Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Comparison of enzyme-immunoassay of oestrone sulphate in milk with rectal palpation, ultrasonography and farmers' observation for pregnancy diagnosis in seasonal dairy herds in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of

Master in Veterinary Science

at Massey University

Karin Mueller
2001
Abstract

A total of 2139 cows in six commercial, spring-calving New Zealand dairy herds were examined for pregnancy by enzyme-immunoassay of oestrone sulphate in milk, rectal palpation and real-time ultrasonography at 137 to 180 days after the start of mating. The gold standard was based on calving records, observed events such as abortion, or examination of the reproductive tract after slaughter. Sensitivity was 81.8%, 100.0% and 99.9%, and specificity was 81.0%, 91.4% and 90.9% for oestrone sulphate, rectal palpation and ultrasonography, respectively. Oestrone sulphate sensitivity increased in a linear fashion with advancing stage of gestation and reached 96.8% for cows at least 120 days pregnant. Sensitivity and specificity of oestrone sulphate were significantly lower than those of the other two methods were significant (p=0.0001).

In seven additional herds with a total of 967 animals, a pregnancy diagnosis was obtained by oestrone sulphate and farmers’ observation. Sensitivity and specificity for these two methods were significantly different at 85.4% vs. 98.6% (p=0.0001), and 80.4% vs. 66.7% (p<0.002), respectively. The sensitivity of oestrone sulphate increased and the specificity of farmers’ observation decreased with advancing stage of pregnancy.

Using a partial farm budget, the cost of pregnancy diagnosis by oestrone sulphate was established as NZ$ 6.54 per cow compared to NZ$ 4.34 for rectal palpation and NZ$ 4.60 for ultrasonography. Compared to farmers’ observation, oestrone sulphate was more expensive at NZ$ 6.63 vs. NZ$ 6.53 per cow.
Acknowledgements

I wish to acknowledge the partial funding received for these studies from the Livestock Improvement Corporation, Hamilton. In particular, I would like to thank Lindsay Burton and Janine Hill.

My sincere thanks go to my supervisors, Norman Williamson and Jeff Wichtel, for encouraging me to carry out this research and their invaluable advice and assistance throughout the study.

Numerous colleagues and members of staff at the Institute for Veterinary, Animal and Biomedical Sciences at Massey University assisted me during data collection and analysis. In particular, I am grateful to Daniel Russell, Angus Fordham, Andrea Rosser, Max Merrall, Ian Steffert, Tim Parkinson, Todd Cochrane, Sam Beckett and John Lockhart. My sincere thanks also go to Duncan Hedderley at the Statistics Research and Consulting Centre.

I am indebted to the herd owners and their staff who allowed me to use their herds for these studies and contributed with a considerable amount of time and organisation to their success. My special thanks go to Maureen and David Clegg, Phil Scott and the staff at Dairy No.4, Paul and Grant Barber, Noel Johnstone, Andrew Trembath, John and Ngauri Burnette, Messrs. Bowler and Neil Budge, Warren Mudford, Trevor and Gail Smith, Neville and Stella Berendt, Clive and Wayne Dorn, Merv and Maren Dixon, Graham and Robyn Lavin, John Moffat, and Alan and Pauline Rowe.

Graham and Julie Pedley, of Animal Pregnancy Testing, carried out the ultrasonography examinations, and I am grateful for their willingness to have their skills scrutinised, and their professional approach throughout the study.

Lorraine Hall at LIC, Awahuri, and Grant Brierly and Mike Walker at the National Milk Analysis Centre, Hillcrest, supported and carried out the oestrone sulphate analysis.
I very much appreciated the discussions with Rosemary Sharpin and Dr. Alan Rogerson at ICP about the results of these studies.

Following cull cows to the abattoir formed a vital part of these studies and I am very thankful to the management, state veterinarians and line staff of Lowe Walker in Hawera, Hill Country Beef in Napier, Affco Imlay in Wanganui, Manawatu Beef Packers in Feilding, Richmond's in Otaki and Hasting, and Riverlands in Bulls.

