Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
INFLUENCES ON VARIATION IN FERTILITY OF SOWS

by

SUWICHA KASEMSUWAN

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Philosophy

Massey University

1996
Abstract

This thesis presents the results from a series of studies related to factors influencing fertility of sows in New Zealand. The conclusion from an analysis of longitudinal pig reproductive performance data is that summer-autumn infertility was not a significant problem on the farms included in this study during the time period investigated. In New Zealand there are probably certain specific conditions when seasonal infertility does become a problem for a particular pig herd, and this may be more evident on farms in the South Island which are using a group housing husbandry system for their sows. The intervention trials into increased dry sow ration in newly mated sows and of the management technique of split weaning both failed to demonstrate these techniques improved reproductive performance. Economic simulation modelling suggests that while there does not seem to be an overall benefit from the increased dry sow feed intake, it would yield an economic benefit on some farms. Possible explanations for this are discussed in this thesis. The investigation into the usefulness of ultrasound scanning for determining early pregnancy status in sows demonstrated the effectiveness of this diagnostic technique in detecting pregnancy, but did not show a level of loss of early pregnancies sufficient to justify more intensive investigation of embryonic mortality. Cull sows sent to slaughter were examined for their pregnancy status and any pathological changes. A large proportion of these animals showed endometritis and urinary tract pathology, indicating that both of these conditions were more common in the cooperating herds than had been suggested by earlier clinical evidence.
Acknowledgments

I have been part of the epidemiology group since February, 1994. When I first arrived, it was like being thrown in a big deep hole but when I needed help I was given a ladder or sometimes a lift to climb up to the light at the top. Looking back, the hole is not so big or deep anymore, and the world is smaller than it was. I am particularly grateful to my supervisor, Professor Roger Morris for giving me an opportunity to study at Massey University. He gave me invaluable assistance, I could rely on him for help when I needed it and I was encouraged by his optimism and willingness to tackle and solve problems. Thanks also go to Professor Norm Williamson, my other supervisor, for his valuable suggestions when questions have arisen. I thank Dr. Dirk Pfeiffer for helping me to understand many methods of analysis and for encouraging me to try more procedures and learn more and his advice that “even if it doesn’t work, at least you will have learnt something”.

I gratefully acknowledge my ajarn (super-teacher - in Thai), Dr. Ron Jackson, for his excellent supervision, understanding, warm encouragement, constructive criticism, and endless patience in discussions and correction of my English. His enjoyable way of life is to be recommended.

I would also like to thank other members of the epidemiology group; to Robyn O’Connor, who is backbone of the group with her ‘any questions’ queries, to Todd Cochrane for helping me with computer work, to Mrs. Fiona Dickinson for her help in so many things, to Barb Frey for her useful information, to Vanessa for helping in field work, and to Dr. Sirichai Wongnarkpet for getting me started.

I owe thanks to Dr. Selwyn Dobbinson for his helping to find cooperative farms and sharing his field work experience, to Dr. Nigel Perkins for his support with ultrasound scanning examinations, to Associate Professor Maurice Alley for his instruction in histopathology, to Pam Slack and Pat Davey for tissue preparations, to Dr. Joanne Meers for her help with ELISA, and to farmers for their help with data collection.

I would also like to thank the New Zealand Government - my sponsor through the New Zealand Official Development Assistance Programme, and staff and friends at Kasetsart University in Thailand for their support and doing my work while I was away.

A very special thanks go to my parents for their love and endless support, and to my best friend, Patamaporn, for her encouragement.
Table of Contents

