Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A COMPARATIVE STUDY
OF THE EFFECT OF TWO STOCKING LEVELS ON
WOOL FOLLICLE DEVELOPMENT AND WOOL PRODUCTION
OF THE NEW ZEALAND ROMNEY SHEEP

A thesis
presented in partial fulfilment
of the requirement for the Degree
of
Master of Agricultural Science in Animal Science
at
Massey University

R. M. W. SUMNER
January 1969
ACKNOWLEDGEMENTS

The author is indebted to Dr. G.A. Wickham for assistance and encouragement during the carrying out of this trial and to Dr. F.R.M. Cockrem for both statistical advice and the writing of the statistical computer programmes.

Thanks are extended to G. Black, Miss K. Nikolaison, Miss L. Sigley and B. Thatcher for technical assistance; to M. Divehall, R. Fairhall and P. Whitehead for co-operation in the management of the animals; and to the library staff for locating reference material.

The work was carried out while the author held a Wool Bursary from the New Zealand Department of Agriculture.
TABLE OF CONTENTS

INTRODUCTION

1 **REVIEW OF LITERATURE.**

 A. **WOOL FOLLICLE DEVELOPMENT.**
 1. The Developmental Pattern of the Wool Follicle. 3
 2. The Developmental Pattern of the Follicle Group. 5
 3. The Influence of Nutrition on Follicle Development. 9

 B. **SEASONAL WOOL GROWTH.**
 1. Historical - Pre 1949. 15
 2. Seasonal Wool Growth Studies under Grazing Conditions. 15
 3. Seasonal Wool Growth Studies under Conditions of Controlled Feeding. 18
 4. The Control of the Seasonal Rhythm of Wool Growth. 21
 5. The Seasonal Rhythm of Associated Glands. 22

 C. **WOOL PRODUCTION AND FLEECE CHARACTERISTICS.**
 1. The Effect of Increased Stocking Levels on Wool Production and Fleece Characteristics. 24
 2. Phenotypic Inter-relationships between Various Fleece Characteristics. 27

2 **DESCRIPTION OF THE GRAZING UNITS AND THEIR MANAGEMENT.** 29

3 **THE EFFECT OF TWO DIFFERENT GRAZING ENVIRONMENTS ON FOLLICLE DEVELOPMENT.**

 A. **INTRODUCTION.** 33
B. MATERIALS AND METHODS.

1. Selection of Animals. 35
2. Sampling. 36
3. Histological Techniques. 38
4. Measurement of the Follicle Population. 38
5. Statistical Techniques. 39

C. RESULTS.

1. 1966 Lambs. 41
2. 1967 Lambs. 53

D. DISCUSSION.

4. THE EFFECT OF TWO DIFFERENT GRAZING ENVIRONMENTS ON THE SEASONAL PATTERN OF WOOL GROWTH.

A. INTRODUCTION. 64

B. MATERIALS AND METHODS.

1. Selection of Animals. 66
2. Sampling. 67
3. Soaking. 67
4. Fibre Length Estimation. 68
5. Fibre Diameter Estimation. 68
6. Statistical Techniques. 68

C. RESULTS.

1. Ewe Hogget Data. 69
2. Adult Ewe Data. 82

D. DISCUSSION. 102

5. THE EFFECT OF TWO DIFFERENT GRAZING ENVIRONMENTS ON WOOL PRODUCTION AND FLEECE CHARACTERISTICS.

A. INTRODUCTION. 106
B. MATERIALS AND METHODS.

1. Ewe Hogget Fleece Sampling.
2. Shearing.
3. Pre-Scouring Fleece Characteristic Grading.
4. Scouring.
5. Post-Scouring Fleece Characteristic Grading.
6. Fibre Diameter Estimation.
7. Statistical Techniques.

C. RESULTS.

1. Ewe Hogget Data.
2. Adult Ewe Data.

D. DISCUSSION.

E. SUMMARY AND CONCLUSIONS.

BIBLIOGRAPHY.

APPENDICES.