My husband Peter has provided me with support in every possible way and I trust that he knows how immensely grateful I am to him.
INTRODUCTION TO PRESENTED RESEARCH

Aims and objectives

Chapter I

LITERATURE REVIEW: PREGNANCY DIAGNOSIS IN CATTLE

History of pregnancy diagnosis
Role of pregnancy diagnosis in dairy cattle herds
Usage of pregnancy diagnosis services in dairy herds
Decisions based on the result of pregnancy diagnosis
Seasonal herds
Non-seasonal herds

Current Methods of Pregnancy Diagnosis
Rectal Palpation
Ultrasonography
Oestrone Sulphate
Oestrus Observation
Progesterone
Other methods
Bovine pregnancy specific protein B (bPSPB)
Bovine pregnancy-associated glycoprotein (bPAG)
Early pregnancy factor (EPF)
Miscellaneous methods

Conclusion
Chapter II
COMPARISON OF MILK OESTRONE SULPHATE WITH RECTAL PALPATION AND REAL-TIME TRANSRECTAL ULTRASONOGRAPHY FOR PREGNANCY DIAGNOSIS

Introduction
Materials and Methods
Rectal palpation
Real-time ultrasonography
Oestrone sulphate
Gold Standard
Calculation of conception dates
Calculation of fertility parameters
Comparison and statistics
Oestrone sulphate as screening test
Results
Overall results
Results by days in calf or since last service
Results by herds
Early vs. late milk collection
Manual vs. herd test milk collection
Comparison of breeds
Comparison of veterinarians
Oestrone sulphate as screening test
Fertility parameters
Abnormal gestation lengths
Discussion
Oestrone sulphate
Rectal palpation
Ultrasonography
Factors affecting accuracy of all three methods
Fertility and management parameters of study herds
Estimating gestational age using Crown-Rump-Length
Conclusion
Chapter III
COMPARISON OF MILK OESTRONE SULPHATE AND FARMERS’ OBSERVATIONS FOR PREGNANCY DIAGNOSIS

Introduction
Materials and Methods
Farmers’ observation
Oestrone sulphate
Gold Standard
Calculation of conception dates
Calculation of fertility parameters
Comparison and statistics
Results
Overall results
Results by days in calf or since last service
Results by herd
Early vs. late milk collection
Manual vs. herd test milk collection
Comparison of breeds
Fertility parameters
Abnormal gestation lengths
Discussion
Oestrone sulphate
Farmers’ observation
Factors affecting accuracy of both methods
Fertility and management parameters of study herds
Conclusion
Chapter IV
ECONOMIC EVALUATION OF FOUR DIFFERENT METHODS OF PREGNANCY DIAGNOSIS IN SEASONAL DAIRY HERDS

Introduction 99
Materials and methods 100
 Partial Farm Budget
 Initial calculations 103
 Cost of each test 103
 Farm labour costs 104
 Effect of yarding on milk production 104
 Cost of misdiagnosis 105
 Threshold values 105
 Decision Tree 106
Results 106
 Time taken for examination 106
 Effect of yarding on milk production 109
 Cost of pregnancy diagnosis 111
 Oestrone sulphate vs. rectal palpation and ultrasonography 111
 Oestrone sulphate vs. farmers’ observation 116
 Decision Tree 118
Discussion 118
 Time taken for examination 122
Conclusion 123

REFERENCES 124

APPENDIX I AND II
List of tables and figures

Table 1.1 Reported sensitivity, specificity, positive and negative predictive values for rectal palpation 11
Table 1.2 Reported sensitivity, specificity, positive and negative predictive values for real-time ultrasonography 14
Table 1.3 Reported sensitivity, specificity, positive and negative predictive values for oestrone sulphate 13
Table 1.4 Reported sensitivity, specificity, positive and negative predictive values for progesterone 23

