Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECTS OF β-GLUCAN AND NON-STARCH POLYSACCHARIDES ON ILEAL AND FAECAL ENERGY, NITROGEN, ILEAL APPARENT AND TRUE AMINO ACID DIGESTIBILITY IN THE GROWING PIG

JAE CHEOL KIM

1999
EFFECTS OF β-GLUCAN AND NON-STARCH POLYSACCHARIDES ON ILEAL AND FAECAL ENERGY, NITROGEN, ILEAL APPARENT AND TRUE AMINO ACID DIGESTIBILITY IN THE GROWING PIG

A thesis presented in partial fulfillment of the requirements for the degree of Master of Science at Massey University, Palmerston North, New Zealand

JAE CHEOL KIM

1999
Abstract

It is generally accepted that soluble non-starch polysaccharides (NSP) in cereals such as barley have a negative influence on the digestibility of energy, nitrogen, and amino acids in broiler chickens. However, the evidence in growing pigs for a similar effect of barley NSP on nutrient digestibility is less convincing. A major reason for this is that detailed investigations into the effect of barley NSP, predominantly β-glucan, have not been conducted. Therefore, the overall aim of this study was to elucidate the effect of NSP from a cohort of Australian barleys on the ileal and faecal digestibility of energy, nitrogen, and amino acids in growing pigs.

This study was a collaborative project with the South Australian Research and Development Institute (SARDI). Eleven Australian barley varieties (including a control barley) were fed as the sole source of protein and energy to Landrace X Large White male pigs (35-55kg) fitted with a T-piece PVC cannula. Celite® was added as the indigestible marker. All diets were cold-press pelleted. Test diets were given to pigs based on a Latin Square design for five days prior to a two day collection period. An enzymically-hydrolysed casein (EHC) diet was fed to pigs for quantitative determination of endogenous amino acid flows at the terminal ileum. Ileal nitrogen, energy, apparent and true amino acid digestibilities were determined with reference to the marker. Faecal nitrogen and energy digestibilities were determined in six of the barley diets that were examined in New Zealand. An experiment with five barley varieties and one control barley was conducted in South Australia, and the same experimental protocol was followed at Massey University.

The range in nutrient composition of Australian barley varieties was 7.6-14.2% CP, 12-21% NDF, 3-6% ADF, 0.5-1.5% Lignin, 2-4% total β-glucan, 0.21-0.34% soluble β-glucan, and 6-12% total amino acids on a dry matter basis. The six barleys that were examined in New Zealand were analysed for NSP and contained 11-17% total NSP, 7-11% insoluble NSP, and 2-7% soluble NSP. The contents of total NSP, soluble NSP, and soluble β-glucan were significantly correlated to CP content in barley (p<0.01, p<0.001, p<0.05, p<0.01, respectively).

The ileal and faecal energy digestibilities of the barleys ranged from 53.6 to 71.0% and from 79.2 to 82.5%, respectively. Ileal and faecal nitrogen digestibilities ranged from 52.5 to 76.0% and from 64.3 to 75.6%, respectively. The mean apparent and
true amino acid digestibilities were 69.7% and 84.1%, respectively. The mean endogenous Lysine flow determined under conditions of EHC/Ultrafiltration was 472μg/g dry matter intake.

Correlation analysis between the chemical composition of the barleys and nutrient digestibility found significant positive relationships between ileal nitrogen digestibility and crude protein content ($p<0.05$), soluble β-glucan ($p<0.05$), soluble NSP ($p<0.05$), and faecal nitrogen digestibility ($p<0.05$). Ileal energy digestibility was negatively correlated to insoluble NSP ($p<0.05$). No correlation was found between the chemical composition of barley and faecal nitrogen digestibility, while faecal energy digestibility was negatively correlated with NDF, ADF, and hemicellulose ($p<0.05$). The apparent ileal digestibility of essential amino acids was positively ($p<0.05 - 0.01$) correlated to ileal nitrogen digestibility, whereas no relationship ($p>0.05$) was found between true digestibility of essential amino acids and chemical composition of barley.

Mathematical investigations found that the ileal ($r^2=0.66$) and faecal energy digestibility ($r^2=0.73$) could be predicted from the concentration of insoluble NSP and hemicellulose contents of barleys, respectively. Ileal nitrogen digestibility ($r^2=0.80$) could be predicted from the concentration of CP and faecal nitrogen digestibility. Also, apparent ileal digestible lysine content ($r^2=0.99$) could be predicted from faecal nitrogen digestibility along with the content of lysine in the barley.

The anti-nutritive effects of NSP of Australian barleys were not observed in apparent ileal and faecal digestibilities of energy, nitrogen, and amino acids. However, a consistent tendency of the negative influence ($p<0.05 - p>0.05$) of NSP to true amino acid digestibility was demonstrated.
ACKNOWLEDGEMENTS

My sincere gratitude is expressed to my supervisor, Dr. J.R.Pluske and Dr. P.C.H.Morel for their commitment, guidance and encouragement throughout the study.