II. The Recalibration of an Airflow Apparatus Following a Reduction of the Size of the Chamber.
III. Descriptions of the Fleece Characteristic Grading System.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Stages of development of (a) primary wool follicles and (b) original secondary wool follicles.</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>A follicle group.</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>(a) Monthly rainfall and (b) mean monthly temperature.</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>New born lamb following the taking of a skin section.</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Photomicrograph of skin section at birth of an Intensive twin animal born to a 2 year old dam.</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Seasonal variation in body weight. (a) Ewe hoggets. (b) Adult ewes.</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Seasonal variation in wool weight per unit area. (a) Ewe hoggets. (b) Adult ewes.</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Seasonal variation in (a) adult ewe fibre length and (b) adult ewe fibre diameter.</td>
<td>91</td>
</tr>
<tr>
<td>II.1</td>
<td>The method of adapting an airflow apparatus to estimate the average fibre diameter of a 1g wool sample.</td>
<td>142</td>
</tr>
<tr>
<td>II.2</td>
<td>The relation between the 2g diameter and the 1g diameter.</td>
<td>144</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The relation between the physical environment and the output of associated glands.</td>
<td>23</td>
</tr>
<tr>
<td>1.2</td>
<td>Phenotypic correlations between fleece characteristics.</td>
<td>28</td>
</tr>
<tr>
<td>2.1</td>
<td>Number of stock grazed on the experimental units as at March of each year.</td>
<td>30</td>
</tr>
<tr>
<td>3.A</td>
<td>1966 Lambs; Skin sample groups.</td>
<td>35</td>
</tr>
<tr>
<td>3.B</td>
<td>1967 Lambs; Skin sample groups.</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Date and mean age of animals at each sampling.</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>1966 Lambs; Group means for body weight.</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>1966 Lambs; Mean squares for body weight.</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>1966 Lambs; Group means for primary follicle density.</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>1966 Lambs; Mean squares for primary follicle density.</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>1966 Lambs; Group means for secondary follicle density.</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>1966 Lambs; Mean squares for secondary follicle density.</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>1966 Lambs; Group means for (\frac{Sf}{Pt}) ratio.</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>1966 Lambs; Mean squares for (\frac{Sf}{Pt}) ratio.</td>
<td>52</td>
</tr>
<tr>
<td>3.10</td>
<td>1967 Lambs; Body weight. (a) Group means. (b) Mean squares.</td>
<td>54</td>
</tr>
<tr>
<td>3.11</td>
<td>1967 Lambs; Primary follicle density. (a) Group means. (b) Mean squares.</td>
<td>55</td>
</tr>
<tr>
<td>3.12</td>
<td>1967 Lambs; Secondary follicle density. (a) Group means. (b) Mean squares.</td>
<td>57</td>
</tr>
<tr>
<td>3.13</td>
<td>1967 Lambs; (\frac{Sf}{Pt}) ratio. (a) Group means. (b) Mean squares.</td>
<td>58</td>
</tr>
<tr>
<td>4.A</td>
<td>Ewe hogget monthly sample groups.</td>
<td>66</td>
</tr>
<tr>
<td>4.B</td>
<td>Adult ewe monthly sample groups.</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Sampling dates.</td>
<td>70</td>
</tr>
</tbody>
</table>
4.2 Ewe hogget; Mean squares for body weight. 72
4.3 Ewe hogget; Mean squares from within group regression analysis of body weight. 74
4.4 Ewe hogget; Mean squares from an analysis of covariance of body weight. 75
4.5 Ewe hogget; Adjusted body weight means. 76
4.6 Ewe hogget; Mean squares from within group regression analysis of clean wool weight. 79
4.7 Ewe hogget; Mean squares from an analysis of covariance of clean wool weight. 80
4.8 Ewe hogget; Adjusted clean wool weight means. 81
4.9 Adult ewe; Mean squares for body weight. 83
4.10 Adult ewe; Mean squares from within group regression analysis of body weight. 84
4.11 Adult ewe; Mean squares from an analysis of covariance of body weight. 85
4.12 Adult ewe; Adjusted body weight means. 86
4.13 Adult ewe; Mean squares from within group regression analysis of clean wool weight. 88
4.14 Adult ewe; Mean squares from an analysis of covariance of clean wool weight. 89
4.15 Adult ewe; Adjusted clean wool weight means. 90
4.16 Adult ewe; Mean squares for fibre length. 92
4.17 Adult ewe; Mean squares from within group regression analysis of fibre length. 94
4.18 Adult ewe; Mean squares from an analysis of covariance of fibre length. 95
4.19 Adult ewe; Adjusted fibre length means. 96
4.20 Adult ewe; Mean squares for fibre diameter. 97
4.21 Adult ewe; Mean squares from within group regression analysis of fibre diameter. 99
4.22 Adult ewe; Mean squares from an analysis of covariance of fibre diameter. 100
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.23</td>
<td>Adult ewe; Adjusted fibre diameter means.</td>
<td>101</td>
</tr>
<tr>
<td>5.1</td>
<td>Fleece characteristic group means.</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>Fleece characteristic mean squares.</td>
<td>114</td>
</tr>
<tr>
<td>5.3</td>
<td>Ewe hoggets; Correlations between the fleece characteristics.</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Adult ewes; Correlations between the fleece characteristics.</td>
<td>118</td>
</tr>
<tr>
<td>I.1</td>
<td>Follicle population means obtained by the "Square" and "Circle" methods.</td>
<td>137</td>
</tr>
<tr>
<td>I.2</td>
<td>Mean squares for follicle population means obtained by the "Square" and "Circle" methods.</td>
<td>138</td>
</tr>
</tbody>
</table>