Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE DEVELOPMENT AND EVALUATION OF A VILLAGE-BASED
PARASITE CONTROL PROGRAM FOR SWAMP BUFFALO AND CATTLE
IN NORTHEAST THAILAND

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF PHILOSOPHY
AT MASSEY UNIVERSITY

NOPADON MEEMARK

NOVEMBER, 1988
ABSTRACT

Internal parasitism is a major problem in large ruminants in Thailand, especially nematodes in newborn calves and liver fluke in adults. Veterinary services are sparse, and can offer only very limited assistance at the village level. There are about 20,000 villages in the north-east of Thailand, where this study was conducted. To combat these major logistic problems a Basic Animal Health Service (BAHS) is being developed progressively within the region. The first component of the service to be developed was a "farmer self-help worm control program", commenced at a pilot level in 1983. Village farmers are selected on aptitude for the task, trained as BAHS "keymen" for one day, and then provide extension advice to farmers in up to 10 villages about disease control, with the initial emphasis being on internal parasites. This local effort is supported by wider promotional campaigns. Keymen are taught to dispense drugs for each type of parasite, and receive part of the price paid by farmers for the drugs. Purchase and distribution of drugs is supported out of a special revolving fund.

Experience in the program since 1983 has shown that overall adoption of the program has been high, but that drug sales have varied greatly between keyman areas. A comparison was therefore made of "high adoption" and "low adoption" keyman areas, to determine levels of knowledge about parasites and the BAHS, and to assess which of a range of factors might be most closely associated with program success at the local level. Adoption rate was judged by sales of anthelmintics by each keyman. Results in four provinces which had participated in the program for either one or three years were compared with two provinces which had not yet begun the program. In total 420 farmers and 16 keymen were interviewed using a standardised questionnaire form.

Farmers were classified into those showing high acceptance (understood the BAHS and had used the drugs within the last year), medium acceptance (understood the BAHS, but had not used the drugs for at least a year), and low acceptance (unfamiliar with the BAHS and its relevance to them, and had not used the drugs). Overall, 64% of farmers in the "high adoption" areas showed high acceptance of the program, compared with only 16% in the low adoption areas - producing a mean of 40% across the whole sample.

Users of the control system were very satisfied that treatment provided economic benefits, and this view was supported by empirical evidence from the study, which showed that owners who carried out treatment had lower calf mortality, higher market value of treated animals, and improved calving rates.

The single most important determinant in the success of the program is the energy of the keyman in promoting the program and the sale of drugs, and acceptance of the program is almost entirely a function of this factor, rather than issues beyond the keyman’s control. A number of quite simple and cheap modifications to details of the BAHS should further increase the already exceptionally high adoption rate. These include replacing ineffective keymen, increasing the density of keymen so that travel is not a limitation, and strengthening further the regional promotion effort to give maximum credibility to the keyman’s local work.

An economic analysis based on the data showed a return of US$143 to the typical farmer in the region for an investment of US$0.69, making very conservative assumptions about the nature and scale of the benefits. In contrast, the keymen make only a very small income from their efforts, estimated at US$0.70 per day worked on the program. The net benefit of the program across the six provinces studied was estimated at US$33.64 million. This can be increased by various improvements to the program, and costs and returns for such improvements were calculated. If 80% of farmers in the six provinces treated all of their animals, the net benefit to the region would be US$118 million for an investment of about $1 million, the costs being shared equally by Government and the farmers. Small scale farmers share more favourably in the benefits than in the case for many improvements in village agricultural practices.

The program has been very successful, primarily because it deals with a problem which farmers recognize as serious, and because everything the farmers need to carry out the program is available within the village. Various simple improvements identified in the study will further improve its acceptance and its benefit to the country.
ACKNOWLEDGEMENTS

A large number of individuals and institutions have contributed generously toward completion of the research reported. I wish to thank all of them for their help, interest and encouragement during my study.

Firstly I wish to particularly thank my supervisor, Professor R.S. Morris, for his guidance, advice, enthusiasm and optimism that the project could be completed satisfactorily, and acknowledge his patient assistance in completing the thesis. I am grateful to him for giving me the opportunity to undertake this study.

Dr. W.A.G. Charleston, my second supervisor, I thank for his inspiration, helpful suggestions and comments in my academic work, especially in the field of parasitology.