ABSTRACT ... I

ACKNOWLEDGMENTS .. II

TABLE OF CONTENTS ... III

LIST OF TABLES .. XII

LIST OF FIGURES ... XX

CHAPTER 1: INTRODUCTION .. 2

CHAPTER 2: SEASONAL VARIATION IN REPRODUCTIVE PERFORMANCE OF COMMERCIAL HERDS .. 4

LITERATURE REVIEW ... 4

Seasonal infertility - the disorder and its causes .. 4

Seasonal infertility on boars ... 6

Causes of seasonal infertility ... 7

Photoperiod and seasonal infertility (SI) .. 7

High light intensity and neural pathways ... 7

Melatonin ... 8

The effects of duration of light periods on fertility ... 9

Onset of puberty ... 10

Photoperiod and boar fertility .. 10

Supplementary light ... 11

Heat and SI .. 12

Cooling mechanisms ... 13

Heat stress and reproductive efficiency ... 15

Heat stress and embryonic and foetal survival .. 16

Heat stress and oestrus .. 17

Summary ... 19

Effects of housing on SI .. 19

Stress and SI ... 21
Season of year and the hormonal system .. 22
 Luteinizing hormone (LH) .. 24
 Adrenocorticotropin hormone (ACTH) ... 25
 Progestagens ... 26
 Prolactin ... 27
 Progesterone ... 27
Nutrition and SI .. 28
 Vitamin C .. 30
 Stress, phyto-oestrogens and mycotoxins .. 30
The boar and SI ... 31
 Libido .. 32
Conclusion .. 33
Strategies which have been recommended to reduce stress responses 33
FIELD STUDY .. 35
 Introduction .. 35
 Materials and methods .. 35
 Criteria used to designate summer/autumn infertility 37
Analytical confirmation of PY and NPY status .. 42
 Unit of analysis .. 42
 Statistical analysis .. 42
 Graphical presentation .. 43
Results .. 44
Associations between indices of reproductive performance, seasons of the year and summer/autumn infertility ... 44
 Explanation of summer/autumn infertility .. 44
 Explanation of farrowing rates ... 44
 Comparisons of production indices between problem and non-problem herds for whole years and summer-autumn seasons, and for all herds between summer-autumn and winter-spring .. 45
Associations between weaning to first service interval and non-productive sow days per parity (NPD/parity), season of the year and summer/autumn infertility farm-year status ... 53
Introduction ... 53
Non-productive sow days per parity (NPD/parity) ... 56
Comparisons of the total number of pigs born, number of pigs born alive, number of stillborn and mummies for litters in problem and non-problem farms overall, and in summer-autumn and winter-spring ... 58
Total number of pigs born and number of pigs born alive per litter 58
Stillborn and mummies .. 61
Number of stillborn piglets .. 61
Mummies .. 61
DISCUSSION .. 63

CHAPTER 3: NUTRITIONAL INFLUENCES ON SEASONAL VARIATION IN FERTILITY .. 66

LITERATURE REVIEW .. 66

Introduction .. 66
Excessive feed intake .. 67
Undernutrition ... 67
Weight gain during gestation .. 68
Energy .. 70
Maintenance energy .. 70
Total energy requirements in pregnant sows .. 71
Early pregnancy energy requirements .. 73
High energy feed: detrimental effects .. 73
High energy feed: advantageous effects ... 74
Mid-pregnancy energy requirements ... 74
Late pregnancy energy requirements .. 75
Fat supplementation .. 76
Protein requirements .. 77
Amino acid requirements .. 79
Environment .. 81
Ambient Temperature .. 81
Housing... 82
Backfat ... 83
Feed levels... 85
Effects of nutrition on hormone levels.............................. 88
Summary of literature review ... 90

DRY SOW FEEDING TRIAL.. 93

Introduction... 93

Materials and methods.. 93
Sample size ... 93
Selection of farms... 93
Methods... 93
 Housing system ... 93
 Timing of studies ... 94
 Levels of feed ... 94
Data collection.. 95
Unit of analysis.. 95
Statistical analysis... 96

Results... 96
 Adjusted non-productive sow days (Adjusted NPD)........... 98
 Total pigs born ... 101
 Pigs born alive ... 105
 Stillborn ... 109
 Mummies .. 113
 Breeding performance.. 118
 Farrowing rate ... 137
 Housing .. 140
 Relationship between farrowing rates and potential risk factors .. 141

Discussion... 144

A COMPARISON OF DIFFERENT APPROACHES TO SUMMER AUTUMN INFERTILITY PREVENTION USING ECONOMIC SIMULATION MODELING .. 147
CHAPTER 4: DISORDERS OF THE REPRODUCTIVE TRACT IN CULLED SOWS

