Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
DEVELOPMENT OF A NOVEL EQUINE COMBINATION ANTHelmINTIC AND A STUDY OF ANTHelmINTIC SUSCEPTIBILITY USING A LARVAL DEVELOPMENT ASSAY

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN VETERINARY SCIENCE AT MASSEY UNIVERSITY

ZAHIDUL ISLAM
FEBRUARY, 2000
Abstract

The occurrence of anthelmintic resistance to benzimidazoles and avermectin in cyathostome nematodes in New Zealand horses was investigated using a larval development assay (LDA) to conduct a small survey. For the benzimidazoles the analogue, thiabendazole was used and for avermectin the analogues, ivermectin and ivermectin aglycone were used in the LDA. The normal range of LD_{50} values was estimated by assaying eggs from Kaimanawa feral horses (n = 22) for each analogue used. From these the mean LD_{50} values + 2xstandard deviation was taken as the upper limit of normal. The survey involved domestic horses (n = 47) from several locations around New Zealand. For ivermectin and ivermectin aglycone 12% had LD_{50} values higher than normal with resistance factors up to 5.3 and 6.8 respectively. This represents horses from three separate farms. For the benzimidazoles 43% of domestic horses had higher than normal LD_{50} values with resistance factors up to 4.8. These results suggest that some nematodes in these domestic horses had an increased tolerance to avermectins and as well as to benzimidazoles.

Two studies were conducted to assess the efficacy of a combination of abamectin (0.2mg/kg), oxibendazole (10mg/kg) and bithionol (5mg/kg or 7mg/kg). In the first study bithionol was included at 5mg/kg and in the second study it was included at 7mg/kg. These studies showed the efficacy of the combination was >98% against adult luminal stages of S. vulgaris, S. edentatus, cyathostomes, migratory stages of S. edentatus and third instar stages of Gasterophilus intestinalis. Efficacy against mucosal stages of cyathostomes (about 64%) and arterial stages of S. vulgaris (71%) was poor. Inclusion of bithionol at 7mg/kg achieved an efficacy of 100% against A. perfoliata whereas at 5mg/kg the efficacy was only 84.6%.

In these studies the following species were identified: two species of Strongylus (S. vulgaris and S. edentatus); three species of Triodontophorus (T. serratus, T. minor and T. tenuicollis); and twelve species of cyathostomes (Cyathostomum coronatum, Cyathostomum labiatum, Cyathostomum catinatum, Cylicocyclus nassatus, Cylicocyclus leptostomus, Cylicocyclus radiatus, Cylicocyclus insigne, Cylicostephanus poculatus, Cylicostephanus minutus, Cylicostephanus calicatus, Cylicostephanus longibursatus and Cylicostephanus goldi).
ACKNOWLEDGEMENTS

I am grateful and especially indebted to my chief supervisor, Dr. Bill Pomroy, for his scholastic guidance, continuous encouragement, valuable suggestions, constructive criticism, keen interest, patience and tolerance as well as friendly behavior during my study and the preparation of thesis. I would like to thank to Dr. Tony Charleston for his humour, willing assistance, valuable suggestion and helpful advice throughout the work which inspired and stimulated me during this study.

I am grateful to the Virbac Laboratories Limited (NZ), for providing me with the opportunity, facilities, financial and technical support to undertake this study. In particular, I wish to thank Dr. Evan L. Key for his continuous support, incentive, technical assistance and friendly behavior throughout this study. I also wish to express my special gratitude to Mr. Paul J. Martin, Mr. Joseph F. Reagan, Mr. Ian Pryor and Mr. Mark Watson for their encouragement and support.

This research was jointly funded by the Virbac Laboratories Limited (NZ) and Foundation for Research, Science and Technology. I am highly grateful to them for awarding me the Graduate Research in Industry Fellowship (GRIF) scholarship, which enabled me to carry out this study. I also express my thanks to Novartis for my personal support.

I would like to express my gratitude to Barbara Adlington and Shirley Calder for their technical assistance, support and advice during the course of my study.