I gratefully acknowledge the assistance of Dr. Chris Boland for his helpful advice on preparation of the questionnaire forms, and Dr. Craig Tanner, Dr. Peter Jolly, Dr. Dirk Pfeiffer, Dr. Chockchai Chaimongkol, Dr. Eugene Lañada, Dr. Bryan McKay and Mr. Barry Butler for their kind help in thesis discussion and teaching me how to use various computer programs. I wish also to thank Mrs. Frances Allen, Mrs. Fiona Dickinson and Ms. Debbie Lovelock for their great assistance in the initial proof reading of this manuscript and the preparation of some of the illustrations.

I am indebted to the Department of Veterinary Clinical Sciences, Massey University, for providing the opportunity and facilities for this study, and for producing the first Thai veterinary postgraduate student in New Zealand.

I am particularly grateful to my boss, Dr. Somchai Srihakim, for his enthusiasm and encouragement and for providing various facilities during the study period. I am specially grateful to the German staff in the Thai-German Animal Health Project in Khon Kaen - Dr. K.F. Lühr, Dr. R. Baron von Kruedener, and Dr. K. Leidl for their encouragement and helpful advice.

My thanks go to all staff in the project, especially Dr. Manvika Polpark, Dr. Lertruk Srikittakarn, Ms. Rungsuda Sukamol, Mr. Arnt and Mrs. Siriphan Wapakpeth, and Mr. Apirom Charenchai for their great cooperation in the field survey and data entry.

This study would not have been possible without the help and cooperation of 142 village headmen, 288 farmers and 22 keymen in the area interviewed. In addition the active participation of the six Provincial Livestock Officers and the twenty four District Livestock Officers of Mahasarakham, Surin, Khon Kaen, Loei, Udornthanee and Kalasin has been appreciated.

I would also like to acknowledge the financial contribution of the German Academic Exchange Service [Deutscher Akademischer Austauschdienst (DAAD)] of the Federal Republic of Germany, which kindly provided funding for my study in New Zealand.

For their help, encouragement and enduring faith, a very special thank you for my parents.

Lastly for Malliga, and my lovely daughters, Supattra (Nan) and Supavadee (Noi) for their patience and tolerance while I spent a long period of study in New Zealand.
TABLE OF CONTENTS

Abstract

Acknowledgements

List of Figures

List of Tables

CHAPTER ONE - BACKGROUND TO THE PROJECT

Introduction

The Project Area

History of Development of Scheme

Background Information on the Animal Health Service and Livestock Development in Northeast Thailand

Common Parasites in Northeast Thailand

A. Nematodes

Control and Treatment of Gastrointestinal Parasites

B. Trematodes

C. Protozoa

D. Ectoparasites

Major Parasitic Diseases in North-East Thailand

Ascariasis and Strongyloidosis

Fascioliasis

Reasons for Promotion of Parasite Control in Villages

Basic Animal Health Service Objectives

Requirement for Implementation of the Basic Animal Health Service

CHAPTER TWO - STRUCTURE AND METHOD OF OPERATION OF THE PARASITE CONTROL PROGRAM

Introduction

Farmer Self-Help Worm Control Program - The Pilot Program

Operation of the Expanded Scheme Covering Additional Provinces

Management of Parasite Control Farmer Self-Help Program

Criteria for Area Selection
Chapter Three - Design of Survey Procedure to Evaluate Farmer Acceptance

Overall Objectives of the Study

Implementation of the Survey

Questionnaire Design

The Questionnaire Forms for Farmers and Village Headmen

The Questionnaire Form for Keymen

Selection of Study Areas

Selection of Provinces

Selection of Keyman Areas Within Provinces

Selection of Interviewees Within Keyman Areas

Composition of the Final Sample of Interviewees

Operation of Survey in Phase 1

Operation in Phase 2

Data Organization and Analysis

Chapter Four - Survey Results

Introduction
CHAPTER EIGHT - GENERAL DISCUSSION

Study Design
Farming Activities
Health Problems in Buffalo and Cattle
Farmer Acceptance of the Parasite Control Program
Farmer Knowledge Concerning Parasitism
Sources of Advice on Disease Treatment
Effectiveness of Keymen
Views of the Keyman on the Program
Program Publicity
Benefits of the Program to the Individual Farmer
Benefit of the Program to the Study Region
Reasons for the Success of the Program
Scope for Improvement of the Program
Animal Health Programs in the Context of Regional Development
Evaluation of the Research Method