INTRODUCTION ... 171

LITERATURE REVIEW .. 172

Gross anatomy .. 172

Ovaries .. 172

Oviduct .. 173

Uterus ... 173

Cervix ... 173

Vagina ... 173

Vulva ... 173

Histology .. 173

Histology of the vagina .. 175

Histology of the endometrium .. 178

Pregnancy - (embryonic and foetal development) 179

Ovarian pathology ... 180

Acyclic Ovaries ... 180

Cystic Ovaries ... 181

Multiple large ovarian cysts .. 181

Multiple small ovarian cysts ... 182

Single ovarian cysts .. 182

Uterine pathology .. 182

Congenital and inherited abnormalities 182

Tubal abnormalities .. 183

Cystic endometrium .. 183

Metritis .. 183
Slaughtercheck findings... 183
Pseudorabies (Prv) endometritis.. 185
Staphylococcal endometritis.. 185
Vulvovaginitis from zearalenone toxicity....................................... 186
Vulva/vaginal discharge... 186
Urinary tract infections... 188
Eubacterium suis.. 188
Characteristic of the organism... 189
Transmission.. 192
Clinical signs.. 192
Risk factors... 193
Diagnosis... 194
Pathology... 195
Treatment.. 196
Prevention.. 199
Slaughtercheck findings ... 201
Ovary... 201
Oviduct... 202
Uterus.. 202
Season of year.. 202
Culling pattern... 203
Culling policies.. 206
Farrowing index... 208
Achieving high productivity... 209
Conclusion from literature review.. 211

PHYSIOLOGICAL AND PATHOLOGICAL STUDY OF CULL SOWS/GILTS AT SLAUGHTER....212

Materials and methods... 212
Gross examination... 212
Bacteriology... 212
Histopathology... 213
Classifications used for analytical and descriptive purposes 213
Results...214
Culling patterns, reasons for culling and gross and histopathological findings..............214
Culling and stage of oestrous cycle ...215
Phase of oestrous cycle ..215
Reasons for culling ...215
Reproductive failure ...216
Gross examination of the reproductive tract ...216
Normal...217
Grossly detectable conditions other than reproductive disorders217
Normal...217
Agreement between farmer reasons for culling and findings from gross examinations218
Culling and parity ..219
Culling and reproductive tract disorders ..220
Conditions other than reproductive tract disorders ..220
Size of reproductive organs ...222
Endometritis..226
DISCUSSION...230

CHAPTER 5: STUDY OF PREGNANCY LOSS IN THE SOW USING REAL TIME (B-MODE) ULTRASOUND SCANNING ..232

LITERATURE REVIEW ..232
Image interpretation ...233

EXPERIMENTAL STUDY ..237
Introduction..237
Materials and methods ...237
Observer preparation ...237
Farm selection ..237
Real-time ultrasound scanner ..237
Duration of study ..238
Study method ..238
Chapter 6: The Effect of Weaning Procedure on Sow and Litter Performance

Literature Review

- Definition and Its Usage
- Hormonal Changes
- Weight Loss and Litter Weight
- Piglets per Litter
- Timing
- Summary
- Benefits
- Disadvantages

Field Study

- Introduction
- Materials and Methods
 - Trial Size Estimation
 - Farm Selection
 - Timing of the Study
 - Method of Allocation to Treatment and Control Groups
- Methods
 - North Island Farm
 - South Island Farm
 - Data Recording
 - Data Analysis
 - Descriptive Statistics
 - Statistical Analysis
List of Tables

Table 2-1: Summary information for 3 separate studies on the effect of various light periods on sow fertility ... 10

Table 2-2: Calculated relative average percentage heat loss from radiation, conduction and convection at different ambient temperatures with relative humidity 50%, air speed 7.5 m/min. for pigs of 50 kg and 150 kg liveweight (Serres, 1992) 15

Table 2-3: Effects of ambient temperature on reproductive behaviour and efficiency in sows ... 16

Table 2-4: Numbers of gilts/sows served stratified by farm, year, and month 36

Table 2-5: Means, medians and differences between means of farrowing rate for study farms stratified by year ... 38

Table 2-6: Results of Mann-Whitney U test for comparison the average farrowing rate between winter/spring and summer/autumn .. 42

Table 2-7: Unweighted logistic regression model for explanation of summer/autumn infertility status .. 44

Table 2-8: Unweighted logistic regression model for prediction of farrowing rate 45

Table 2-9: P-value calculated from Mann-Whitney U test comparisons of medians of farrowing rates, abortion rates, irregular return rates, negative pregnancy test rates, not-in-pig rates and regular return rates, compared between problem and non-problem herds (PY/NPY), between seasons and between PYS and NPYS 46