I am grateful to my parents, brothers, sisters and my wife Mrs. Thamina Islam and son Mst. Tanvir Islam.

I am grateful to those who support and encouraged me in one way or other during the course of this study.
TABLE OF CONTENTS

1.1 CHAPTER ONE: GENERAL INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION 1
1.2 LITERATURE REVIEW 3
1.2.1 Anthelmintic 3
1.2.1.1 Benzimidazole 3
1.2.1.1.1 Mode of action 3
1.2.1.1.2 Efficacy of benzimidazole 4
1.2.1.1.3 Mechanism of resistance 7
1.2.1.2 Avermectins 8
1.2.1.2.1 Mode of action 8
1.2.1.2.2 Efficacy of avermectins 9
1.2.1.2.3 Mechanism of resistance 13
1.2.1.3 Bithionol 13
1.2.1.3.1 Mode of action 14
1.2.1.3.2 Efficacy of bithionol 14
1.2.1.4 Combination drugs 16
1.2.2 Anthelmintic resistance 17
1.2.3 In vitro test for detection of anthelmintic resistance 19
1.2.3.1 Egg hatch assays for benzimidazoles 19
1.2.3.2 Egg hatch assay for levamisole 20
1.2.3.3 Larval paralysis and motility test 21
1.2.3.4 Larval development assay 23
1.2.3.5 Adult development assay 25
1.2.3.6 Tubulin binding assay 26
1.2.3.7 Colorimetric assay 26
1.2.3.8 Genetic assays 26
1.2.4 Parasites of horses 27
1.2.4.1 Genus: Strongylus 27
1.2.4.1.1 Strongylus vulgaris 27
1.2.4.1.2 Strongylus edentatus 28
1.2.4.1.3 Strongylus equinus 29
1.2.4.2 Cyathostomes 30
1.2.4.3 Trichostrongylus axei 31
1.2.4.4 Parascaris equorum 32
1.2.4.5 Strongyloides westeri 33
1.2.4.6 Oxyuris equi 34
1.2.4.7 Dictyocaulus arnfieldi 35
1.2.4.8 Gasterophilus spp. 35
1.2.4.8.1 Gasterophilus intestinalis 36
1.2.4.8.2 Gasterophilus nasalis 36
1.2.4.9 Anoplocephala spp. 37

CHAPTER TWO: DOSE CONFIRMATION STUDY

2.1 Introduction 39
2.2 Materials and methods 39
2.2.1 Animals 39
2.2.2 Test site 40
2.2.3 Test substance 40
2.2.4 Study design 40
2.2.5 Treatment regime 41
2.2.6 Collection of samples and observations 42
2.2.7 Statistical evaluation 43
2.3 Results 44
2.3.1 Anthelmintic drenched dose 44
2.3.2 Clinical observations 44
2.3.3 Parasitological findings 45
2.3.3.1 Strongylid egg counts 45
2.3.3.2 Parasite counts 46
2.3.3.2.1 Non-cyathostome luminal parasite counts 46
2.3.3.2.2 Luminal cyathostome nematode counts 49
2.3.3.2.3 Mucosal cyathostome nematode counts 50
2.3.3.2.4 Peritoneal and arterial parasite stages 52
2.4 Discussion 54

CHAPTER THREE - PRINCIPAL EFFICACY STUDY

3.1 Introduction 58
3.2 Materials and methods 58
3.2.1 Animals 58
3.2.2 Test site 58
3.2.3 Test substance 58
3.2.4 Study design 59
3.2.5 Treatment regime 60
3.2.6 Collection of samples and observations 60
3.2.7 Statistical evaluation 60
3.3 Results 60
3.3.1 Anthelmintic drenched dose 60
3.3.2 Clinical observations 61
3.3.3 Parasitological findings 62
3.3.3.1 Strongylid egg counts 62
3.3.3.2 Parasites counts 63
3.3.3.2.1 Non-cyathostome luminal parasite counts 63
3.3.3.2.2 Luminal cyathostome nematode counts 65
3.3.3.2.3 Mucosal cyathostome nematode counts 67
3.3.3.2.4 Peritoneal and arterial parasite stages 69
3.4 Discussion 71