I would also like to thank Dr. R.J.van Barnevald of the South Australian Research and Development Institute (SARDI) for his invaluable contribution to this project, especially technical assistance for surgery of pigs. This study was a collaborate project between SARDI and Massey University.

Appreciative thank is also due to Dr. I.G.Andrew of the Department of Molecular Bioscience for the analysis of non-starch polysaccharides.

My sincere gratitude is extended to Mr. S.H.Voon, Mrs. M.Zou, Mrs. F.Chung, Mrs. M.Russell, and Mrs. F.Jackson for their technical assistance throughout the chemical analysis.

I would also like to thanks Mr. B.Camden and Mr. E.James for their technical assistance throughout the animal experiment.

The assistance of Miss S.M.Hodgkinson for ultrafiltration of EHC ileal samples is acknowledged. The encouragement of the postgraduate students and staffs in the Institute of Food Nutrition and Human Health at Massey University is gratefully acknowledged.

Special thanks are due to my parents, brothers and their wives, and sister for their love, encouragement, and support throughout the study.

Finally, I am indebted to my wife, Mi Sook Rho, my son, Hyun, and my daughter, Suha, for their unconditional love and endless patience without which I could not achieved so far.
TABLE OF CONTENTS

Abstract I
Acknowledgements III
List of Tables VIII
List of Figures X

GENERAL INTRODUCTION 1

CHAPTER 1
Review of Literature 3

1.1 Introduction 3
1.2 Digestion and absorption in the pig 3
 1.2.1 Morphology of the digestive tract 3
 1.2.2 Digestion in the pig 5
 1.2.2.1 Carbohydrate digestion 5
 1.2.2.2 Protein digestion 7
 1.2.3 Absorption in the pig 8
 1.2.3.1 Carbohydrate absorption 8
 1.2.3.2 Protein absorption 9
1.3 Energy evaluation in feedstuffs for the pig 10
 1.3.1 Concepts of energy value 11
 1.3.1.1 Gross energy (GE) 11
 1.3.1.2 Digestible energy (DE) 11
 1.3.1.3 Metabolisable energy (ME) 12
 1.3.1.4 Net energy (NE) 12
 1.3.2 In vivo determination of energy values in feedstuffs 13
 1.3.2.1 Digestible energy (DE) 13
 1.3.2.2 Metabolisable energy (ME) 14
 1.3.2.3 Net energy (NE) 14
1.4 Protein and AA evaluation in feedstuffs for the pig 15
 1.4.1 Concepts of protein and AA digestibility values 15
 1.4.1.1 Faecal versus ileal digestibility 15
 1.4.1.2 Ileal digesta collection method 16
• Slaughter technique
• Cannulation technique

1.4.1.3 Limitations of the ileal digesta collection method
1.4.1.4 Factors affecting the accuracy of ileal AA digestibility
• Digesta collection method
• Food intake
• Dietary fibre
• Dietary protein concentration
• Anti-nutritional factors
• Processing

1.4.1.5 Apparent and true amino acid digestibility
1.4.1.6 Endogenous nitrogen and ileal AA secretion in monogastric animals
1.4.1.7 Determination of the endogenous excretion of protein
• Protein-free method
• Regression method
• Enzyme hydrolysed casein (EHC)/Ultra-filtration
• Homoarginine method
• Isotope dilution techniques

1.5 Chemistry and anti-nutritive effect of cereal non-starch polysaccharides (NSP) in monogastric animal nutrition
1.5.1 Chemical characteristics of barley
1.5.1.1 Factors influencing the chemical composition of barley
1.5.1.2 Nutritional characteristics of barley
1.5.2 Definition and classification of the non-starch polysaccharides (NSP) found in wheat and barley
1.5.3 The structure and chemistry of the major NSP present in wheat and barley
1.5.3.1 β-glucans
1.5.3.2 Arabinoxylans (Pentosans)
1.5.4 Relationship between chemical structure and anti-nutritive effects of NSP in monogastric animals
1.5.4.1 Viscosity and water holding capacity
1.5.4.2 Physiological effects of NSP
• Anti-nutritional effects of NSP on starch digestion
• Anti-nutritional effects of NSP on protein digestion 47
• Effects of NSP on nutrients absorption 47
• Interaction between viscosity and gut microflora 48
1.5.5 Anti-nutritive effects of NSP in the pigs 49
1.5.5.1 The anti-nutritive effects of arabinoxylans (pentosans) from wheat in pigs 49
1.5.5.2 The anti-nutritive effects of β-glucans from barley in pigs 51
1.5.6 Different responses to anti-nutritive effect of NSP between species 53
1.6 Conclusion 54

