Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE EFFECT OF MANGANESE ON MAMMALIAN MITOCHONDRIA

A thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Biochemistry
at Massey University, New Zealand

Nicolas Lyndon Taylor

1999
ABSTRACT

Manganese (Mn) is an essential trace element, but excessive inhalation can cause serious disorders of the central nervous system, lungs and liver, and results in the condition known as manganism. The general population is exposed to Mn through its use in the fungicide Maneb and MMT, which is used as an anti-knock agent to replaced lead in petrol. Also there have been a number of reports of Mn contaminated drinking water. Victims of Mn poisoning suffer from serious neurological disorders, such as an intermittent tremor of small amplitude, speech impairments and disruption of postural reflexes, which are caused by damage to certain regions of the brain. After prolonged exposure severe symptoms develop that generally resemble those associated with Parkinson's disease.

The action of Mn on the brain is not well understood, although three possible mechanisms have been proposed:

1. Inhibition of the mitochondrial electron transfer chain following Mn accumulation by mitochondria.
2. Neuronal degradation by free radicals such as O$_2^-$ and ·OH causing lipid peroxidation and damage to DNA and protein.
3. Induction of mutation of the mitochondrial genome, as has previously been shown in both eukaryotes and prokaryotes.

It has been shown in this study that Mn inhibits the mitochondrial electron transfer chain. An overall ionic strength inhibition of the entire electron transfer chain was observed, probably mediated by an interference of the electrostatic interactions between cytochrome c and the cytochrome bc_1 complex or cytochrome oxidase. Also a direct inhibition of succinate dehydrogenase, NADH dehydrogenase and cytochrome oxidase was observed. This inhibition would be associated with a decrease the production of ATP and could be sufficient to cause the degradation of brain tissue seen in victims of Mn poisoning.

It seems likely that if Mn can inhibit the mitochondrial electron transfer chain, this inhibition would lead to an increase in the generation of free radical species by the mitochondria. However, this was not shown in this work, due to difficulties with
detector molecules. It was observed that sheep liver mitochondria can oxidise and reduce acetylated cytochrome c, which may not have been previously reported.

The effect of Mn on isolated mtDNA showed a decrease in the intensity of PCR products after exposure to Mn, which may have been cause by an interference of the activity of Taq polymerase. It has previously been shown that Mn interferes with the activity of both Taq polymerase and chicken liver mitochondrial polymerase-γ and, if it could interfere with the activity of mitochondrial DNA polymerase, this would also decrease further both the number of functional mitochondria and the production of ATP.

A decrease in the production of ATP by mitochondria, or a decrease in the production of functional mitochondria, would lead to cellular death of affected cells and could provide an explanation of the symptoms observed in victims of Mn poisoning.
ACKNOWLEDGEMENTS

I wish to thank my supervisor Dr Simon Brown for his advice, encouragement, guidance and support during the last two years.

I would also like to thank Dr Mark Patchett for his advice throughout this work, especially with regard to the molecular biological aspects of this project.

I must thank those people around the Institute of Molecular Biosciences and the old Department of Biochemistry, especially those in the “Twilight Zone”, the Biochemistry Prep Room and those in the Bioenergetics Lab who have helped me throughout this project.

To my friends, thank you for the support, especially those who have proof read some of my essays and listened to my speeches, I know they didn’t make any sense to you but it helped me a lot.

Finally I must thank my parents for helping to make this possible, and the rest of my family for their support and interest.

This work was supported in part by the Massey University Graduate Research Fund. I would also like to thank the Massey University Alumni Association, for their award that contributed towards my personal expenses.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Manganese
 1.1.1 Manganese poisoning
 1.1.2 Relationship between manganism and Parkinson’s disease

1.2 Mechanism of Manganese Poisoning
 1.2.1 Active accumulation of manganese by mitochondria
 1.2.2 Inhibition of mitochondrial electron transfer
 1.2.3 Induction of mitochondrial mutations
 1.2.4 Influence on levels of free radicals
 1.2.5 Association of the three proposed mechanisms of manganese toxicity

1.3 Aims of this Project

CHAPTER 2: MATERIALS AND METHODS

2.1 Materials
 2.1.1 Chemicals and solvents
 2.1.2 Enzymes
 2.1.3 Primers
 2.1.4 Miscellaneous products
 2.1.5 Sources of liver

2.2 General methods
 2.2.1 Preparation of reagents
 2.2.2 Calibration of the Aminco DW2a spectrophotometer
 2.2.3 Preparation of reduced cytochrome c
 2.2.4 Determination of reduced cytochrome c concentration

2.3 Preparation and storage of mitochondria
 2.3.1 Preparation of mitochondria
2.3.2 Preparation of sub-mitochondrial particles

2.3.3 Storage of mitochondria

2.4 Determination of mitochondrial quality

- **2.4.1** Protein determination of extracted mitochondria
- **2.4.2** Measuring oxygen consumption of mitochondria
- **2.4.3** Determining the quality of mitochondria produced

