Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE DISPOSITION OF GENTAMICIN IN
EQUINE PLASMA, SYNOVIAL FLUID
AND LYMPH

A THESIS
PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF VETERINARY SCIENCE
AT
MASSEY UNIVERSITY

BRIAN ANDERSON
1993
ABSTRACT

Although it is easy to monitor blood concentrations of antimicrobials most bacterial infections occur in extravascular sites, more specifically within the interstitial fluid. It is very difficult to sample interstitial fluid and many different methods have been used. Reports of the relationship between blood and interstitial concentrations of antibiotics have varied depending on the tissue/tissue fluid sampling technique used. The sampling of tissue fluid for antimicrobial studies in horses has been limited. Most studies have measured antibiotic concentrations in readily accessible body fluids such as urine, peritoneal fluid and synovial fluid. The relationship between these fluids and interstitial fluid in the horse is not known.

The disposition of gentamicin in equine plasma, synovial fluid and peripheral lymph was studied. A lymph vessel (dorsal digital lymph trunk) on the medial aspect of the distal hindlimb was selected for the disposition study. To better define the relationship between synovial fluid and tissue concentrations of an antimicrobial it was shown that this vessel had a contribution to its lymph derived from the synovium of the fetlock joint. Very high concentrations of gentamicin were retrieved in the lymph collected from the cannulated vessel after intra-articular injection (150mg dose). The mean maximum lymph gentamicin concentration was approximately 50 μg/ml and the time to reach this, approximately 1.7 h after joint injection. The mean synovial fluid concentration 0.25 h following injection was 7244 ± 660 μg/ml and disappearance from the synovial fluid was consistent with first order kinetics with a mean disappearance half-life (harmonic mean) of 0.99 (0.83-1.22) h.

A technique for chronic cannulation of the dorsal digital lymph trunk was developed. Two Trials were conducted and in the first (Trial A) the disposition of gentamicin in plasma and lymph was studied after intravenous injection (2.2 mg/kg). In Trial B the disposition of gentamicin in plasma, synovial fluid and lymph was studied. Kinetic parameters were similar to other reported studies. There was no significant difference in kinetic parameters
between trials. The disposition curves for all three fluids were similar. Mean maximum lymph concentrations were approximately 4.6 µg/ml and were 40% of the plasma concentrations 15 minutes after injection. These were achieved approximately 1.35 h after injection. The maximum concentration of gentamicin in synovial fluid (2.86 ± 0.45 µg/ml) was significantly less than in lymph. Three hours after injection plasma, synovial fluid and lymph concentrations were very similar and it was concluded that a sample of any one would be a good index of the others at this time. The relationship between synovial fluid and tissue fluid 3-8 h after injection was less clear with marked divergence of the disposition curves. Gentamicin was more slowly eliminated from lymph than plasma but a parallel relationship between the two fluids was observed 3-8 h after injection, with a mean lymph:plasma ratio of approximately 1.6. It was concluded that plasma concentrations were a good index of tissue fluid concentrations.

Maximum lymph concentrations of gentamicin after intravenous injection were 10 times less than after intra-articular injection. The presence of very high concentrations in lymph derived from the synovium of a joint after intra-articular injection suggest that subsynovial interstitial fluid concentrations are also this high and therefore that intra-articular injection may have some therapeutic advantage over systemic injection.

Lymph cannulation in the horse appears to be a viable technique for antimicrobial disposition studies.
PREFACE AND ACKNOWLEDGEMENTS

Many people have helped, listened, coached (and coaxed) me through this thesis. I am indebted to my supervisors and to Professor Elwyn Firth I extend sincere thanks for his support, guidance, enthusiasm and sharp intellect. Warm thanks go to Associate Professor Brian Goulden for his encouragement, criticism and fun approach to life. Dr Alex Davies was always enthusiastic and his suggestions always helpful.

To Helen Hodge (nee Stephens), you were simply magnificent.

To Dr Ted Whittem I am eternally grateful for your sound pharmacokinetic advice and scrutiny of the manuscript. I also wish to thank and acknowledge the assistance of Dr Jack Nouws.

I am grateful for the statistical advice and friendly support given by Vickie King (CVM, University of Minnesota) and to Dr Hugh Morton (Massey University) for his interest and statistical help.

To my typists Sarah Fort and Ann Field-Mitchell, I thank you both for your enthusiasm and superb work.

I am indebted to the New Zealand Equine Research Foundation for the financial support of this project and for the doors that this work has opened for me.