Table 2-10: Descriptive statistics for farrowing rate stratified by herd status and season 47

Table 2-11: Descriptive statistics for negative pregnancy test rate stratified by herd status and season ... 48

Table 2-12: Descriptive statistics for regular return rate stratified by herd status and season .. 49

Table 2-13: Descriptive statistics for irregular return rate stratified by herd status and season .. 50

Table 2-14: Descriptive statistics for abortion rate stratified by herd status and season 51

Table 2-15: Descriptive statistics for not-in-pig rate stratified by herd status and seasons 52
Table 2-16: P-value calculated from Mann-Whitney U test comparisons of medians of weaning to first service interval between problem and non-problem herds, between seasons, and between PYS and NPYS

Table 2-17: Descriptive statistics for length (days) of weaning to first service intervals stratified by season and farm status

Table 2-18: Descriptive statistics for non-productive sow days per parity (NPD/parity)

Table 2-19: Results of two-way ANOVA (comparison) for the effect of season, farm status (PY/NPY), and the interaction between season and status of PY or NPY on the number of pigs born and born alive per litter

Table 2-20: Descriptive statistics for number of pigs born and number of pigs born alive per litter for different combinations of season and farm status

Table 2-21: P-values obtained from two-way ANOVA comparisons of total number of pigs born per litter between different season and farm status (PY or NPY) categories

Table 2-22: P-values obtained from two-way ANOVA comparisons of number of pigs born alive per litter between different season and farm status (PY or NPY) categories

Table 2-23: Descriptive statistics for number of stillborn per litter

Table 2-24: Descriptive statistics for number of mummies per litter

Table 3-1: Sow weight changes between successive matings stratified at 10 kg intervals and average litter size at the subsequent farrowing for each stratum (Hillyer 1980)

Table 3-2: Relative weights of the products of pregnancy and weight changes of sows during pregnancy and lactation accompanying an assumed growth and development pattern over 5 parities (partly after Whittemore, 1980)

Table 3-3: Mean feed requirement for a pregnant sow (gain 25 kg) in MJ of ME per day and in g of feed per day (from Verstegen et al., 1987)

Table 3-4: The effect of energy intake during gestation on voluntary feed intake during lactation and percentage of sows in oestrus within 10 days of weaning

Table 3-5: The influence of feeding level during early pregnancy on reproductive performance of multiparous sows.

Table 3-6: The effects of laxative, and reduced feeding levels intake in the last few days of gestation on the percentage of stillborn piglets
Table 3-7: Recommended levels of percentage of crude protein and amino acids for pregnancy in sows

Table 3-8: Estimated lower critical temperatures (LCTs) for gestating sows weighing 150-220.5 kg housed individually or in groups with no bedding or in groups with bedding

Table 3-9: Effect of daily gestation feed intake levels on lactation feed intake and gestation and lactation weight change (after Baker et al., 1969)

Table 3-10: The effect of gestation feed levels on plasma progesterone levels and embryo survival in sows (from Dyck et al., 1980)

Table 3-11: Numbers of control and treatment animals in each stall and group housing system study group and the levels of feeding applied to each group

Table 3-12: Number of animals included in the analysis by housing type, treatment group and month

Table 3-13: Means (95% confidence limits) and medians of adjusted non-productive sow days (NPD+6) stratified by housing/feeding system and month

Table 3-14: P-values of comparisons of adjusted NPD between control and treatment groups in different categories using Mann-Whitney U test

Table 3-15: Mean (95% confidence limits) and median of total pigs born/sow stratified by housing/feeding system and month

Table 3-16: P-values for comparisons of total pigs born between control and treatment groups in different groupings using t-test and ANCOVA (presented in bracket)

Table 3-17: Mean (95% confidence limits) and median of number of pigs born alive stratified by feeding/housing system and month

Table 3-18: P-values for comparison of average number of pigs born alive between control and treatment groups in different feeding/housing system using t-test and ANCOVA (presented in bracket)

Table 3-19: Mean (95% confidence limits) and median of stillborn piglet numbers stratified by housing/feeding system and month

Table 3-20: P-values for comparison of number of stillborn piglets between control and treatment groups in different feeding/housing systems using Mann-Whitney U test