2.5 Measurements of mitochondrial electron transfer

- **2.5.1** Assays of electron transfer chain activities
- **2.5.2** Measurement of electron transfer from succinate to cytochrome c
- **2.5.3** Measurement of electron transfer from malate/pyruvate to cytochrome c
- **2.5.4** Measurement of succinate dehydrogenase activity
- **2.5.5** Measurement of cytochrome c oxidase activity

2.6 Free radical preparation and measurement

- **2.6.1** Production of superoxide radicals
- **2.6.2** Measurement of superoxide radicals using NBT
- **2.6.3** Measurement of superoxide radicals using acetylated cytochrome c
- **2.6.4** Production of hydroxyl radicals

2.7 Molecular biological techniques

- **2.7.1** Isolation of mitochondrial DNA
- **2.7.2** Agarose gel electrophoresis
- **2.7.3** DNA digestion with restriction endonucleases
- **2.7.4** DNA amplification
- **2.7.5** Treatment of mitochondrial DNA with manganese chloride, magnesium chloride and reactive oxygen species
- **2.7.6** Preparation of PCR products for automated DNA sequencing

CHAPTER 3: THE EFFECTS OF MANGANESE ON MITOCHONDRIAL ELECTRON TRANSFER CHAIN ENZYMES

3.1 The quality of isolated sheep liver mitochondria

3.2 The effect of manganese on whole chain electron transfer

- **3.2.1** Manganese inhibition of mitochondrial electron transfer in coupled and uncoupled mitochondria
- **3.2.2** The effect of varying the concentration of manganese and magnesium salts on succinate-dependant electron transfer
- **3.2.3** The effect of manganese chloride and magnesium chloride on succinate-dependant electron transfer in a phosphate-free buffer
- **3.2.4** The effect of manganese chloride and magnesium chloride on malate/pyruvate-dependant electron transfer

3.3 The effect of manganese on specific partial reactions

- **3.3.1** The effect of manganese on electron transfer from succinate and malate/pyruvate to cytochrome c
- **3.3.2** The effect of manganese on succinate dehydrogenase activity
- **3.3.3** The effect of manganese on cytochrome oxidase activity
CHAPTER 4: THE ROLE OF FREE RADICAL SPECIES IN MANGANISM 54

4.1 Generation and measurement of free radical species 53
4.1.1 Production of superoxide radicals 54
4.1.2 Production of hydroxyl radicals 58

4.2 Discussion 59

CHAPTER 5: THE EFFECT OF MANGANESE ON MITOCHONDRIAL DNA 62

5.1 Isolation and treatment of mitochondrial DNA with manganese and free radical species 61
5.1.1 Isolation of mitochondrial DNA 62
5.1.2 Restriction endonuclease digest of mitochondrial DNA 64
5.1.3 Design of PCR primers 64
5.1.4 PCR of COI using COX1for and COX1rev 64
5.1.5 Treatment of isolated mitochondrial DNA with manganese chloride and reactive oxygen species 67

5.2 Discussion 70

CHAPTER 6: DISCUSSION 74

6.1 Inhibition of the mitochondrial electron transfer chain 76
6.2 Generation of free radicals species 79
6.3 Mutation of the mitochondrial genome 80
6.4 Summary 82

REFERENCES 84

APPENDICES 92

Appendix I Oligonucleotide primers 93
Appendix II Tissue press 94
Appendix III mtDNA sequence of the sheep cytochrome c oxidase subunit 1 gene 95
Appendix IV Results of automated DNA sequencing 96
LIST OF FIGURES