REFERENCES

APPENDICES
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The Provinces in the Study Areas</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Photograph - Interviewing Farmers for the Study</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Buffalo Are Essential Sources of Work Energy</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Buffalo Must Survive Through the Hot Dry Season When Feed Shortage and Other Stresses Are Severe</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>There Are Many Habitat Sites for the Intermediate Host of Fasciola gigantica</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Causes of Non-Fatal Diseases in Calves</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Causes of Death in Calves</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Causes of Death in Adult Animals</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Causes of Non-Fatal Disease in Adults</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Farmer Knowledge of Nematode Parasitism in Program and Non-Program Province</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Farmer Knowledge of Nematode Parasitism By Program Acceptance Level</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>Farmer Knowledge Concerning The Intermediate Host of F. gigantica in Program and Non-Program Provinces</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Farmer Knowledge Concerning The Intermediate Host of F. gigantica by Program Acceptance Level</td>
<td>57</td>
</tr>
<tr>
<td>4.9</td>
<td>Farmer Awareness of Fasciola gigantica in Program and Non-Program Provinces</td>
<td>58</td>
</tr>
<tr>
<td>4.10</td>
<td>Farmer Awareness of Fasciola gigantica by Program Acceptance Level</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>Sources of Treatments Used for Sick Calves Prior to the Program, for Provinces Which Subsequently Joined the Program</td>
<td>64</td>
</tr>
<tr>
<td>4.12</td>
<td>Sources of Treatment Used for Sick Calves Prior to the Program, for all Six Provinces</td>
<td>64</td>
</tr>
<tr>
<td>4.13</td>
<td>Sources of Treatment Used for Sick Adults Prior to the Program, for all Six Provinces</td>
<td>65</td>
</tr>
<tr>
<td>4.14</td>
<td>Sources of Treatment Used for Sick Animals Prior to Program Commencement, Classified by Subsequent Acceptance Level for Program</td>
<td>65</td>
</tr>
<tr>
<td>4.15</td>
<td>Reasons Why Farmers Did Not Use Keyman</td>
<td>71</td>
</tr>
<tr>
<td>4.16</td>
<td>Extent of Change in Calf Disease Control Methods, by Acceptance Level</td>
<td>73</td>
</tr>
</tbody>
</table>
Figure 4.17 Sources of Advice Who Convinced Farmers to Change Disease Control Methods - One Year Provinces

Figure 4.18 Sources of Advice Who Convinced Farmers to Change Calf Disease Control Methods - Three Year Program Provinces

Figure 4.19 Sources from Which Drugs for Calves Were Obtained, by Acceptance Level

Figure 4.20 Source of Advice Who Convinced Farmers to Change Disease Treatments in Adult Animals - One Year Program Provinces

Figure 4.21 Source of ADvice Who Convinced Farmers to Change disease Treatments in Adult Animals - Three Year Program Provinces

Figure 4.22 Survival Rates of Buffalo and Cattle Calves, by Acceptance Level

Figure 4.23 Calving Percentage of Buffalo and Cattle Cows, by Acceptance Level

Figure 4.24 Extent to Which Farmers at Different Acceptance Levels Were Aware of Program Publicity

Figure 4.25 Degree of Farmer Awareness of Various Forms of Publicity, Classified by Acceptance Level

Figure 4.26 Degree of Farmer Awareness of Program Publicity, Classified by Duration of Program in Province

Figure 4.27 Distribution of Farmer Acceptance Levels for the Program in High Adoption Areas (H1.A.AR) and Low Adoption Areas (LO.A.AR)
LIST OF TABLES