CHAPTER FOUR - TAXONOMY

4.1 Introduction 75
4.2 Materials and methods 75
4.3 Identification 76
4.3.1 Genus: Strongylus 76
4.3.1.1 Species: Strongylus vulgaris 76
4.3.1.2 Species: Strongylus edentatus 77
4.3.2 Genus: Triodontophorus 77
4.3.2.1 Species: *Triodontophorus serratus* 77
4.3.2.2 Species: *Triodontophorus tenuicollis* 77
4.3.2.3 Species: *Triodontophorus minor* 77
4.3.3 Genus: *Cyathostomum* 77
4.3.3.1 Species: *Cyathostomum coronatum* 78
4.3.3.2 Species: *Cyathostomum labiatum* 78
4.3.3.3 Species: *Cyathostomum catinatum* 78
4.3.4 Genus: *Cylicocyclus* 78
4.3.4.1 Species: *Cylicocyclus nassatus* 79
4.3.4.2 Species: *Cylicocyclus insigne* 79
4.3.4.3 Species: *Cylicocyclus leptostomus* 79
4.3.4.4 Species: *Cylicocyclus radiatus* 80
4.3.5 Genus: *Cylicostephanus* 80
4.3.5.1 Species: *Cylicostephanus poculatus* 80
4.3.5.2 Species: *Cylicostephanus minutus* 80
4.3.5.3 Species: *Cylicostephanus calicatus* 81
4.3.5.4 Species: *Cylicostephanus longibursatus* 81
4.3.5.5 Species: *Cylicostephanus goldi* 81
4.4 Summary of species identified 99
4.5 Discussion 102

CHAPTER FIVE – LARVAL DEVELOPMENT ASSAY OPTIMIZATION

5.1 Introduction 104
5.2 Materials and methods 104
5.2.1 Nematode egg recovery technique 104
5.2.2 Larval development assay 104
5.2.3 Data analysis 105
5.3.1 Optimization experiment one 105
5.3.1.1 Aim 105
5.3.1.2 Materials and methods 105
5.3.1.3 Results 105
5.3.1.4 Conclusion 106
5.3.2 Optimization experiment two 106
5.3.2.1 Aim 106
5.3.2.2 Materials and methods 106
CHAPTER SIX - SURVEY OF ANTHELMINTIC SUSCEPTIBILITY USING A LARVAL DEVELOPMENT ASSAY

6.1 Introduction 116
6.2 Materials and methods 116
6.2.1 Animals 116
6.2.1.1 Kaimanawa feral horses 116
6.2.1.2 Farm horses 117
6.2.2 Anthelmintic 117
6.2.3 Nematode egg recovery technique 117
6.2.4 Larval development assay 118
6.2.5 Data analysis 118
6.3 Results 119
6.4 Discussion 121