Figure 1.1 The enzymes of the inner mitochondrial membrane involved in energy transduction 2
Figure 1.2 The relationship between the three models of manganese neurotoxicity 18
Figure 3.1 Representative oxygen electrode traces showing ADP stimulation of oxygen consumption 33
Figure 3.2 Representative oxygen electrode traces showing DNP stimulation of oxygen consumption 34
Figure 3.3 Representative oxygen electrode traces showing the effect of manganese on whole chain electron transfer 35
Figure 3.4 The effect of various manganese and magnesium salts on the relative rate of whole chain succinate-stimulated electron transfer 37
Figure 3.5 The effect of MnCl₂ and MgCl₂ on whole chain succinate-dependant electron transfer 39
Figure 3.6 The effect of MnCl₂ and MgCl₂ on whole chain malate/pyruvate-stimulated electron transfer 40
Figure 3.7 The effect of MnCl₂ and MgCl₂ on electron transfer from succinate dehydrogenase to cytochrome c 42
Figure 3.8 Graph showing the effect of MnCl₂ and MgCl₂ on electron transfer from malate/pyruvate to cytochrome c 43
Figure 3.9 Representative traces showing the reduction of DCPIP in the presence of MnCl₂ and MgCl₂ 44
Figure 3.10 The effect of MnCl₂ and MgCl₂ on succinate dehydrogenase activity 45
Figure 3.11 Representative traces showing the oxidation of reduced cytochrome c in the presence of MnCl₂ and MgCl 47
Figure 3.12 The effect of MnCl₂ and MgCl₂ on cytochrome oxidase activity 48
Figure 4.1 Representative traces showing the rapid degradation of O₂⁻ 55
Figure 4.2 Representative traces showing the reduction of detector molecules by O₂⁻ in the absence of mitochondria 56
Figure 4.3 Representative traces showing the production of O₂⁻ by a mitochondrial suspension 57
Figure 4.4 Representative spectrophotometric traces showing the production of ·OH 59
Figure 5.1 Sample of isolated sheep liver mitochondrial DNA 63
Figure 5.2 The 1593 bp PCR product amplified from sheep liver mitochondrial DNA with COX1for and COX1rev primers 65
Figure 5.3 Diagnostic digest of 1593 bp PCR product (A) and a schematic representation of expected digest products (B) 66
Figure 5.4 The 1593 bp PCR products produced after various treatments of mitochondrial DNA 68
Figure 5.5 Digest of pre-treated 1593 bp PCR product (A) and a schematic representation of expected digest products (B) 69
Figure 6.1 The relationship between the three models of Mn neurotoxicity 81
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>The neurological effects of Mn poisoning in 15 patients</td>
<td>6</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Inhibition of substrate oxidation by Mn compounds reported in the literature</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Apparent inhibition constants (K_v) of various partial reactions of the mitochondrial electron transfer chain</td>
<td>52</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Treatments of mtDNA before PCR of COI</td>
<td>67</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>6-OHDA</td>
<td>6-hydroxydopamine</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>adenine</td>
<td></td>
</tr>
<tr>
<td>A_{XXX}</td>
<td>absorbance (XXX-wavelength of measurement)</td>
<td></td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine 5’-diphosphate</td>
<td></td>
</tr>
<tr>
<td>AMProp</td>
<td>2-amino-2-methyl-1 propanol</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>adenine triphosphate</td>
<td></td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
<td></td>
</tr>
<tr>
<td>cytochrome b_{c_1} complex</td>
<td>ubiquinol : ferricytochrome-c oxidoreductase (EC 1.10.2.2)</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin (fraction V powder)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
<td></td>
</tr>
<tr>
<td>CCCP</td>
<td>carbonyl cyanide m-chlorophenylhydrazone</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>cytochrome c oxidase subunit 1 gene</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>control ratio (= rate after DNP addition/rate before DNP addition)</td>
<td></td>
</tr>
<tr>
<td>cytochrome oxidase</td>
<td>ferrocytochrome c : oxygen oxidoreductase (EC 1.9.3.1)</td>
<td></td>
</tr>
<tr>
<td>DCPIP</td>
<td>2,6-dichlorophenol-indo-phenol</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
<td></td>
</tr>
<tr>
<td>DMPO</td>
<td>5,5-dimethyl-1-pyrrole N-oxide</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>DNP</td>
<td>2,4-dinitrophenol</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra-acetic acid</td>
<td></td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol-bis(β-aminoethyl)ether-N,N,N’,N’-tetra-acetic acid</td>
<td></td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
<td></td>
</tr>
<tr>
<td>FECN</td>
<td>potassium ferricyanide</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
<td></td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
<td></td>
</tr>
<tr>
<td>H_2O_2</td>
<td>hydrogen peroxide</td>
<td></td>
</tr>
<tr>
<td>HEPES</td>
<td>N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]</td>
<td></td>
</tr>
<tr>
<td>$\cdot\text{OH}$</td>
<td>hydroxyl radical</td>
<td></td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
<td></td>
</tr>
</tbody>
</table>
KO$_2$ potassium superoxide
L-DOPA l-3,4-dihydroxyphenylalanine
Maneb [ethylenebis(dithiocarbamato)]manganese
$\Delta \psi$ membrane potential
Mg magnesium
MMT methylcyclopentadienyl manganese tricarbonyl
Mn manganese
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mtDNA mitochondrial DNA
NAD$^+$ nicotinamide adenine dinucleotide (oxidised form)
NADH nicotinamide adenine dinucleotide (reduced form)
NADH dehydrogenase NADH : ubiquinone oxidoreductase (EC 1.5.5.3)
NBT 2,2'-di-p-nitrophenyl-5-5'-diphenyl-3,3'-[3,3'-dimethoxy-4-4'-diphenylene]-ditetrazolium chloride
RAPD random amplified polymorphic DNA
RCR respiratory control ratio
RFLP restriction fragment length polymorphism
SOD superoxide dismutase (EC 1.15.1.1)
O_2^- superoxide radical
PCR polymerase chain reaction
PD Parkinson’s disease
succinate dehydrogenase succinate : ubiquinone oxidoreductase (EC 1.3.5.1)
T thymine
TE buffer Tris-HCl (10 mM) EDTA (1 mM) pH 8.0
TAE buffer Tris (40 mM) acetate (20 mM) EDTA (1 mM) pH 8.0
Taq polymerase *Thermus aquaticus* DNA polymerase
Tris 2-amino-2-(hydroxymethyl)propane-1,3-diol
$\Delta \mu_H^+$ transmembrane proton electrochemical potential
tRNA transfer RNA
U unit
UQ ubiquinone
UQH ubiquinol
UV ultraviolet
V volts