Table 3.1 Distribution of areas and farmers interviewed in Phase 1
Table 3.2 Distribution of areas and farmers interviewed in Phase 2
Table 4.1 Age distribution of 420 farmers
Table 4.2 Family sizes in the six study provinces
Table 4.3 Ownership of land and large ruminants by families
Table 4.4 Number of buffalo and cattle per village in 1985 and 1986
Table 4.5 Percentage of farmers undertaking farming and other activities
Table 4.6 Types of cropping activities other than rice growing
Table 4.7 Farmer income per family (US$) derived from animals, crops and off-farm sources
Table 4.8 Off-farm employment of respondents
Table 4.9 Farmer acceptance categories
Table 4.10 Extent to which farmers carry out disease prevention in calves
Table 4.11 Calf parasite prevention practised by farmers at different acceptance levels
Table 4.12 Methods of farmer prevention for worm infection
Table 4.13 Extent to which farmers use preventive treatment for parasites in buffalo calves, classified by length of time in program and acceptance levels
Table 4.14 Sources of advice currently used by farmers for treatment of calves, classified by province group
Table 4.15 Sources of advice used by farmers to treat sick calves, classified by level of acceptance of the program
Table 4.16 Sources of drugs for animal treatment used by farmers in program and non-program provinces
Table 4.17 Sources of drugs for farmers, classified by level of program acceptance
Table 4.18 Farmer opinion on Keyman's activity
Table 4.19 Acceptance levels for village headmen and other farmers
Table 4.20 Farmer opinion on their keymen (KM) by acceptance levels
Table 4.21 Difficulty in getting drugs from keyman
Table 4.22 Extent of change in calf disease control methods, by acceptance level
Table 4.24 Improvement in calf condition after treatment
Table 4.25 Nature of improvements after calf treatment
Table 4.26 Extent of change in calf disease control methods, by acceptance level
Table 4.27 Survival rate (%), Birth rate (%), and Mortality rate (%) in calves of farmers in acceptance
Table 4.28 Reasons farmer treated healthy animals by acceptance level
Table 4.29 Reasons farmer treated their animals in program provinces
Table 4.30 Percentage of farmers who have heard about the program
Table 4.31 Percentage of farmers who know their keyman's name
Table 4.32 Percentage of farmers who have bought drugs from keymen
Table 4.33 Farmer opinion on their keymen in respect to acceptance levels and distance between villages
Table 4.34 Distribution of acceptance levels by herd size
Table 4.35 Income (baht/US$) of farmers in acceptance levels in 1986
Table 4.36 Family size and animal ownership
Table 4.37 Incomes of keymen (US$) derived from buffalo, cattle, crops, other livestock and being keymen in 1986
Table 4.38 Keyman's annual income (US$) by adoption area and duration of program
Table 4.39 Keyman's income (US$) from buffalo and cattle in 1986
Table 4.40 Income of keyman (US$) in 1986 by adoption area and program duration
Table 4.41 Number of buffalo and cattle in Tumbons and villages in 1986
Table 4.42 The percentage of keyman with prior experience of injecting animals
Table 4.43 Number of villages in a keyman's area and number of keymen who were involved in other community activities 93
Table 4.44 Percentage of keymen who visited other villages 93
Table 4.45 Number of villages visited since the program commenced 94
Table 4.46 Number of villages visited in 1986 94
Table 4.47 Number of days keymen spent on promoting the scheme in 1986 95
Table 4.48 Percentage of keymen keeping drug receiving and selling records 95
Table 4.49 Number of containers of deworming drugs obtained and sold in 1986 96
Table 4.50 Mean prices charged (in baht) for drugs by keymen 96
Table 4.51 Methods of transport used by keymen in the program 97
Table 4.52 Knowledge retention of keymen concerning parasitism 97
Table 4.53 Percentage of keymen who used assistance to carry out responsibilities 98
Table 4.54 Percentage of keymen promoted the program in own and other villages 99
Table 4.55 Keyman's perception of attitudes of farmers in his own village 100
Table 4.56 Keyman's perception of attitudes of farmers in other villages 100
Table 4.57 Percentage of keymen reporting that animals had become sick after parasite treatment 101
Table 4.58 Percentage of keymen reporting that animals had died after treatment 101
Table 4.59 The effect of publicity methods, by adoption areas (%) 102
Table 4.60 Keymen comments on drug supply in the program 103
Table 4.61 Keyman comments on drug prices 103
Table 4.62 Keymen comments on incentive payments and number of keymen in Tumbon 104
Table 4.63 Ratio of animals to keymen in 4 program provinces 105
Table 4.64 Distribution of family livestock activity by adoption area 106
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.66</td>
<td>Percentage of farmers undertaking various cropping activities other than rice growing</td>
<td>106</td>
</tr>
<tr>
<td>4.67</td>
<td>Income of village farmers (US$) derived from animals, crops and off-farm work</td>
<td>106</td>
</tr>
<tr>
<td>4.68</td>