Table 3-21: Mean (95% confidence limits) and median for number of mummies, stratified by housing/feeding system and month
Table 3-22: P-values for comparisons of number of mummies between control and treatment groups in different housing/feed categories using Mann-Whitney U test 115

Table 3-23: Count (percentage) of gilts/sows showing different reproductive outcomes, stratified by housing/feeding system for the period December-April 119

Table 3-24: Count (percentage) of gilts/sows showing different reproductive outcomes, stratified by housing/feeding system in December 120

Table 3-25: Count (percentage) of gilts/sows showing different reproductive outcomes, stratified by housing/feeding system in January 121

Table 3-26: Count (percentage) of gilts/sows showing different reproductive outcomes, stratified by housing/feeding system in February 122

Table 3-27: Count (percentage) of gilts/sows showing different reproductive outcomes, stratified by housing/feeding system in March 123

Table 3-28: Count (percentage) of gilts/sows showing different reproductive outcomes, stratified by housing/feeding system in April 124

Table 3-29: Count (percentage) of farrowed, IP, NP, or OT gilts/sows stratified by housing/feeding system and month 131

Table 3-30: Counts of pigs which farrowed and did not farrow, with Chi-squared value and p-value from Chi-squared analysis, by housing/feeding system, month and control or treatment group 136

Table 3-31: Table summarizing the results of Chi-squared analysis comparing the effect of treatment by month and feeding/housing system 138

Table 3-32: Counts of gilts/sows mated, farrowing rate (%), farrowing rate differences between control and treatment groups, and p-value of comparison between control and treatment groups using Chi-squared analysis, stratified by housing/feeding system and month 139

Table 3-33: Means (95% confidence limits) and medians for adjusted non-productive sow days of control gilts/sows in different housing/feeding systems and months 140

Table 3-34: Results of the comparison of non-productive sow days (NPD) for sows between the control group of housing/feeding systems for different months using Kruskal-Wallis ANOVA 141

Table 3-35: Final logistic regression model for the effect of parity, farm, housing, and location on farrowing probability 141
Table 3-36: Final logistic regression model for the effect of parity, farm, housing, and location on farrowing probability, only in group-housed pigs fed at higher feed level

Table 3-37: Final logistic regression model for the effect of parity, farm, housing, and location on farrowing probability, only in group-housed pigs fed at lower feed level

Table 3-38: Final logistic regression model for the effect of parity, farm, housing, and location on farrowing probability, only in stall-housed pigs

Table 3-39: Distribution functions used to generate farm-specific random pig populations

Table 3-40: Variables used for calculation of partial budget economics for gilts/sows and other pigs

Table 3-41: Functions used for partial budget calculation

Table 3-42: Results of partial budget economic analysis for net income per sow by treatment group and additional income per sow from 300 iterations in @Risk

Table 3-43: Averages for total expense, total income, net income (benefit) and benefit/cost ratio for control and treatment groups for each of the farms

Table 3-44: Variables used in the partial budget economic analysis models and their definitions

Table 4-1: Comparison of the mean number of rows of cells and average thickness of epithelium in the anterior vagina between pregnant and non-pregnant states, between pregnancy, follicular and luteal phases and cystic ovary states and between cystic ovary states, luteal and follicular phases

Table 4-2: Notable differences in the characteristics of vaginal biopsies between pregnant and non-pregnant sows

Table 4-3: Diagnostic criteria used to determine pregnancy status from histological examination of vaginal biopsies taken 18-25 days after mating

Table 4-4: The relationship between approximate crown-rump length and days of gestation (foetal age)

Table 4-5: The effect of two removal rates (36.9% and 41.06%) on sow productivity in two different years

