Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE BRACHYCEPHALIC HEREFORD DWARF

A thesis presented in partial fulfilment
of the requirements for the degree of
Master of Veterinary Science at
Massey University

Janice Marguerite Jones 1979

ABSTRACT

The present study was undertaken to define the type or types of dwarfism occurring in the Hereford breed of cattle in New Zealand as a basis to further work on the biochemical anomalies involved.

The mating of 13 cows that had previously given birth to dwarf calves with a bull that had allegedly sired dwarf calves resulted in both dwarf and phenotypically normal calves in proportions compatible with an autosomal recessive type of inheritance. Dwarf foetuses produced from dwarf with dwarf matings were similar to a foetus of carrier with carrier mating. This observation helped confirm that the mode of inheritance was autosomal recessive.

Selected morphological measurements of 45 dwarfs of various ages, and five dwarf foetuses were compared with those of phenotypically normal cattle and with published measurements of dwarfs and normal cattle from North America. It was concluded that the measurements were compatible with those expected from a single mutant and that the type of dwarf found in New Zealand was similar to the most common form of brachycephalic dwarf described in the Hereford breed in North America. This was in accord with expectations inasmuch as available evidence indicates that dwarfism was imported into New Zealand via four bulls who were from dwarf carrying families.

Histological examination of bone growth plates of 29 dwarf animals of various ages up to maturity and from five dwarf foetuses showed that columns of proliferating cells

tended to be shorter and more irregular than those of normal animals and that there was a reduced number of hypertrophied cells. Electron microscopy showed normal appearing matrix and chondrocytes, except for more apparent dilations of endoplasmic reticulum in the latter. The histology of other tissues was normal.

Urinary mucopolysaccharides of three dwarf animals and three matched controls were similar. This and the essentially normal histology led to the conclusion that this form of dwarfism was not a mucopolysaccharidosis.

ACKNOWLEDGEMENTS

This study was made possible by the assistance and encouragement of a number of people. It was carried out within the Department of Pathology and Public Health at Massey University and I am grateful for the opportunity to work towards a masterate degree in this Department. I would like to thank my supervisors, Mr. R.S. Wyburn, and Professor B.W. Manktelow, and especially Dr. R.D. Jolly, for his help and encouragement throughout the entire project.

A number of farmers made animals available for examination during the project and I would like to thank them for their contribution.

Preparation of tissues for light microscopy was carried out by Mr. C. Fletcher and others in the Department of Veterinary Pathology and Public Health, and Mr. D. Hopcroft of the electron microscope unit of the Department of Scientific and Industrial Research gave assistance with electron microscopy sections. Their help is most appreciated.

I am also grateful to Mr. N. Van-de-Water for advice and assistance with biochemical estimations, and to Mr. T. Law for printing the photographs. Figures in the text were prepared by the Massey University illustrator, Mrs. A. Larsen.

Finally, I would like to thank Mr. A.T. DeCleene for his cheerful assistance with the animals throughout this study, Mrs. E. Bristol for typing the draft copies of this thesis, and Mrs. A. TeHiwi for the final copy.

This research was funded by the New Zealand Hereford Cattle Breeders' Association and I am also grateful to W. & R. Fletcher N.Z. Ltd. who generously provided a scholarship for part of the study.

TABLE OF CONTENTS

				Page
LIST OF	FIGUR	ES		
INTRODUC	CTION			1
CHAPTER	Ι	:	Review- dwarfism in man and animals.	2
CHAPTER	ΙΙ	:	Genetics.	47
CHAPTER	III	:	Morphology of the Hereford brachycephalic dwarf in New Zealand.	52
CHAPTER	ΙV	:	Histology	92
CHAPTER	V	:	Biochemistry- analysis of mucopolysaccharides excreted by the Hereford snorter dwarf.	127
CHAPTER	VI	:	General discussion	141
REFERENC	:FS			145

LIST OF FIGURES

Figure		Page
3.0	Diagram of a dwarf metacarpus showing the	
	measurements of total length (TL), diaphyseal	
	length (DL) and diaphyseal diameter (DD).	55
3.1	An eighteen month old dwarf steer showing	
	the typical short head, dished face, bulging	
	forehead, pot belly, and short legs.	58
3.2	Head length to head width ratio values for	
	30 dwarf, 14 carrier, and 48 normal	
	animals.	63
3.3	Metacarpal ratio value total length to	
	diaphyseal diameter in 31 dwarf, 3 carrier,	
	and 44 normal animals.	67
3.4	Metacarpal ratio value diaphyseal length	
	to diaphyseal diameter in 30 dwarf, 3	
	carrier, and 7 normal animals.	68
3.5	Metacarpal ratio value total length to	
	diaphyseal length in 31 dwarf, 3 carrier,	
	and 12 normal animals.	68
3.6	Diagram of a midline sagital section of the	
	base of the skull in (a) dwarf and (b) normal	
	animals comparing the measurement of length.	72
3.7	Head profiles taken with a profilometer,	
	showing the variation between normal,	
	carrier and dwarf profiles.	74

