SOME ASPECTS OF UTERINE MOTILITY IN THE MARE
AS MEASURED BY MYOMETRIAL ELECTROMYOGRAPHY

A THESIS PRESENTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF VETERINARY SCIENCE
AT MASSEY UNIVERSITY

DENISE M. JONES
APRIL 1990
“Difficult though it may be to record uterine activity in a unicorn the data obtained is no more reliable than similar data derived from the study of one mouse”.

Finn and Porter (1975)
ABSTRACT

The purpose of this study was to determine how uterine motility as measured by both electromyographic techniques (EMG), and to a lesser extent by intraperitoneal pressure changes (IUP), is influenced by steroid hormones, uterine stimulants and relaxants, infused intraperitoneal fluids, natural breeding and the first 20 days of pregnancy.

Two intact and two ovarioectomised mares had uterine EMG activity measured from 3-8 hours/day over a period of 1-5 months. Simultaneous IUP recordings, using an open tipped catheter, were periodically taken. One intact mare during anoestrus and both spayed mares were given exogenous courses of oestradiol and progesterone to simulate oestrous cycle activity. Oxytocin, cloprostenol, propantheline bromide and clenbuterol were administered to each mare during anoestrus, transition, oestrus, and dioestrus, where applicable. Quantities (60-1000ml) of sterile double distilled water were infused intraperitoneal into each mare at various cycle stages. One intact mare was bred on four occasions and followed through the first 20 days of her pregnancy.

Mares in oestrus recorded synchronous short bursts (3-5 min) of high amplitude EMG activity following a crescendo-decrescendo pattern. In dioestrus burst duration increased (15-25 min) and amplitude decreased with increasing plasma progesterone levels. EMG results during anoestrus and transition were intermediate. During early pregnancy EMG characteristics varied depending on whether the conceptus was in the oviduct, migratory or fixed. It is proposed that in oestrus EMG changes manifest as contractions, while in dioestrus as increased uterine tone.

Oxytocin and cloprostenol caused uterine responses at all cycle stages with the most pronounced response during oestrus where drug administration was followed by prolonged EMG activity (10-25 min) initially and then followed by short burst activity. The least response was seen during dioestrus. Propantheline bromide decreased EMG activity especially in dioestrus and is an effective uterine relaxant; clenbuterol however caused minimal measurable change.
Infused intra-uterine fluids resulted in a single spike pattern of emg activity which was generally asynchronous between electrode sites during the first infusion and depressed uterine activity following a subsequent second infusion.

Natural service resulted in minimal emg changes similar to those seen after rectal palpation, ie a short term (5-10 min) burst of densely grouped action potentials. This response is so short it seems unlikely either endogenous oxytocin and/or prostaglandins would have any significant influence on sperm transport in the mare; it is suggested that the emg change seen at this time is more in the nature of a local response to vaginal stimulation by the penis of the stallion, and is similar to that seen during palpation per rectum.

Electrode site emg variation was common, especially during dioestrus and early pregnancy.

The emg activity recorded in early pregnancy is different to that found in the non-pregnant dioestrus mare and probably related to the position of the embryo; it is suggested that abnormal uterine motility could be a cause of early embryonic death in this species.

During the oestrous cycle there was little correlation either statistically or visually between emg and IUP with or without drug treatment, but IUP increased with uterokinetic drugs and decreased with relaxants.

IUP changes may not be a reliable method of measuring uterine activity in the mare. This is supported by the finding that there was no statistical difference in IUP parameters measured between cycle stages, whereas there were important emg variations. As the experimental mares experienced signs of intestinal discomfort after administration of the uterine stimulants, and propantheline bromide is a known intestinal relaxant, the author argues that IUP results recorded after drug treatment could be influenced by the effects of these substances on intestinal motility rather than solely the consequence of a direct uterine response.
ACKNOWLEDGEMENTS

The candidate wishes to record her indebtedness to her chief supervisor Professor E.D. Fielden, Dean of the Faculty of Veterinary Science, for his enthusiasm and guidance which made this study possible and his patient review of this manuscript which resulted in many positive suggestions for its preparation.

She also wishes to acknowledge Dr. David Carr, Department of Physiology and Anatomy, who provided the laboratory equipment and expertise in electromyographic and intra-uterine pressure recording techniques and interpretation, and also as co-supervisor reviewed and enhanced the quality of this thesis presentation.

Special thanks are extended to Dr. Dirk Pfeiffer, Department of Veterinary Clinical Sciences, for his invaluable statistical advice and to Mrs. Fiona Dickson and Mrs. Judith McQuilkin for their aid in preparing this manuscript.

Thanks are also due Dr. Keith Lapwood and Mr. John Pedley of the Physiology and Anatomy Department. The former for providing the progesterone assay, and the latter for solving equipment difficulties.

A debt is also owed to all the members of the Department of Veterinary Clinical Sciences for providing me time and space for this work, their useful comments and occasional assistance.