Table 4-6: Summary of separate studies detailing the percentage of pigs which were culled for the various reasons set out in the left-most column
Table 4-7: The effect of low average and high culling rates on productivity and costs of production _______ 208
Table 4-8: The effects of varying levels of replacement rate on sow productivity _______ 208
Table 4-9: Sow productivity data in relation to the number of litters per culled sow ___ 209
Table 4-10: Descriptive statistics of culled gilts/sows showing the relationship to time of culling to weaning, mating, farrow and abortion _______ 214
Table 4-11: Cull gilts/sows classified according to stage of oestrous cycle _______ 215
Table 4-12: Frequency of farmer reasons for culling gilts/sows _______ 216
Table 4-13: Classification of culls according to findings from gross examination of the reproductive tracts _______ 217
Table 4-14: Frequency of grossly detectable conditions other than reproductive disorders in culled gilts/sows _______ 217
Table 4-15: Cross-tabulation of farmer reasons for culling and findings from gross examinations where there was no apparent conflict between the observations for 46 gilts/sows _______ 218
Table 4-16: Cross-tabulation of farmer reasons for culling and findings from gross examinations in 2 sows where there was lack of accord between the observations _______ 218
Table 4-17: Cross-tabulation of farmer reasons for culling and parity showing numbers and percentages of animals _______ 219
Table 4-18: Cross-tabulation of findings from gross examination of the reproductive tracts and parity showing numbers and percentages _______ 220
Table 4-19: Cross-tabulation of findings from gross examination of conditions other than reproductive tract disorders and parity showing numbers and percentages of culled gilts/sows _______ 221
Table 4-20: Descriptive statistics of the size of ovaries and diameter and thickness of the uterine horns and the epithelial layer of the endometrium in culled gilts/sows _______ 222
Table 4-21: Descriptive statistics of the size of ovaries and diameter and thickness of the uterine horns and the epithelial layer of the endometrium in culled gilts/sows in the follicular phase of the oestrous cycle _______ 223
Table 4-22: Descriptive statistics of the size of ovaries and diameter and thickness of the uterine horns and the epithelial layer of the endometrium in culled gilts/sows in the luteal phase of the oestrous cycle 223

Table 4-23: Descriptive statistics of the size of ovaries and diameter and thickness of the uterine horns and the epithelial layer of the endometrium in culled anoestrus gilts/sows 224

Table 4-24: Cross tabulation of uterine states of normality and disease and farmer reasons for culling, showing numbers and percentages of affected animals 226

Table 4-25: Cross tabulation of uterine states of normality and disease and gross reproductive disorders 227

Table 4-26: Cross tabulation of uterine states of normality and disease and conditions other than reproductive tract disorders 228

Table 5-1: Sensitivity (SE), specificity (SP), predictive value of positive (PVP), and predictive value of negative (PVN) pregnancy diagnosis stratified by time post-service, as reported by various authors. 235

Table 5-2: Cross tabulation of ultrasound scanning results and week post-service 240

Table 5-3: Codes used for interpretation of scanning result in relation to the gold standard 240

Table 5-4: Summary of sequences of scan examination results, subsequent history and the gold standard interpretation for gilts/sows in this study 241

Table 5-5: Cross tabulation of number (\%) of gilts/sows by interpreted test result category for scanning examination period between 3 and 11 weeks after service 242

Table 5-6: Cross tabulation between week of examination, scanning results and true pregnancy status including suspect results as positive scan results for all scans from 3 to 11 weeks after service 243

Table 5-7: Cross tabulation between week of examination, scanning results and true pregnancy status including suspect results as negative scan results for all scans from 3 to 11 weeks after service 244

Table 5-8: Cross tabulation between week of examination, scanning results and true pregnancy status excluding suspect results for all scans from 3 to 11 weeks after service 244
Table 5-9: Summary statistics for each examination week describing the prevalence of pregnancy and the operating characteristics of the scanning examination treating suspect cases as positive scan results

Table 5-10: Summary statistics for each examination week describing the prevalence of pregnancy and the operating characteristics of the scanning examination treating suspect cases as negative scan results

Table 5-11: Summary statistics for each examination week describing the prevalence of pregnancy and the operating characteristics of the scanning examination excluding suspect cases

Table 6-1: Descriptive statistics and statistical comparisons (Mann-Whitney U test) between treatment and control groups from individual farms
List of Figures

Figure 2-1: Individual farm and year farrowing rate patterns .. 39

Figure 2-2: Violin plots presenting the distribution of farrowing rate (%) (A: PY and NPY; B: between PY and NPY in the summer/autumn period; C: PYS and NPYS; D: from January (1) to December (12) for PY) .. 47

Figure 2-3: Violin plots presenting the distribution of negative pregnancy test rate (%) (A: PY and NPY; B: between PY and NPY in summer/autumn period; C: PYS and NPYS; D: from January (1) to December (12) for PY) .. 48

