RECTAL ULTRASONOGRAPHIC INVESTIGATIONS
OF PREGNANCY IN FARmed RED DEER (Cervus elaphus).

Brigitte Revol

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Philosophy (Veterinary Science), at Massey University.

March 1991
This study describes the ultrasonographic appearance of the non-pregnant reproductive tract, and the pregnant uterus and conceptus from 6 to 211 days after mating, with an emphasis on early pregnancy from 6 to 42 days. In addition, 13 foetal age estimation equations were computed from measurements of foetal, placental and maternal dimensions.

Mating dates were recorded for thirty seven red deer hinds two years of age or older. From immediately prior to the breeding season and at approximately weekly intervals from the commencement of mating to the end of gestation, rectal ultrasonographic scans were taken using a 5 MHz linear transducer while deer were held in a restraining device. Scans were recorded on video for later measurements and analyses.

The vagina and cervix were visible, with the lumen appearing as a continuous or intermittent white line, respectively. The non-pregnant uterus was observed in most cases and was immediately anterior to the bladder. Structures resembling the ovaries were observed only occasionally.

By seven days gestation, a 5 mm vesicle might be observed, and by day 14, oedema of uterine horns was apparent. A comma-shaped foetal mass 6 mm long, foetal membranes and formation of placentomes could be observed at day 24. The heart beat was observed at day 28 when the foetus was 10 mm long. Limb buds were observed at day 31, and by day 37 the head with nose and eyes was clearly distinguishable. Foetal movements were first observed on day 42. Elongation of the neck and the echogenicity of the ribs were observable by day 51 and 52, respectively. By day 58, the long bones were echogenic, and the individual vertebrae were clearly seen by day 59. The bladder and stomach were distinguished by day 62. From day 102, movements of foetal eyes could be observed. From day 114, the placentomes developed a mushroom shape, and some were attached to the endometrium only by a stem. After 150 days gestation, pregnancy could only be detected by viewing the presence of placentomes or foetal extremities in a fluid filled sac.

Measurements of crown-rump, head length, head diameter, nose length, eye diameter, neck diameter, chest diameter, chest depth, umbilical cord diameter, amnion
sac length and width, placentome diameter and uterine diameter, were recorded from appropriate scans and growth regression equations were computed. Age estimation equations were computed by transposing the regressions of foetal, placental or uterine dimension on age with age as the independent variable, to equations with age as the dependent variable. All equations were significant (P < 0.001). Each dimension was measurable over a defined period of pregnancy. The earliest dimension measurable was uterine diameter but these measurements were variable and no longer feasible after 45 days of pregnancy. Placentomes could be measured from 24 days gestation, but this dimension was also variable. The most accurate estimation of foetal age would be by measurement of the length of the amniotic sac between 37 and 56 days. Measurement of crown-rump length from 24 to 59 days, and head length from 42 to 84 days would also allow accurate estimates of foetal age. Accurate foetal ageing was not possible beyond approximately 150 days gestation.

The sensitivity of rectal ultrasonography pregnancy for testing in red deer hinds was 35% prior to 20 days, 71% between 21 and 30 days, 98% between 31 and 40 days, 100% between 41 and 130 days, and for pregnancies of 131 days or more, the sensitivity was 95%. The reliability of a positive test was 100% between 41 and 130 days.
Papers accepted or published:

Video and instruction manual:

Presentation of this work have been given to the New Zealand Veterinary Association Deer Branch Conference, July 1989, the Massey University Annual Deer Seminars 1989 and 1990, and the Second International Conference on the Biology of Deer, Mississippi, May 1990.
ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr Peter Wilson. His comprehension and communicative enthusiasm helped me greatly in the accomplishment of this thesis. I am grateful for his guidance and advice during the course of this work.

I also wish to thank Hilary Burbidge for her supervision and judicious advice and, with the help of Alberto Dick, for the training I received on ultrasonography manipulations.

I am indebted to Clare Veltman thanks to whom this study was proposed to me. She also gave me advice for the observation of deer breeding behaviour, and five of her students helped me during oestrus detection.

The Massey University Deer Research Unit is acknowledged for use of deer and facilities, and I am grateful to the deer farm staff, particularly Charlie for his kindness and help in the difficult handling moments.

Kerry Killorn and Alyson Ellingworth spent a lot of their time helping me handle the animals, and it was greatly appreciated.

I sincerely thank Professor Roger Morris and Professor R. Munford for their help in statistical analyses, and Dirk Pfeiffer for his patience in guiding me through softwares.