Figure		Page
3.8	Lateral radiograph from a 6 month old dwarf	
	calf, showing concavity in dorsal body	
	profile, lipping of epiphyses, irregularity	
	and flattening of ventral vertebral body	
	profile.	75
3.9	Lateral radiograph of the lumbar spine from	
	a normal adult cattle beast.	75
3.10	Dorso-ventral radiograph of lumbar spine	
	from a dwarf cattle beast, showing shorten-	
	ing of the transverse processes and forward	
	hooking of the ends of the processes.	76
3.11	Dorso-ventral radiograph of lumbar spine	
	from a normal cattle beast.	76
3.12	Lateral radiograph of the lumbar spine from	
	an adult dwarf cow, showing the features	
	seen in Figure 3.8, but with less pronounced	
	irregularity of the ventral vertebral body	
	surface.	77
3.13	Lateral radiographs of lumbar vertebrae	
	from (a) dwarf, (b) suspected carrier, and	
	(c) normal animal.	79
4.1	Epiphyseal plate from the distal radius of	
	an 18 month old normal control animal.	
	Note the long regular columns of chondro-	
	cvtes.	98

Figure		Page
4.2	Epiphyseal plate from the distal metacarpus	
	of (a) nine month old dwarf, and (b) eight	
	month old normal control animal. The	
	length of columns is shorter in the dwarf	
	animal.	100
4.3	Epiphyseal plate from the distal metacarpus	
	of (a) dwarf, and (b) normal control foetus	
	at estimated 180 days gestation. Capillary	
	ingrowth is not so regular in the dwarf	
	foetal cartilage; there are fewer hyper-	
	trophied cells per column, and the cells	
	appear smaller than in the normal foetal	
*	cartilage.	101
4.4	Epiphyseal plate from the distal metacarpus	
	of (a) 18 month old normal control animal	
	compared with that from (b) 2 year old	
	normal control animal. The hypertrophied	
	cells are fewer per column in the older	
	animal and the regularity of the columns	
	has been lost.	103
4.5	Epiphyseal plate from the distal metacarpus	
	of (1) 18 month old dwarf compared with	
	that from (b) 2 year old dwarf. Note the	
	irregularity in both sections, with fewer	
	hypertrophied cells in the older animal.	104

Figure		Page
4.6	Iliac crest from (a) nine month old dwarf	
	compared with that from (b) eight month old	
	control animal, showing the reduced number	
	of hypertrophied cells in the cartilage	
	from the dwarf animal.	105
4.7	Spheno-cccipital synchondrosis from (a)	
	dwarf foetus compared with that from	
	(b) normal control foetus, at estimated 180	
	days gestation. The dwarf synchondrosis	
	shows fewer proliferating cells at the base	
	of the columns, less regular arrangement of	
	columns, and fewer hypertrophied cells.	106
4.8	Chondrocytes from (a) dwarf cartilage, and	
	(b) normal cartilage, showing the increased	
	metachromatic staining substance within	
	dwarf chondrocytes.	110
4.9	Proliferating zone of epiphyseal plate from	
	dwarf cartilage showing metachromatic	
	staining around some chondrocytes.	111
4.10	Resting chondrocyte in cartilage from an	
	18 month old dwarf animal, showing scalloped	Ь
	outline, large nucleus, vesicles and	
	lamellae of golgi complex, and the endo-	
	plasmic reticulum. Glycogen (G) has been	
	leached out during processing.	114
4.11	Dețail of chondrocyte from dwarf cartilage	
	showing vesicles and lamellae of the golgi	
	complex.	1 1 5

Figure		Page
4.12	Chondrocyte from an 18 month •ld dwarf.	
	(a) Note numerous fibrils in cell.	
	(b) Detail of fibrils.	116
4.13	Chondrocyte from foetal dwarf cartilage	
	showing essentially normal ultrastructural	
	features.	117
4.14	Chondrocyte from a 10 month old dwarf	
	animal showing dilatation of the endo-	
	plasmic reticulum.	118
4.15	Chondrocytes from dwarf foetal cartilage	
	showing dilated endoplasmic reticulum.	119
4.16	Matrix of cartilage fixed in Karnovsky's	
2	fixative. (a) normal animal (b) dwarf	
	animal.	120
4.17	Matrix of cartilage, fixed in Karnovsky's	
	fixative but including toluidine blue in	
	the fixing process. Note electron dense	
	network extending from the end of the	
	chondrocyte. No collagen fibres are	
16	visible. (a) normal animal (b) dwarf	
	animal.	122
5.1	Profiles of mucopolysaccharides excreted	
	in the urine of 3 normal and 3 dwarf	
	cattle.	137

,