<td>Sources of information for farmers about treatment of sick calves in relation to distance from the keyman's village</td>
<td>107</td>
</tr>
<tr>
<td>4.69</td>
<td>Farmer knowledge of nematode parasitism by adoption area</td>
<td>108</td>
</tr>
<tr>
<td>4.70</td>
<td>Farmer knowledge on Fasciola epidemiology, classified by adoption areas</td>
<td>108</td>
</tr>
<tr>
<td>4.71</td>
<td>Extent to which farmers practised prevention, by adoption areas</td>
<td>109</td>
</tr>
<tr>
<td>4.72</td>
<td>Farmer knowledge concerning the scheme</td>
<td>110</td>
</tr>
<tr>
<td>4.73</td>
<td>Farmer's opinion of activities of keymen by adoption areas</td>
<td>111</td>
</tr>
<tr>
<td>4.74</td>
<td>Reasons farmers in adoption areas ignored keyman's recommendation</td>
<td>111</td>
</tr>
<tr>
<td>4.75</td>
<td>Difficulty in getting drugs from keymen</td>
<td>112</td>
</tr>
<tr>
<td>4.76</td>
<td>Nature of problems in getting drugs from keymen</td>
<td>112</td>
</tr>
<tr>
<td>4.77</td>
<td>Percentage of farmers who bought drug for calf treatment in relation to distance from keyman's village</td>
<td>113</td>
</tr>
<tr>
<td>4.78</td>
<td>Effects of distance on how accurately farmers used the drugs</td>
<td>113</td>
</tr>
<tr>
<td>4.79</td>
<td>Farmer opinion on traditional versus modern treatment, and the improvement achieved after program treatment</td>
<td>114</td>
</tr>
<tr>
<td>4.80</td>
<td>Farmer opinion on benefits of fluke treatment in adoption areas, by adoption areas</td>
<td>114</td>
</tr>
<tr>
<td>4.81</td>
<td>Effects of treatment on the value of adult animals by adoption areas</td>
<td>115</td>
</tr>
<tr>
<td>4.82</td>
<td>Effects of various media in each type of adoption area, classified by distance of villages</td>
<td>116</td>
</tr>
<tr>
<td>6.1</td>
<td>Formulae used in the economic analysis at farmer level</td>
<td>127</td>
</tr>
<tr>
<td>6.2</td>
<td>Estimation of increased buffalo value per farm at end of year by acceptance level, for those farmers who own buffalo, using actual survey data</td>
<td>128</td>
</tr>
<tr>
<td>6.3</td>
<td>Estimation of cattle value per farm at end of year by acceptance level for those farmers who own cattle, using actual survey data</td>
<td>129</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Costs and net benefits of parasite control program - actual data</td>
<td>129</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Estimation of buffalo value per farm at end of year by acceptance level, for those farmers who own buffalo, adjusted to equate animals owned and birth rates</td>
<td>131</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Estimation of cattle value per farm at end of year by acceptance level for those farmers who own cattle, adjusted to equate animals owned and birth rates</td>
<td>132</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Costs and net benefit of program for buffalo and cattle owners, adjusted for herd size and birth rate</td>
<td>132</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Estimation of buffalo value per farm at end of year by acceptance level, adjusted to represent the average farmer</td>
<td>133</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Estimation of cattle value per farm at end of year by acceptance level, adjusted to represent average farmer</td>
<td>134</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Costs and net benefit of the program, adjusted to represent the average farmer</td>
<td>134</td>
</tr>
<tr>
<td>Table 6.11</td>
<td>Estimation of buffalo value per farm at end of year by acceptance level, if all eligible animals are treated</td>
<td>136</td>
</tr>
<tr>
<td>Table 6.12</td>
<td>Estimation of cattle value per farm at end of year by acceptance level, if all eligible animals are treated</td>
<td>137</td>
</tr>
<tr>
<td>Table 6.13</td>
<td>Costs and benefits of control program for average farmer, if all eligible animals are treated</td>
<td>137</td>
</tr>
<tr>
<td>Table 6.14</td>
<td>Estimation of buffalo value per farm at end of year by acceptance level, if 50% of animals at present left untreated receive treatment</td>
<td>138</td>
</tr>
<tr>
<td>Table 6.15</td>
<td>Estimation of cattle value per farm at end of year by acceptance level, if 50% of animals currently left untreated receive treatment</td>
<td>139</td>
</tr>
<tr>
<td>Table 6.16</td>
<td>Costs and net benefit of control program, if 50% of animals at present left untreated receive treatment</td>
<td>139</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Benefit of the base program and raised farmer acceptance</td>
<td>143</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Benefit of the program if all eligible animals are treated</td>
<td>144</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Benefit of the program if 50% more eligible animals treated</td>
<td>145</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Benefit of program for province</td>
<td>146</td>
</tr>
</tbody>
</table>
CONVERSION FACTORS

1 rai = 1600 square meters
 = 0.16 hectares
 = 0.395 acres

1 square kilometre = 247.1 acres
 = 100 hectares
 = 0.386 square miles

1 kilometre = 0.621 miles

US$ 1 = 25 baht (approximately)
NZ$ 1 = 15 baht (approximately)