CHAPTER 2
Effects of β-glucan and NSP contents of Australian barley on ileal and faecal energy, nitrogen, ileal apparent and true amino acid digestibility in 35-55kg growing pigs

2.1 Introduction 56
2.2 Materials and Methods 58
 2.2.1 Animals, Housing and Surgery 58
 2.2.2 Diet and experimental Design 59
 2.2.3 Experimental Procedures 62
 2.2.4 Chemical Analysis 62
 2.2.5 Data Analysis 64
2.3 Results 66
 2.3.1 Chemical composition of Australian barley 66
 2.3.2 Ileal and faecal energy digestibility 68
 2.3.3 Ileal and faecal nitrogen digestibility 70
 2.3.4 Apparent ileal amino acid digestibility 71
 2.3.5 Endogenous amino acid flows (EAAF) 74
 2.3.6 True amino acid digestibility 75
2.4 Discussion 77
 2.4.1 Apparent ileal and faecal energy digestibility 77
 2.4.2 Apparent ileal and faecal nitrogen digestibility 78
 2.4.3 Endogenous amino acid flows (EAAF) 80
 2.4.4 Apparent and true amino acid digestibility 82
2.4.5 Chemical composition of Australian barley

CHAPTER 3
General Conclusion

References
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>28</td>
</tr>
<tr>
<td>1.2</td>
<td>30</td>
</tr>
<tr>
<td>1.3</td>
<td>38</td>
</tr>
<tr>
<td>1.4</td>
<td>40</td>
</tr>
<tr>
<td>1.5</td>
<td>41</td>
</tr>
<tr>
<td>1.6</td>
<td>41</td>
</tr>
<tr>
<td>2.1</td>
<td>60</td>
</tr>
<tr>
<td>2.2</td>
<td>61</td>
</tr>
<tr>
<td>2.3</td>
<td>67</td>
</tr>
<tr>
<td>2.4</td>
<td>68</td>
</tr>
<tr>
<td>2.5</td>
<td>69</td>
</tr>
<tr>
<td>2.6</td>
<td>70</td>
</tr>
</tbody>
</table>

1.1 Summery of literature values for endogenous ileal AA excretion (g kg\(^{-1}\) DM intake) in the pig determined under protein-free alimentation

1.2 Summery of literature values for endogenous ileal AA excretion (g kg\(^{-1}\) DM intake) in the pig determined by the regression method

1.3 Typical amino acid contents of barley and corn

1.4 Carbohydrate content (g/kg DM) of a barley based diet and resultant digesta

1.5 Typical contents (% DM) of NSP in wheat and barley

1.6 Variation in content and composition of major NSP (% DM) in Swedish barley (n=16) and wheat (n=24) samples

2.1 Composition of experimental diets

2.2 Chemical composition of the experimental diet

2.3 Mean ileal and faecal digestibility of energy (%) of Australian barleys determined in 35-55kg pigs

2.4 Mean ileal and faecal digestible energy contents (MJ/kg DM) of Australian barleys determined in 35-55kg pigs

2.5 Correlation coefficients between various chemical characteristics of Australian barleys and apparent ileal and faecal digestibility of energy

2.6 Mean ileal and faecal nitrogen digestibility (%) of Australian barleys determined in 35-55kg pigs
2.7 Correlation coefficients between various chemical characteristics of Australian barleys and apparent ileal and faecal digestibility of N

2.8 Mean apparent ileal digestibility values (%) of amino acids in Australian barleys determined with 35-55kg pigs

2.9 Correlation coefficients between various chemical characteristics (% DM) of Australian barleys and apparent ileal digestibility of essential amino acids

2.10 Prediction equation of ileal digestibility of essential amino acids from ileal nitrogen digestibility

2.11 Mean endogenous amino acid flow (mg/g⁻¹ dry matter intake) in 35-55kg pigs determined under EHC/Ultrafiltration method, and comparisons with literature values

2.12 Mean apparent ileal digestibility values (%) of amino acids in Australian barleys determined under EHC/Ultrafiltration method with 35-55kg pigs

2.13 Correlation coefficients between various chemical characteristics (% DM) of Australian barleys and true ileal digestibility of essential amino acids
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Monosaccharides commonly found in plant NSP</td>
<td>39</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Major soluble NSP of barley: β-(1→3),(1→4) D-glucan</td>
<td>42</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Major soluble NSP of wheat: arabinoxylan</td>
<td>43</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>The relationships between total NSP (TNSP), soluble NSP (SNSP), total β-glucan (Tb-glucan), and soluble β-glucan (Sb-glucan) to crude protein (CP) content in Australian barleys</td>
<td>66</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Fitted line plot of endogenous amino acid flow (EAAF mg/kg DMI) and endogenous lysine flow (ELF mg/kg DMI) against live weight (kg) of pigs</td>
<td>75</td>
</tr>
</tbody>
</table>