Figure 2-4: Violin plots presenting the distribution of regular return rate (%) (A: PY and NPY; B: between PY and NPY in summer/autumn period; C: PYS and NPYS; D: January (1) to December (12) for PY) .. 49

Figure 2-5: Violin plots presenting the distribution of irregular return rate (%) (A: PY and NPY; B: between PY and NPY in summer/autumn period; C: PYS and NPYS; D: January (1) to December (12) for PY) .. 50

Figure 2-6: Violin plots presenting the distribution of abortion rate (%) (A: PY and NPY; B: between PY and NPY in summer/autumn period; C: PYS and NPYS; D: January (1) to December (12) for PY) .. 51

Figure 2-7: Violin plots presenting the distribution of abortion rate (%) (A: PY and NPY; B: between PY and NPY in summer/autumn period; C: PYS and NPYS; D: January (1) to December (12) for PY) .. 52

Figure 2-8: Box and Whisker plots of weaning to first service interval for PY and NPY stratified by season and month of the year .. 55

Figure 2-9: Box and Whisker plots of weaning to first service interval (< 19 days) stratified by season and month of the year .. 55

Figure 2-10: Box and Whisker plots of weaning to first service interval (parity 1) for PY and NPY stratified by season and month of the year .. 56

Figure 2-11: Box and Whisker plots of weaning to first service interval (< 19 days, parity 1) for PY and NPY stratified by season and month of the year .. 56

Figure 2-12: Box and Whisker plots of non-productive sow days (NPD) for PY and NPY stratified by season and month of the year .. 57
Figure 2-13: Box and Whisker plots of number pigs born per litter for PY and NPY stratified by season and month of the year

Figure 2-14: Box and Whisker plots of number of pigs born alive per litter for PY and NPY stratified by season and month of the year

Figure 3-1: Barcharts showing the average of adjusted NPD by housing/feeding system and treatment status stratified by month

Figure 3-2: Barcharts showing the average adjusted NPD by month and treatment status stratified by housing/feeding system

Figure 3-3: Barcharts showing means of total pigs born by months and treatment status stratified by housing/feeding system

Figure 3-4: Barcharts showing means of total pigs born by month and treatment status stratified by housing/feeding system

Figure 3-5: Barcharts showing means for number of pigs born alive by different month and treatment status stratified by housing/feeding system

Figure 3-6: Barcharts showing means for number of pigs born alive by month and treatment status stratified by housing/feeding system

Figure 3-7: Barcharts showing means for number of stillborn piglets by month and treatment status stratified by housing/feeding system

Figure 3-8: Barcharts showing means for number of stillborn piglets by month and treatment status stratified by housing/feeding system

Figure 3-9: Barcharts showing mean for number of mummies by month and treatment status, stratified by housing/feeding systems

Figure 3-10: Barcharts showing means for number of mummies by month and treatment status stratified by different housing/feeding systems

Figure 3-11: Barcharts showing percentages of pigs showing regular returns in different months, stratified by housing/feeding systems

Figure 3-12: Barcharts showing percentages of irregular returns by month and treatment status stratified by housing/feeding systems

Figure 3-13: Barcharts showing percentages of late return pigs by month and treatment status stratified by housing/feeding systems
Figure 3-14: Barcharts showing percentages of “not farrowed at due time” pigs by month and treatment status, stratified by housing/feeding systems

Figure 3-15: Barcharts showing percentages of pigs removed by month and treatment status, stratified by housing/feeding systems

Figure 3-16: Barcharts showing percentages of abortions by month and treatment status stratified by housing/feeding systems

Figure 3-17: Barcharts showing farrowing rates by months and treatment status, stratified by housing/feeding systems

Figure 3-18: Barcharts showing percentages of “implant/return” pigs by month and treatment status stratified by housing/feeding systems

Figure 3-19: Barcharts showing percentages of “not farrowed at due time” pigs by month and treatment status, stratified by housing/feeding systems

Figure 3-20: Barcharts showing percentages of gilts/sows categorized as “not farrowed” by month and treatment status stratified by housing/feeding system

Figure 3-21: Schematic outline of the sequence of events occurring during a simple reproduction cycle of sows and influencing dietary factors