I also want to thank Dr Mark Fisher from Invermay, for providing useful references on the anatomy of the deer reproductive tract.

I am grateful to Tom Law for the printing of the pictures needed for this thesis and for published papers, and to Bruce Cann for the time spent in front of the television screen editing the video illustrating this work.

The financial assistance was provided by the Massey University Research Fund, the Irene Phyllis Gray Fellowship, and the french government.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Papers accepted or published</td>
<td>iv</td>
</tr>
<tr>
<td>Video and instruction manual</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>List of tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of figures</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1. LITERATURE REVIEW.

1.1. Introduction | 1 |

1.2. Principles of ultrasonography | 2 |
1.2.1. Properties of ultrasound | 2 |
1.2.2. Interaction of ultrasound with tissues | 2 |
1.2.2.1. Reflection | 2 |
1.2.2.2. Attenuation | 3 |

1.3. Technology of ultrasonography | 4 |
1.3.1. Signal processing | 4 |
1.3.2. The transducer | 5 |
1.3.3. Display formats | 6 |
1.3.4. Movements of the ultrasound beam | 7 |
1.3.5. Types of scanning field | 7 |
1.3.6. Real-time ultrasonography | 8 |

1.4. Real-time ultrasound image qualities | 8 |
1.4.1. Axial resolution | 8 |
1.4.2. Lateral resolution | 9 |
1.4.3. Balance between resolution and penetration | 9 |
1.4.4. Frame rate | 9 |

1.5. Artefacts | 9 |
1.5.1. Acoustic shadows | 10 |
1.5.2. Refraction | 10 |
1.5.3. Enhanced through-transmission | 10 |
1.5.4. Specular reflection | 11 |
1.5.5. Reverberation | 11 |
1.5.6. Mirror-image artefact | 11 |

1.6. Safety of ultrasound | 12 |

1.7. Recording the image | 12 |
1.8. Application of ultrasonography for examination of the female reproductive tract

1.8.1. Human
 1.8.1.1. Description of the human conceptus by ultrasonography
 1.8.1.2. Accuracy of pregnancy testing
 1.8.1.3. Estimation of foetal age

1.8.2. Cattle
 1.8.2.1. Ovarian morphology
 1.8.2.2. Uterine morphology
 1.8.2.3. The bovine conceptus
 1.8.2.4. Accuracy of ultrasonographic pregnancy testing
 1.8.2.5. Estimation of gestational age
 1.8.2.6. Sexing of the bovine foetus

1.8.3. Sheep and goat
 1.8.3.1. Pregnancy diagnosis
 1.8.3.2. Accuracy of ultrasound pregnancy testing
 1.8.3.3. Foetal ageing
 1.8.3.4. Diagnosis of reproductive diseases
 1.8.3.5. Maternal-foetal interactions

1.8.4. Horses
 1.8.4.1. Ovaries
 1.8.4.2. Uterus
 1.8.4.3. The conceptus
 1.8.4.4. Accuracy of rectal ultrasound pregnancy testing
 1.8.4.5. Estimation of gestational age
 1.8.4.6. Diagnosis of twins

1.8.5. Deer
 1.8.5.1. Ultrasonographic technique
 1.8.5.2. Accuracy of pregnancy detection
 1.8.5.3. Foetal ageing

1.8.6. South american camelids

1.9. Red deer reproductive anatomy

1.9.1. Uterus
 1.9.1.1. Non-pregnant uterus
 1.9.1.2. Pregnant uterus

1.9.2. Embryo and foetus

1.9.3. Foetal membranes and fluids

1.9.4. Ovary

1.10. Detection of oestrus

1.11. Detection of pregnancy in deer

1.12. Female red deer reproductive cycle

1.12.1. Reproductive cycle and seasonality

1.12.2. Reproductive endocrinology
 1.12.2.1. Oestrous cycle
 1.12.2.2. Pregnancy
 1.12.2.3. Synchronisation of the oestrous cycle
 1.12.2.4. Superovulation
 1.12.2.5. Advancement of the breeding season
 1.12.2.5.1. Induction of ovulation
 1.12.2.5.2. Hind:hind, stag:hind interactions
1.12.2.5.3. Hind weight
1.12.2.5.4. Photoperiod manipulations