CHAPTER SEVEN – GENERAL DISCUSSION

7.1 General discussion 124

APPENDICES 127

BIBLIOGRAPHY 213

APPENDICES

Appendix I Standard Operating Procedures 127
Appendix II The Larval development Assay 139
Appendix III Data from the Dose Confirmation Study with AOB 198 147
Appendix IV Data from the Principal Efficacy Study with AOB 698 167
Appendix V Raw Data of Different Species 188
Appendix VI Raw Data for Larval Development Assay (LD₉₀ and Co-efficient values of determine by anthelmintics) 191
Appendix VII The proportion L₉₀ values by animal by anthelmintic and mean control 195
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1a,b</td>
<td>Photo of Strongylus vulgaris</td>
<td>82</td>
</tr>
<tr>
<td>4.2a,b</td>
<td>Photo of Strongylus edentatus</td>
<td>83</td>
</tr>
<tr>
<td>4.3a,b</td>
<td>Photo of Triodontophorus serratus</td>
<td>84</td>
</tr>
<tr>
<td>4.4a,b</td>
<td>Photo of Triodontophorus tenuicollis</td>
<td>85</td>
</tr>
<tr>
<td>4.5a,b</td>
<td>Photo of Triodontophorus minor</td>
<td>86</td>
</tr>
<tr>
<td>4.6a,b</td>
<td>Photo of Cyathostomum coronatum</td>
<td>87</td>
</tr>
<tr>
<td>4.7a,b</td>
<td>Photo of Cyathostomum labiatum</td>
<td>88</td>
</tr>
<tr>
<td>4.8a,b</td>
<td>Photo of Cyathostomum catinatum</td>
<td>89</td>
</tr>
<tr>
<td>4.9a,b</td>
<td>Photo of Cylicocyclus nassatus</td>
<td>90</td>
</tr>
<tr>
<td>4.10a,b</td>
<td>Photo of Cylicocyclus insigne</td>
<td>91</td>
</tr>
<tr>
<td>4.11a,b</td>
<td>Photo of Cylicocyclus leptostomus</td>
<td>92</td>
</tr>
<tr>
<td>4.12a,b</td>
<td>Photo of Cylicocyclus radiatus</td>
<td>93</td>
</tr>
<tr>
<td>4.13a,b</td>
<td>Photo of Cylicostephanus poculatus</td>
<td>94</td>
</tr>
<tr>
<td>4.14a,b</td>
<td>Photo of Cylicostephanus minutus</td>
<td>95</td>
</tr>
<tr>
<td>4.15a,b</td>
<td>Photo of Cylicostephanus calicatus</td>
<td>96</td>
</tr>
<tr>
<td>4.16a,b</td>
<td>Photo of Cylicostephanus longibursatus</td>
<td>97</td>
</tr>
<tr>
<td>4.17a,b</td>
<td>Photo of Cylicostephanus goldi</td>
<td>98</td>
</tr>
<tr>
<td>4.18a</td>
<td>The mean proportion by organ of cyathostome species in control horses</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>of the Dose Confirmation and Principal Efficacy Study trials (n = 3 horses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>per trial)</td>
<td></td>
</tr>
<tr>
<td>4.18b</td>
<td>The mean proportion by organ of cyathostome species in control horses</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>of the Dose Confirmation and Principal Efficacy Study trials (n = 3 horses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>per trial)</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Mean proportion of cyathostome species in control horses</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>of the Dose Confirmation Study and Principal Efficacy Study trials (n = 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>horses per trial)</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Total cyathostome worm counts in both the Dose Confirmation Study and</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Principal Efficacy Study trials (n = 3 control horses per trial)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.21 The mean proportion by organ of cyathostome species in treated horses of the Principal efficacy Study trial (n = 3 horses)

Figure 6.1 A typical dose response curve relating the proportion of developed L₃ to logarithm concentration of ivermectin

Figure 6.2 LD₅₀ frequency values of ivermectin aglycone in ng/ml of agar

Figure 6.3 LD₅₀ frequency values of ivermectin in ng/ml of agar

Figure 6.4 LD₅₀ frequency values of thiabendazole in ng/ml of agar
LIST OF TABLES

Table 1.1 Reports of the efficacy of oxibendazole at 10mg/kg against susceptible nematodes in horses using faecal egg counts and larval cultures

Table 1.2 Efficacy of oxibendazole at 10mg/kg against different parasites in horses in controlled slaughter studies by different authors

Table 1.3 Reports of the efficacy of ivermectin at 0.2mg/kg against nematodes in horses using faecal egg counts and larval cultures

Table 1.4 Efficacy of ivermectin at 0.2mg/kg against different parasites in horses in controlled slaughter studies by different authors

Table 1.5 Efficacy of moxidectin at 0.4g/kg against different parasites in horses in controlled slaughter studies by different authors

Table 1.6 Efficacy of bithionol against cestodes in different animals by different authors

Table 2.1 Mean numbers of faecal strongylid egg counts of the Control Group and the Treated Group horses

Table 2.2 Non-cyathostome parasites recovered at necropsy from the Control Group and the Treated Group horses

Table 2.3 Means numbers of luminal non-cyathostome parasites recovered from the Control Group and the Treated Group horses; efficacy by species

