding in calves... 69
Table 3.2: Pretreatment (t=-30 min) cortisol concentrations (mean ± SEM) in calves ... 80
Table 3.3: The mean (± SEM) integrated cortisol response of each group over the trial period of 24 hours .. 96