Finally sincere thanks to my husband Daryl for doing double duty as wife and mother in order to allow me time to prepare this manuscript and to Daryl and my daughter Piper for their great encouragement and support.
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER I INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

1.2 GROSS ANATOMY OF THE UTERUS OF THE MARE

1.3 FUNCTIONAL ANATOMY OF THE UTERUS

 (i) Caveolae
 (ii) Dense Bands
 (iii) Gap Junctions or Nexuses
 (iv) Collagen
 (v) Sarcoplasmic Reticulum
 (vi) Mitochondria
 (vii) Dense Bodies
 (viii) Intracellular Filaments

1.4 EXCITATION - CONTRACTION COUPLING

1.5 THE REPRODUCTIVE CYCLE OF THE MARE

 (i) Introduction
 (ii) Anovulatory Period
 (iii) Transition To The Ovulatory Phase
 (iv) Ovulatory Phase
 (v) Early Pregnancy

1.6 THE STEROID HORMONES

 (i) Introduction
 (ii) Oestrogen
 (iii) Progesterone

1.7 THE CASTRATE

1.8 THE MEASUREMENT OF UTERINE ACTIVITY

 (i) Introduction
 (ii) Electromyography
 (iii) Intra-luminal Uterine Pressure

1.9 UTERINE MOTILITY IN THE MARE

 (i) Introduction
 (ii) Ultrasound
 (iii) Intra-uterine Pressure
 (iv) Electromyography
 (v) Stretch (Strain) Gauge Technique
I.10 UTERINE STIMULANTS
 (i) Oxytocin 21
 (ii) Prostaglandin 25
 (iii) Stretch 31

I.11 UTERINE RELAXANTS 31
 (i) Clenbuterol 31
 (ii) Propantheline Bromide 33

CHAPTER II MATERIALS AND METHODS 34

II.1 ANIMALS AND HOUSING 34

II.2 ELECTRODE PREPARATION 35

II.3 SURGERY 35

II.4 RECORDING OF EMG 36

II.5 INTRA-UTERINE PRESSURE RECORDINGS 36

II.6 CYCLICAL ACTIVITY OF THE MARE 37

II.7 DRUGS (OTHER THAN STEROID HORMONES) GIVEN 38

II.8 OTHER MANIPULATIVE PROCEDURES 39

II.9 ELECTROMYOGRAPHIC ANALYSIS 40

II.10 INTRA-UTERINE PRESSURE ANALYSIS 41

II.11 BLOOD SAMPLE COLLECTION AND PROGESTERONE ASSAY 41

II.12 STATISTICAL ANALYSIS 42

CHAPTER III RESULTS 46

III.1 INTACT MARES 46

III.1.A: Sweetie 46
 (i) Normal Oestrous Cycle Activity (no exogenous drug influence) 46
 (ii) Pregnancy 47
 (iii) Drug Treatments 48
 (a) Prostaglandin 48
 (b) Oxytocin 49
 (c) Clenbuterol 50
 (d) Propantheline bromide 50
III.5.C COMPARISON OF CYCLE STAGES
(i) Individual Mare Comparisons
(ii) All Mares Combined

III.5.D: DRUG TREATMENT INFLUENCED ACTIVITY
(NON STEROID HORMONE)
(i) Correlation Between IUP Indices, Emg A/hr, And Amplitude
(ii) Effect Of Individual Drugs On IUP indices (mares combined)
 (a) Prostaglandin
 (b) Oxytocin
 (c) Propantheline Bromide
 (d) Clenbuterol

CHAPTER IV DISCUSSION AND CONCLUSIONS
IV.1 GENERAL DISCUSSION
IV.2 VARIATION BETWEEN ELECTRODE SITES
IV.3 EARLY PREGNANCY
IV.4 EXTRANEOUS INFLUENCES
IV.5 UTERINE DISTENTION
IV.6 BREEDING
IV.7 UTERINE STIMULANTS
IV.8 UTERINE RELAXANTS
IV.9 INTRA-UTERINE PRESSURE
IV.10 CRITIQUE OF EXPERIMENTAL DESIGN
IV.11 FUTURE STUDIES
IV.12 CONCLUSIONS

REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C
LIST OF TABLES

Table I,II 53
Table III 54
Table IV 55
Table V 56
Table VI 57
Table VII 58
Table VIII 59
Table IX, X 81
Table XI, XII 82
Table XIII 83
Table XIV 84
Table XV 85
Table XVI 86
Table XVII, XVIII 92
Table IX 93
Table XX 94
Table XXI 95
Table XXII 96
Table XXIII, XXIV 110
Table XXV 111
Table XXVI 112
Table XXVII 113
Table XXVIII 114
Table XXIXa 129
Table XXIXb 130
Table XXX 131
Table XXXI, XXXII 132
Table XXXIII, XXXIV 133
Table XXXV, XXXVI 134
Table XXXVII, XXXVIII 135
LIST OF FIGURES

Figure 1 44
Figure 2 45
Figure 3 60
Figure 4a 61
Figure 4b 62
Figure 5 63
Figure 6 64
Figure 7 65
Figure 8 66
Figure 9a 67
Figure 9b 68
Figure 10a 69
Figure 10b 70
Figure 11 71
Figure 12 72
Figure 13 73
Figure 14a 74
Figure 14b 75
Figure 15 87
Figure 16 97
Figure 17 98
Figure 18 99
Figure 19 100
Figure 20 101
Figure 21 102
Figure 22 103
Figure 23 104
Figure 24 105
Figure 25 106
Figure 26 115
Figure 27 116
Figure 28a, 28b 120
Figure 29a 121