Table 2.4 Numbers of luminal cyathostome nematodes recovered at necropsy from the Control Group and the Treated Group horses

Table 2.5 Arithmetic and geometric means of cyathostome nematode numbers recovered from the Control Group and the Treated Group horses

Table 2.6 Larvae recovered at necropsy after transillumination and digestion methods of counting

Table 2.7 Mean numbers of cyathostome nematode larvae recovered from intestinal mucosa of the Control Group and the Treated Group horses by mucosal digestion or transillumination

Table 2.8 Numbers of Strongylus spp. larvae recovered from mesenteric arterial dissections and peritoneal sites of the Control Group and the Treated Group horses
Table 2.9 Mean numbers of *Strongylus* spp. larvae recovered from arterial dissections and peritoneal sites

Table 3.1 Faecal strongylid egg counts of the Control Group and the Treated Group horses

Table 3.2 Non-cyathostomine nematodes recovered from the intestinal lumen at necropsy from the Control Group and the Treated Group horses

Table 3.3 Arithmetic and geometric means of luminal non-cyathostome parasites recovered from the Control Group and the Treated Group horses; efficacy by species

Table 3.4 Number of cyathostome (small strongyles) recovered at necropsy from the Control Group and the Treated Group horses

Table 3.5 Arithmetic and geometric mean numbers of cyathostomes recovered from the intestinal lumen of the Control and Treated Group horses

Table 3.6 Larvae recovered at necropsy after transillumination and digestion methods of counting

Table 3.7 Means of cyathostome larvae recovered from the intestinal mucosa of control and treated horses by mucosal digestion or transillumination

Table 3.8 Numbers of migrating *Strongylus* spp. recovered from arterial dissections and sub-peritoneal sites of the Control Group and the Treated Group horses

Table 3.9 Mean numbers of *Strongylus* spp. larvae recovered from arterial dissections and peritoneal sites

Table 5.1 Development rate of each stage using LDA test

Table 5.2 Development rate of each stage using LDA test

Table 5.3 Development rate of each stage using LDA test

Table 5.4 Development rate of each stage using LDA test

Table 5.5 Development rate of each stages in different concentrations of ivermectin and in control wells

Table 5.6 Development rate of each stages in different concentrations of ivermectin aglycone and in control wells

Table 5.7 Development rate of each stages in different concentrations of thiabendazole and in control wells
List of Abbreviations

μg, microgram
μl, microliter
μm, micrometer
μM, micromolar
AM, arithmetic mean
AOB, abamectin, oxibendazole, bithionol
AVM, Avermectin
BZ, Benzimidazole
C, Control
Ca, Canterbury
Ch, Christchurch
cm, Centimeter
CMA, Cranial mesenteric artery
D, dorsal
DCS, Dose confirmation study
DMSO, Dimethyl sulfoxide
Dy, Drury
E, Exported horse
ED₅₀, The dose that prevents 50% of the eggs to hatch
ELC, External leaf crown
epg, eggs per gram
F, Farm
FEC, faecal egg count
g, gram
GM, geometric mean
H, Hastings
HCl, hydrochloric acid
HE, highly effective
ILC, Internal leaf crown
IVM, Ivermectin
K, Kaimanawa
kg, kilogram
L, liter
L₀ First stage larvae
L₁ Second stage larvae
L₂ Third stage larvae
L₃ Fourth stage larvae
LD₅₀ The dose that prevents 50% of the eggs develop into L₃ larvae
LDA Larval development assay
LE less effective
mg milligram
MgSO₄ magnesium sulphate
ml milliliter
mm millimeter
NaCl sodium chloride
ND not done
NE not effective
NM not mentioned
No. number
NTR Not recorded
P Palmerston North
p.p.m. Parts per million
PES Principal efficacy study
r² coefficient of determination
RF Resistance factor
SD Standard deviation
SF susceptibility factor
SOP Standard Operating Procedure
T Treated
Ta Takanini
TBZ Thiabendazole
V. ventral
wt weight