This thesis has travelled half way across the world, during the time it has taken to be written there has been a marriage and nearly a divorce. To my wife Roz Machon I owe so much. Without her love and support this work may never have been completed.
TABLE OF CONTENTS

Preface and Acknowledgements .. iv
List of Figures ... vii
List of Tables ... xi

CHAPTER I INTRODUCTION

I1 General Introduction .. 1
I2 Methods Used to Determine the Concentration of Antimicrobial Drugs in Tissue Fluids ... 2
I3 Objective and Purpose of Study .. 6
I4 The Factors Governing the Pharmacokinetics and Penetration of Antimicrobial Drugs from Serum into Tissue Fluids 7
I5 Methods Used to Determine the Concentration of Antimicrobial Drugs from Serum into Tissue Fluids of the Horse 10
I6 Anatomy and Physiology of the Lymphatic Vessel System 15
I7 Microanatomy and Physiology of the Synovium 24
I8 The Relationship Between Synovial Fluid and the Lymph Derived from the Synovium ... 27
I9 Hypothesis .. 28
I10 Gentamicin: Pharmacology and Pharmacokinetics 28
I11 Gentamicin: Therapeutic Use in the Horse 37
I12 Study Design ... 40

CHAPTER II INVESTIGATION 1.
ANATOMICAL IDENTIFICATION OF AN APPROPRIATE LYMPH VESSEL

II1 Introduction ... 41
II2 Materials and Methods ... 42
II3 Results .. 45
II4 Discussion ... 54
CHAPTER III INVESTIGATION 2.
THE ABSORPTION OF GENTAMICIN FROM SYNOVIAL FLUID INTO LYMPH

III$_1$ Introduction ... 56
III$_2$ Materials and Methods .. 57
III$_3$ Results ... 68
III$_4$ Discussion ... 76

CHAPTER IV INVESTIGATION 3.
DETERMINATION OF THE DISPOSITION OF GENTAMICIN IN EQUINE PLASMA, SYNOVIAL FLUID AND LYMPH

IV$_1$ Introduction ... 80
IV$_2$ Materials and Methods .. 81
IV$_3$ Results ... 93
IV$_4$ Discussion ... 114

CHAPTER V CRITICAL EVALUATION OF TECHNIQUES AND EXPERIMENTAL DESIGN

General Study Design ... 125
Investigation 1: Anatomical Identification of an Appropriate Lymph Vessel .. 126
Investigation 2: The Absorption of Gentamicin from Synovial Fluid into Lymph .. 126
Investigation 3: Determination of the Disposition of Gentamicin in Equine Plasma, Synovial Fluid and Lymph .. 129

CHAPTER VI GENERAL DISCUSSION AND CONCLUSIONS

Absorption of Gentamicin into Lymph following Intra-Articular Injection .. 134
Disposition of Gentamicin in Plasma, Synovial Fluid and Lymph following Single Intravenous Injection .. 137
Disposition of Gentamicin in Equine Peripheral Lymph 138

Appendices

Appendix I .. 141
Appendix II .. 154
Appendix III ... 156
Appendix IV .. 162

Bibliography .. 189
LIST OF FIGURES

CHAPTER I

Figure 1 Diagrammatic Illustration of Lymph Capillary Network ... 16
Figure 2 Diagrammatic Illustration of a Lymph Capillary ... 17
Figure 3 Pressures Determining the Movement of Fluid Across the Capillary Membrane 21
Figure 4 Diagrammatic Illustration of the Exchange of an Antimicrobial Agent Between Plasma, Synovial Fluid and Lymph .. 27

CHAPTER II

Figure 1 Dissection Specimen Showing Subcutaneous Dye Deposition Site 48
Figure 2 Dissection Specimen Showing Subcutaneous Lymph Trunks on the Medial Aspect of the Metatarsus .. 52
Figure 3 Dissection Specimen Showing a Lymphatic Tributary from the Skin Joining a Plantar Lymph Trunk on the Medial Aspect of the Distal Metatarsus .. 53

CHAPTER III

Figure 1 Tourniquet Placement Around the Distal Tibia to Facilitate Lymph Vessel Recognition and Cannulation 59
Figure 2 Common Dorsal Digital Vein and Accompanying Lymph Trunk 61
Figure 3 Sequence of Steps Followed in the Determination of the Disappearance of Gentamicin from Synovial Fluid after Intra-Articular Injection .. 65
Figure 4 Catheter and Cannula Placement for the Determination of the Disappearance of Gentamicin from Synovial Fluid after Intra-Articular Injection .. 66
Figure 5 Semilogarithmic Plot of Mean (± sem) Gentamicin Concentration (µg/ml) in Lymph and Plasma after Intra-Articular Injection .. 71
Figure 6 Relationship Between Lymph Flow Rates and Gentamicin Concentration in Collected Lymph .. 72
Figure 7 Semilogarithmic Plot of Mean (± sem) Gentamicin Concentration (µg/ml) in Synovial Fluid after Intra-Articular Injection .. 74
CHAPTER IV

Figure 1 Sequence of Procedures Used in the Determination of the Disposition of Gentamicin in Plasma, Synovial Fluid and Lymph after Intravenous Injection ... 83

Figure 2 Lymph Collection Syringe Threaded on to Lymph Cannula and Attached by Sellotape to the Hindlimb of a Horse ... 84

Figure 3 Distal Hindlimb of a Horse with a Catheterised Fetlock Joint and an Implanted Lymph Cannula 88

Figure 4 Lymph Samples Collected Over a 24 Hour Period ... 94

Figure 5 Mean Lymph Flow Rates for Trials A and B ... 97

Figure 6 Lymph Protein (g/L) at Various Intervals after Surgery (mean ± sem) ... 99