1.13. Manipulation of reproduction in deer
 1.13.1. Artificial insemination
 1.13.1.1. Semen collection
 1.13.1.2. Insemination
 1.13.2. Embryo transfer
 1.13.2.1. Embryo collection
 1.13.2.2. Embryo implantation

1.14. Conclusion of the literature review and purpose of the present study

CHAPTER 2. MATERIAL AND METHODS

2.1. Animals and management
2.2. Oestrus detection
2.3. Ultrasound scanning
 2.3.1. Scanning schedule
 2.3.2. Handling and restraint
 2.3.3. Ultrasound machine
 2.3.4. Scanning method
 2.3.5. Image recording
 2.3.6. Description of the uterus and foetal development
 2.3.7. Determination of pregnancy status
 2.3.8. Foetal, placental and uterine measurements
2.4. Anatomy and in vitro ultrasonography
2.5. Statistical methods
 2.5.1. Oestrous behaviour
 2.5.2. Pregnancy diagnosis
 2.5.3. Foetal ageing

CHAPTER 3. RESULTS

3.1. Oestrous behaviour
3.2. Anatomy of the female reproductive tract
3.3. Scanning method
3.4. Ultrasonographic observations
3.5. Non-pregnant uterus
3.6. Description of foetal, placental, and uterine development
3.7. Accuracy of pregnancy diagnosis
3.8. Growth and foetal ageing curves
 3.8.1. Crown-rump length
 3.8.2. Head diameter
 3.8.3. head length
 3.8.4. Eye diameter
 3.8.5. Nose length
 3.8.6. Neck diameter
 3.8.7. Chest diameter
 3.8.8. Chest depth
 3.8.9. Umbilical cord diameter
 3.8.10. Amnion length
 3.8.11. Amnion width
 3.8.12. Placentome diameter
 3.8.13. uterine lumen diameter

3.9. Gestation length.

CHAPTER 4. DISCUSSION

4.1. Oestrous behaviour.
 4.1.1. Accessory sexual behaviour
 4.1.2. Oestrous cycle
 4.1.3. Courtship
 4.1.4. Day:night ratio of mating
 4.1.5. Mating order
 4.1.6. Conception rate

4.2. Gestation length

4.3. Anatomy of the female reproductive tract

4.4. Ultrasound scanning technique

4.5. Ultrasonographic imaging of pregnancy
 4.5.1. Time of early pregnancy detection
 4.5.2. Oedema of the uterine horns
 4.5.3. Placentomes
 4.5.4. Foetal membranes and fluids
 4.5.5. Embryo and foetal development

4.6. Accuracy of pregnancy diagnosis

4.7. Conceptus growth

4.8. Foetal ageing
 4.8.1. Crown-rump
 4.8.2. Head diameter
 4.8.3. Head length
 4.8.4. Eye diameter
 4.8.5. Nose length
 4.8.6. Neck diameter
4.8.7. Chest diameter 155
4.8.8. Chest depth 156
4.8.9. Umbilical cord diameter 156
4.8.10. Amnion length 156
4.8.11. Amnion width 157
4.8.12. Placentomes 157
4.8.13. Uterine lumen diameter 157

4.9. General discussion 158
 4.9.1. role of ultrasonography for pregnancy testing in red deer 158
 4.9.2. Advantages of the technique 160
 4.9.3. Limitations of the technique 160
 4.9.4. Practical applications 160
 4.9.4.1. Pregnancy detection 160
 4.9.4.2. Foetal ageing 161
 4.9.4.3. Artificial breeding 161
 4.9.5. Economics of on-farm use of ultrasonography 161
 4.9.6. Future prospects for ultrasonography for reproduction system investigations in domestic livestock 162
 4.9.7. Further investigations of ultrasonography in deer 162