Table 2.1 Dates of breeding management and pregnancy diagnosis and days between events 29
Table 2.2 Number of cows with results for each herd 36
Table 2.3 Numbers of pregnant or non-pregnant cows and derivation of gold standard 38
Table 2.4 Values for correct and incorrect diagnoses, sensitivity, specificity, positive and negative predictive value for the three methods 39
Table 2.5 Comparison of diagnosis results for pregnant and non-pregnant cows 39
Table 2.6 Values for correct and incorrect diagnoses for the three methods according to days in calf or since last service 43
Table 2.7 Values for correct and incorrect diagnoses, sensitivity, specificity, positive and negative predictive value for cows at least 120 days in calf or since their last service 44
Table 2.8 Comparison of diagnosis results for pregnant cows at least 120 days in calf and non-pregnant cows at least 120 days since their last service at the time of milk collection 44
Table 2.9 Sensitivity, specificity, and positive and negative predictive values for each herd 46
Table 2.10 Values for correct and incorrect diagnoses in each herd 47
Table 2.11 Specificity achieved by the two veterinarians in each herd 49
Table 2.12 Values for sensitivity, specificity, positive and negative predictive value, and correct and incorrect diagnoses using oestrone sulphate as screening test 50
Table 2.13 Fertility parameters for the six trial herds 52

Table 3.1 Dates of breeding management and pregnancy diagnosis and days between events 67
Table 3.2 Number of cows with results for each herd 74
Table 3.3 Numbers pregnant or non-pregnant cows and derivation of gold standard 75
Table 3.4 Values for correct and incorrect diagnoses, sensitivity, specificity, and positive and negative predictive value for both methods 77
Table 3.5 Comparison of diagnosis results for pregnant, non-pregnant and suspect cows 77
Table 3.6 Values for correct and incorrect diagnoses for both methods according to days in calf or since last service 81
Table 3.7 Comparison of diagnosis results for cows at least 120 days in calf or since their last service 82
Table 3.8 Values for correct and incorrect diagnoses, sensitivity, specificity, and positive and negative predictive value for cows at least 120 days in calf or since their last service 82
Table 3.9 Sensitivity, specificity, and positive and negative predictive values for oestrone sulphate and farmers' observation for each herd 84
Table 3.10 Values for correct and incorrect diagnoses in each herd 85
Table 3.11 Distribution of breeds amongst the study herds 87
Table 3.12 Fertility parameters for the seven trial herds 89
Table 3.13 Date of abnormal gestation event and diagnosis made by oestrone sulphate and farmers' observation 90
Table 4.1 Time taken for pregnancy diagnosis by rectal palpation and ultrasonography 108
Table 4.2 Comparison of herd milk production on Day of Test with days before and after test 110
Table 4.3 Cost of pregnancy diagnosis by oestrone sulphate, rectal palpation and ultrasonography in each herd 112
Table 4.4 Breakeven points for the direct charge per cow for oestrone sulphate 115
Table 4.5 Cost of pregnancy diagnosis by oestrone sulphate or farmers' observation in each herd 117

Figure 2.1 Sensitivity of the three methods according to days in calf at time of milk collection 40
Figure 2.2 Specificity of the three methods according to days since last service at time of milk collection 41
Figure 2.3 Positive predictive value of the three methods according to days in calf at time of milk collection 42
Figure 2.4 Negative predictive value of the three methods according to days since last service at time of milk collection 42
Figure 3.1 Sensitivity of the two methods according to days in calf at the time of milk collection 78
Figure 3.2 Specificity of the two methods according to days since last service at the time of milk collection 79
Figure 3.3 Positive predictive value of the two methods according to days in calf at the time of milk collection 80
Figure 3.4 Negative predictive value of the two methods according to days since last service at time of milk collection 80
Figure 4.1 Spreadsheet used to calculate cost of pregnancy diagnosis by oestrone sulphate, rectal palpation and ultrasonography 101
Figure 4.2 Spreadsheet used to calculate cost of pregnancy diagnosis by oestrone sulphate and farmers' observation 102
Figure 4.3 Decision tree for comparing different methods of pregnancy diagnosis 107
Figure 4.4 Change in costs depending on increase in either specificity or sensitivity 113
Figure 4.5 Indifference curve for cost of pregnancy diagnosis according to change in specificity for rectal palpation and ultrasonography 114
Figure 4.6 Decision tree for comparing different methods of pregnancy diagnosis with probabilities and monetary values entered 119