Figure 3-22: Schematic outline of the various growth stages in weaner and growing pig (bacon) production and the factors influencing survival

Figure 3-23: Probability distributions of additional income per sow from adopting the treatment programme for gilts/sows for each farm with a stall-housing system

Figure 3-24: Probability distributions of additional income per sow from adopting a treatment programme for gilts/sows for each farm with group-housing system feeding lower feed level

Figure 3-25: Probability distributions of additional income per sow from adopting a treatment programme for gilts/sows for each farm with group-housing system feeding higher feed level

Figure 3-26: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the control group of farm B (highest average additional income for stall-housing system)

Figure 3-27: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the treatment group of farm B (highest average additional income for stall-housing system)
Figure 3-28: Tornado graph presenting the results of the regression sensitivity analysis for additional income per sow of farm B (highest average additional income for stall-housing system) 162

Figure 3-29: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the control group of farm D (lowest average additional income for stall-housing system) 162

Figure 3-30: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the treatment group of farm D (lowest average additional income for stall-housing system) 163

Figure 3-31: Tornado graph presenting the results of the regression sensitivity analysis for additional income per sow of farm D (lowest average additional income for stall-housing system) 163

Figure 3-32: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the control group of farm G (highest average additional income for group-housing farms feeding lower feed level) 164

Figure 3-33: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the treatment group of farm G (highest average additional income for group-housing farms feeding lower feed level) 164

Figure 3-34: Tornado graph presenting the results of the regression sensitivity analysis for additional income per sow of farm G (highest average additional income for group-housing farms feeding lower feed level) 165

Figure 3-35: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the control group of farm H (lowest average additional income for group-housing farms feeding lower feed level) 165

Figure 3-36: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the treatment group of farm H (highest average additional income for group-housing farms feeding lower feed level) 166

Figure 3-37: Tornado graph presenting the results of the regression sensitivity analysis for additional income per sow of farm G (highest average additional income for group-housing farms feeding lower feed level) 166

Figure 3-38: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the control group of farm J (group-housing farms feeding higher feed level) 167
Figure 3-39: Tornado graph presenting the results of the regression sensitivity analysis for net income per sow for the treatment group of farm J (group-housing farms feeding higher feed level) 167

Figure 3-40: Tornado graph presenting the results of the regression sensitivity analysis for additional income per sow of farm J (group-housing farms feeding higher feed level) 168

Figure 4-1: Histogram of farmer reasons for culling gilts/sows 216

Figure 4-2: Classification of culls according to findings from gross examination of the reproductive tract 217

Figure 4-3: Histogram showing frequencies of culled gilts/sows with gross findings other than reproductive tract disorders 218

Figure 4-4: Histograms showing farmer reasons for culling categorized by parity 219

Figure 4-5: Histogram showing gross reproductive disorders categorized by parity 220

Figure 4-6: Histograms showing gross finding of conditions other than reproductive tract disorders categorized by parity 221

Figure 4-7: Box and Whisker plot of ovarian length, thickness, and width (cm) in phases of the oestrous cycle 224

Figure 4-8: Box and Whisker plots of volume of left and right ovaries (cm³) in phases of the oestrous cycle 225

Figure 4-9: Box and Whisker plots of left or right uterine horn diameters (mm) in phases of the oestrous cycle 225

Figure 4-10: Box and Whisker plots of uterine horn thickness and vaginal epithelial thickness (cm) in phases of the oestrous cycle 226

Figure 4-11: Histograms showing farmer reasons for culling categorized by uterine disease status 227

Figure 4-12: Histograms showing gross reproductive disorders categorized by uterine disease status 228

Figure 4-13: Histograms showing gross findings of conditions other than reproductive tract disorders categorized by uterine disease status 229

Figure 5-1: Time plots showing sensitivity and specificity of the diagnostic method for the different examination periods based on the three different interpretations of
suspect cases (negative (-ve), positive cases (+ve) or excluded (exclude); error bars = 95% confident intervals, ◆ = point estimates of sensitivity or specificity at week 3, 4, 5, 7, 9, and 11 post-service (from left to right))

Figure 6-1: Estimated weaning to service interval survivor function curves for parity one sows in the North Island farm

Figure 6-2: Estimated weaning to service interval survivor function curves for parity one sows in the South Island farm