4.10. Conclusion 163

Appendix 1. cost-benefit analysis 164
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.I.</td>
<td>Description of the hinds and recorded matings and calving.</td>
<td>47</td>
</tr>
<tr>
<td>3.I.</td>
<td>Observation of oestrous behaviour and matings.</td>
<td>58</td>
</tr>
<tr>
<td>3.II.</td>
<td>Summary of oestrous behaviour statistics.</td>
<td>65</td>
</tr>
<tr>
<td>3.III.</td>
<td>Description of accessory sexual activity periods.</td>
<td>67</td>
</tr>
<tr>
<td>3.IV.</td>
<td>Schedule of scanning for each deer giving pregnancy diagnosis on that date.</td>
<td>91</td>
</tr>
<tr>
<td>3.V.</td>
<td>Pregnancy diagnosis results for each hind at different stages after mating.</td>
<td>93</td>
</tr>
<tr>
<td>3.VI.</td>
<td>Accuracy of pregnancy diagnosis at different stages after mating.</td>
<td>94</td>
</tr>
<tr>
<td>3.VII.</td>
<td>Regression equations describing the growth of foetal and uterine dimensions measured during the study.</td>
<td>100</td>
</tr>
<tr>
<td>3.VIII.</td>
<td>Regression equations for gestational age estimation, and range of validity.</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The organisation of an echosonography.</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Portable ultrasound machine with its probe and extension.</td>
<td>50</td>
</tr>
<tr>
<td>2.2</td>
<td>Demonstration of the restraint and ultrasound scanning method.</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>Foetal dimensions.</td>
<td>53</td>
</tr>
<tr>
<td>3.1</td>
<td>The anatomical relationship between uterus, bladder and rectum.</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Bladder.</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>Vagina.</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Non-pregnant uterus.</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>7 days gestation; chorionic vesicle.</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>Day 21; oedema of the uterus.</td>
<td>76</td>
</tr>
<tr>
<td>3.7</td>
<td>Day 37; extension of the chorionic vesicle.</td>
<td>76</td>
</tr>
<tr>
<td>3.8</td>
<td>Day 24; placentome formation.</td>
<td>77</td>
</tr>
<tr>
<td>3.9</td>
<td>Day 38; placentome.</td>
<td>77</td>
</tr>
<tr>
<td>3.10</td>
<td>Day 189; placentome.</td>
<td>78</td>
</tr>
<tr>
<td>3.11</td>
<td>Day 157; placentome: mushroom-like appearance.</td>
<td>78</td>
</tr>
<tr>
<td>3.12</td>
<td>Day 157; placentome attached to the endometrium by a stem.</td>
<td>79</td>
</tr>
<tr>
<td>3.13</td>
<td>Day 147; accessory placentome.</td>
<td>79</td>
</tr>
<tr>
<td>3.14</td>
<td>Day 24; First appearance of a foetal membrane.</td>
<td>80</td>
</tr>
<tr>
<td>3.15</td>
<td>Day 28; embryo.</td>
<td>80</td>
</tr>
<tr>
<td>3.16</td>
<td>Day 38; limb buds and tail.</td>
<td>81</td>
</tr>
<tr>
<td>3.17</td>
<td>Day 38; foetal eyes.</td>
<td>81</td>
</tr>
<tr>
<td>3.18</td>
<td>Day 73; umbilical cord.</td>
<td>82</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.19</td>
<td>Day 45; foetus.</td>
<td>82</td>
</tr>
<tr>
<td>3.20</td>
<td>Day 80; skull.</td>
<td>83</td>
</tr>
<tr>
<td>3.21</td>
<td>Day 52; amnion.</td>
<td>83</td>
</tr>
<tr>
<td>3.22</td>
<td>Day 98; amniotic membrane.</td>
<td>84</td>
</tr>
<tr>
<td>3.23</td>
<td>Day 73; eye and pupil.</td>
<td>84</td>
</tr>
<tr>
<td>3.24</td>
<td>Day 56; elongation of the neck.</td>
<td>85</td>
</tr>
<tr>
<td>3.25</td>
<td>Day 71; chest.</td>
<td>85</td>
</tr>
<tr>
<td>3.26</td>
<td>Day 73; long bones.</td>
<td>86</td>
</tr>
<tr>
<td>3.27</td>
<td>Day 65; vertebrae.</td>
<td>86</td>
</tr>
<tr>
<td>3.28</td>
<td>Day 97; axial section of the foetus showing the stomach.</td>
<td>87</td>
</tr>
<tr>
<td>3.29</td>
<td>Day 188; amniotic villi.</td>
<td>87</td>
</tr>
<tr>
<td>3.30</td>
<td>Day 80; trachea.</td>
<td>88</td>
</tr>
<tr>
<td>3.31</td>
<td>Day 93; heart chambers.</td>
<td>88</td>
</tr>
<tr>
<td>3.32</td>
<td>Day 93; eye.</td>
<td>89</td>
</tr>
<tr>
<td>3.33</td>
<td>Day 191; anterior foot</td>
<td>89</td>
</tr>
<tr>
<td>3.34</td>
<td>Day 156; skull.</td>
<td>90</td>
</tr>
<tr>
<td>3.35</td>
<td>Histogram of crown-rump length measurements showing the frequency of</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>measurements by foetal age and magnitude of the dimension.</td>
<td></td>
</tr>
<tr>
<td>3.36</td>
<td>Crown-rump growth. Scattergram of crown-rump length with foetal age and</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>the best fit regression for the data (95% confidence interval).</td>
<td></td>
</tr>
<tr>
<td>3.37</td>
<td>Age estimation using crown-rump length. Scattergram of age on crown-rump</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>and the regression used for foetal age estimation (95% confidence interval).</td>
<td></td>
</tr>
<tr>
<td>3.38</td>
<td>Histogram of head diameter measurements showing the frequency of</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>measurements by foetal age and magnitude of the dimension.</td>
<td></td>
</tr>
<tr>
<td>3.39</td>
<td>Head diameter growth. Scattergram of head diameter with foetal age and the</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>best fit regression for the data (95% confidence interval).</td>
<td></td>
</tr>
</tbody>
</table>
3.40. Age estimation using head diameter. Scattergram of age on head diameter and the regression used for foetal age estimation (95% confidence interval).