Figure 7 Lymph Total White Cell Count (cells/microlitre) at Various Intervals after Surgery (mean ± sem) 100

Figure 8 Lymph Differential White Cell Count (%) at Various Intervals after Surgery (mean ± sem) 101

Figure 9 Trial A: Disposition of Gentamicin (µg/ml) in Plasma and Lymph (mean ± sem) 104

Figure 10 Trial B: Disposition of Gentamicin (µg/ml) in Plasma, Synovial Fluid and Lymph (mean ± sem) 105

Figure 11 95% Confidence Intervals for the Elimination Phase of the Disposition of Gentamicin in Plasma and Lymph (Trial A) .. 111

Figure 12 95% Confidence Intervals for the Elimination Phase of the Disposition of Gentamicin in Plasma and Lymph (Trial B) ... 112

Figure 13 Comparison of the Disposition of Gentamicin in Synovial Fluid in 5 Studies 120

APPENDIX I

Figure 1 Diagrammatic Illustration of Two-Compartment Open Model .. 143

Figure 2 Semilogarithmic Graph of a Plasma Disposition Curve ... 145

APPENDIX II

Figure 1 Comparison of the Residual Plots for the One-Compartment and Two-Compartment Model Fits for the Disposition Data for Horse 1, Trial A 167
Figure 2 Comparison of the Residual Plots for the One-Compartment Open and Two-Compartment Open Fits for the Disposition Data for Horse 2, Trial B .. 169

Figure 3 Comparison of the Residual Plots for the One-Compartment Open and Two-Compartment Open Model Fits for the Disposition Data for Horse 3, Trial B 171

Figure 4-8 Trial A:
Disposition of Gentamicin (µg/ml) in Plasma and Lymph for Horses 1-5 .. 172-176

Figure 9-13 Trial B:
Disposition of Gentamicin (µl/ml) in Plasma, Synovial Fluid and Lymph for Horses 1-5 .. 177-181
LIST OF TABLES

CHAPTER I
Table I. Methods Used to Determine the Concentration of Antimicrobial Drugs in Tissue Fluids .. 3-5
Table II. Gentamicin Pharmacokinetics in Horses and Foals 31-36

CHAPTER III
Table I. Lymph Flow Rates (ml/h) ... 69
Table II. Mean (± sem) Concentration of Gentamicin (µg/ml) in Jugular and Local Plasma, Lymph and Synovial Fluid after Intra-Articular Injection (n = 5) .. 70
Table III. Pharmacokinetic Data for Gentamicin Absorption and Disappearance from the Fetlock Joint after Intra-Articular Injection (n = 5) .. 73

CHAPTER IV
Table I. Individual and Mean (± sem) Lymph Flow Rates Recorded for Each Sampling Interval in Trial A .. 95
Table II. Individual and Mean (± sem) Lymph Flow Rates Recorded for Each Sampling Interval in Trial B .. 96
Table III. Pharmacokinetic Parameters for the Disposition of Gentamicin in Plasma, Lymph and Synovial Fluid 106-108

APPENDIX II
Table 1. Experimental Horses and Subcutaneous Injection Sites Used in Investigation 1 ... 154
Table 2. Intra-Articular Injections Performed in Investigation 1 155
Table 3. Dyes Used in Investigation 1 .. 156

APPENDIX III
Table 1. Experimental Animals Used in Investigation 2 156
Table 2. Jugular and Local Plasma Concentrations of Gentamicin (µg/ml) after Intra-Articular Injection .. 157
Table 3. Lymph Concentrations of Gentamicin (µg/ml) after Intra-Articular Injection ... 158
Table 4. Synovial Fluid Concentrations of Gentamicin (µl/ml) after Intra-Articular Injection ... 158
APPENDIX IV

Table 1. Experimental Animals Used in Investigation 3 .. 162
Table 2. Lymph Composition: Lymph Protein Concentrations (g/L) for Horses in Investigation 3 at Various Intervals after Surgery .. 163
Table 3. Lymph Composition: Lymph Total White Cell Count (%) in Investigation 3 at Various Intervals after Surgery .. 164
Table 4. Lymph Composition: Lymph Differential White Cell Count (%) in Investigation 3 at Various Intervals after Surgery .. 165
Table 5. Plasma Concentrations of Gentamicin (µg/ml) after Intravenous Injection (2.2 mg/kg) for Trials A and B ... 182
Table 6. Lymph Concentrations of Gentamicin (µg/ml) after Intravenous Injection (2.2 mg/kg) for Trials A and B ... 183-184
Table 7. Synovial Fluid Concentrations (µg/ml) after Intravenous Injection (2.2 mg/kg) Trial B ... 185
Table 8. Elimination of Gentamicin from Plasma and Lymph. Non-Weighted Least Squares Estimates of the Terminal Rate Constant (λₙ) and Zero Time Concentration ... 186
Table 9. Lymph: Plasma Gentamicin Ratios from 2-8 h after Intravenous Injection ... 187
Table 10. Lymph: Synovial Fluid and Plasma: Synovial Fluid Gentamicin Ratios 2-8 h after Intravenous Injection for each Horse in Trial B ... 188