IMPROVING BEEF PRODUCTION IN BRAZIL USING SELECTION AND CROSSBREEDING

A thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Animal Science at Massey University, Palmerston North, New Zealand

MAURO LORDES PEREIRA

2001
MAR SALGADO

Ó mar salgado, quanto do teu sal
São lágrimas de Portugal!
Por te cruzarmos, quantas mães choraram,
Quantos filhos em vão rezaram!

Quantas noivas ficaram por casar
Para que fosses nosso, ó mar!
Valeu a pena? Tudo vale a pena
Se a alma não é pequena.

Quem quere passar além do Bojador
Tem que passar além da dor.
Deus ao mar o perigo e o abismo deu,
Mas nele é que espelhou o céu.

Fernando Pessoa

Extraído da obra poética Mensagen
de Fernando Pessoa

PORTUGUESE SEA

Salt-laden sea, how much of all your salt
Is tears of Portugal!
For us to cross you, how many sons have kept
Vigil in vain, and mothers wept!
Lived as old maids how many brides-to-be
Till death, that you might be ours, sea!

Was it worth? It is worth while, all,
If the soul is not small.
Whoever means to sail beyond the Cape
Must double sorrow - no escape.
Peril and abyss has God to the sea given
And yet made it the mirror of heaven

Fernando Pessoa

Mar salgado (Portuguese Sea) translated
into English by J.Griffin from Fernando
Pessoa's 'Mensagem'
Abstract

Beef industry is an important sector of the Brazilian economy. Brazilian beef production is very dependent on pasture, which, in almost its totality, is constituted by tropical forages characterized by abundance during the rain season and low quality and quantity during the dry season. Therefore, efficient beef production systems would include breeding adapted genotypes rather than attempting large changes in the environment. As a result, animal breeding becomes a very important agent within beef production.

This project intended to investigate throughout computer modeling the effects of different breeding schemes applied to a hierarchical integrate beef production system, involving a three straight bred herds nucleus and a three-breed terminal crossing commercial herd. The study simulated a tropical system of production based on common Brazilian management practices and parameters published in the literature related to beef production on tropical and subtropical climates. A deterministic procedure was applied to develop a model for a hierarchical integrated beef production system involving a crossbred commercial herd and three straight-bred nucleus herds and it was developed on an annual basis using a Microsoft Excel spreadsheet.

Economic selection index methodology was applied to develop different selection indexes. The model was used first to estimate economic values for biological traits affecting returns and costs. A breeding objective was established based on economic values of traits that would significantly
affect profitability of the production system. Basically there were two
different scenarios that were tested. One scenario investigated the results of
20 years of selection taking in account the use of progeny tested bulls while
the other scenario would investigated the outcomes of selection based only
on individual selection of the bulls. Subsequently, the model was used to
investigate which economic values would maximize profit per animal unit.

The two selection indexes that included information of progeny into the
selection criteria were the best ones when compared to the selection indexes
using individual selection independently of the relative economic values
applied. The maximizing profit AU relative economic value selection index
presented the best improvement in profit per AU, which was also followed
by a higher profit per hectare and return rates.

Economic selection index proved to be an efficient tool to change profit
since breeding schemes improved profit in all scenarios independent from
the relative economic value applied or if information from progeny was
included or not in the index. The adoption of progeny testing in breeding
programs proved to be more effective than individual selection on a long-
term basis. The advantage of selection indexes including progeny was to
promote a greater increase in dressing out percentage and a lower change
on mature size of the breeding cows.
Acknowledgements

I would like to gratefully acknowledge my supervisor, Professor Dorian J. Garrick, who made possible the realization of this project by providing high quality guidance and assistance throughout the development of this work.

Professor Garrick made himself available at all times in order to answer my questions or help me with my doubts and problems. His considerations, suggestions and opinions really contributed to my understanding of breeding programs for livestock industry and the theoretical aspects involved on genetics and animal breeding.

I also would like to acknowledge Dr. Nicolás Lopéz Villalobos who also made the realization of this work possible. More than a friend, Dr. Villalobos was a source of encouragement and support, being always available to discuss patiently all sorts of matters, from soccer to genetics.

The financial support provided by the New Zealand Ministry of Foreign Affairs is gratefully acknowledged since without the study awards conceded by The New Zealand Official Development Assistance Program my journey in New Zealand would never become real.

The friendly environment provided by both staff and colleague postgraduate students from the Institute of Veterinary, Animal and Biomedical Science, really helped to made my two years at Massey University enjoyable and unforgettable.
My stay in New Zealand would not be possible without the support and friendship of all my old friends from Brazil who have not forgotten me in this last two years helping me to keep vivid good memories on my mind, and my new friends from Palmerston North who really contributed for a pleasurable stay.

Finally, I would like to thank my family for always be cheering and thinking about me, especially my mother, Neyde Ribeiro Lordes, for her support and faith in me.
CONTENTS

Abstract i
Acknowledgements iii
1 Introduction 3
2 Review of Literature 7
 2.1 Brazilian beef industry and production 9
 2.1.1 Beef cattle production 9
 2.1.2 Brazilian beef industry 10
 2.1.3 Challenges and perspective of the beef production 13
 2.2 Beef production efficiency 17
 2.2.1 Breeding cow efficiency 19
 2.2.2 Feed efficiency 21
 2.3 Breeding Beef cattle 24
 2.3.1 Crossbreeding beef cattle 25
 2.3.2 Selection in beef cattle 42
3 Material and Methods 61
 3.1 General aspects 63
 3.1.1 Commercial herd (Angus-Nellore cows) 67
 3.1.2 The nucleus 68
 3.2 Economic selection index 69
 3.2.1 Development of the breeding objective 70
 3.2.2 The selection criteria 72
 3.2.3 Prediction of the breeding value and genetic gain 73
 3.2.4 Parameters and estimated performance 76
 3.2.5 Different Scenarios 78
4 Results

4.1 General aspects

4.2 Economic selection index

4.2.1 Breeding objectives and economic values

4.2.2 Selection criteria and correlated responses

4.2.3 Genetic gain

4.3 Economics

5 Discussion

5.1 Consideration regarding the model, production system and breeding objectives

5.2 Economic values and breeding objective

5.3 Genetic responses and profit for the breeding schemes

5.4 Value of modeling beef cattle breeding

6 Conclusion

References

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Appendix 6