3.41. Histogram of head length measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.42. Head length growth. Scattergram of head length with foetal age and the best fit regression for the data (95% confidence interval).

3.43. Age estimation using head length. Scattergram of age on head length and the regression used for foetal age estimation (95% confidence interval).

3.44. Histogram of eye diameter measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.45. Eye diameter growth. Scattergram of eye diameter with foetal age and the best fit regression for the data (95% confidence interval).

3.46. Age estimation using eye diameter. Scattergram of age on eye diameter and the regression used for foetal age estimation (95% confidence interval).

3.47. Histogram of nose length measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.48. Nose length growth. Scattergram of nose length with foetal age and the best fit regression for the data (95% confidence interval).

3.49. Age estimation using nose length. Scattergram of age on nose length and the regression used for foetal age estimation (95% confidence interval).

3.50. Histogram of neck diameter measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.51. Neck diameter growth. Scattergram of neck diameter with foetal age and the best fit regression for the data (95% confidence interval).

3.52. Age estimation using neck diameter. Scattergram of age on neck diameter and the regression used for foetal age estimation (95% confidence interval).

3.53. Histogram of chest diameter measurements showing the frequency of measurements by foetal age and magnitude of the dimension.
3.54. Chest diameter growth. Scattergram of chest diameter with foetal age and the best fit regression for the data (95% confidence interval).

3.55. Age estimation using chest diameter. Scattergram of age on chest diameter and the regression used for foetal age estimation (95% confidence interval).

3.56. Histogram of chest depth measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.57. Chest depth growth. Scattergram of chest depth with foetal age and the best fit regression for the data (95% confidence interval).

3.58. Age estimation using chest depth. Scattergram of age on chest depth and the regression used for foetal age estimation (95% confidence interval).

3.59. Histogram of umbilical cord diameter measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.60. Umbilical diameter growth. Scattergram of umbilical diameter with foetal age and the best fit regression for the data (95% confidence interval).

3.61. Age estimation using umbilical cord. Scattergram of age on umbilical cord, and the regression used for foetal age estimation (95% confidence interval).

3.62. Histogram of amnion length measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.63. Amnion length growth. Scattergram of amnion length with foetal age and the best fit regression for the data (95% confidence interval).

3.64. Age estimation using amnion length. Scattergram of age on amnion length, and the regression used for foetal age estimation (95% confidence interval).

3.65. Histogram of amnion width measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.66. Amnion width growth. Scattergram of amnion width with foetal age and the best fit regression for the data (95% confidence interval).

3.67. Age estimation using amnion width. Scattergram of age on amnion width, and the regression used for foetal age estimation (95% confidence interval).
3.68. Histogram of placentome diameter measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.69. Placentome diameter growth. Scattergram of placentome diameter with foetal age and the best fit regression for the data (95% confidence interval).

3.70. Age estimation using placentome diameter. Scattergram of age on placentome diameter, and the regression used for foetal age estimation (95% confidence interval).

3.71. Histogram of uterine lumen diameter measurements showing the frequency of measurements by foetal age and magnitude of the dimension.

3.72. Uterine lumen diameter growth. Scattergram of uterine lumen diameter with foetal age and the best fit regression for the data (95% confidence interval).

3.73. Age estimation using uterine diameter. Scattergram of age on uterine diameter, and the regression used for foetal age estimation (95% confidence interval).