Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SERUM XANTHINE OXIDASE ACTIVITY
IN DOGS WITH ISCHAEMIC DISORDERS

A thesis presented in partial fulfilment of the requirements for
the degree of Master of Veterinary Science at Massey University

Fiona Helen Hickford
1997
Abstract

This thesis has focused on the measurement of the serum xanthine oxidase activity in dogs with diseases which involve ischaemia-reperfusion injury. The pathophysiology of ischaemia-reperfusion injury, the production of oxygen derived free radicals (ODFRS), their deleterious effects, the endogenous protective mechanisms against ODFRS, and the structure, function, distribution and kinetics of xanthine oxidase, have been reviewed.

Xanthine oxidase activity in blood and tissues can be measured using a variety of assays of uric acid production over time. A spectrophotometric assay was developed for use with canine serum, and studies were undertaken to assess the linearity and reproducibility of the assay. The effect of storage temperature and duration on the activity of bovine milk xanthine oxidase in canine serum, was investigated. The serum xanthine oxidase activity was measured in “healthy” dogs, and in dogs presented to the veterinary clinic with diseases likely to involve ischaemia-reperfusion injury.

Xanthine oxidase activity followed zero order kinetics after a short burst phase. The intra-assay and inter-assay coefficients of variation were less than or equal to 5.5% and 12.8%, respectively. Bovine milk xanthine oxidase was stable in serum stored at -20°C or -80°C for 90 days. A wide range of serum xanthine oxidase activity were measured in clinically “healthy” dogs (0-363 mU/l) and values obtained did not assume a Gaussian distribution. Using nonparametric methods, a reference interval, containing 95% of the xanthine oxidase activities, was determined to be 0-204 mU/l. The serum xanthine oxidase activity was not dependent upon age or sex.

Compared with “healthy” dogs, the sick dogs had significantly higher serum xanthine oxidase activities. The serum xanthine oxidase activity was significantly higher following reperfusion (treatment with intravenous fluids), than prior to treatment. There was a statistically insignificant trend towards higher serum xanthine oxidase activities in dogs with more severe clinical signs relating to the cardiovascular system, but the serum xanthine oxidase activity did
not appear to be useful in predicting patient survival.

Circulating xanthine oxidase may be involved in the development of complications that are seen relatively frequently following ischaemia-reperfusion injury in dogs. Xanthine oxidase may react with purine substrates in the plasma, producing large amounts of ODFRS throughout the body, resulting in widespread capillary endothelial damage, and the attraction of inflammatory cells into organs some distance from the original site of ischaemia and reperfusion.
Acknowledgements

Funding was provided by the Massey University Veterinary Research Fund, and the Massey University Research Fund. I would like to thank the clients, students and staff members who allowed the collection of blood from their dogs, and the nursing staff, students and my colleagues for their assistance in blood collection, and care of the dogs during hospitalisation. I would also like to thank Mark Wiseman for his input into the development of the spectrophotometric assay, and Steve Haslett, who performed the statistical analysis in Chapters 3 and 4.

I am extremely grateful for the support, encouragement and wisdom provided by Grant Guilford, Boyd Jones and Hilary Burbidge during my residency. Thank you for sharing your enthusiasm for veterinary medicine, and for providing the inspiration and opportunity to learn. In particular, I thank Grant for the time and advice he has generously provided during the preparation of this thesis.
Table of Contents

Abstract ... ii
Acknowledgements .. iv
Table of Contents .. v
List of Tables .. vii
List of Figures .. viii

Chapter 1. The Role of Xanthine Oxidase in Ischaemia-Reperfusion Injury 1-69
 Introduction .. 1
 1.1 Pathophysiology of Ischaemia-Reperfusion Injury 2
 1.2 Oxygen Derived Free Radicals ... 12
 1.3 Xanthine Oxidase .. 25
 1.4 Ischaemic Disease in Which High Serum Xanthine Oxidase Activity is
 a Possible Consequence ... 40
 References .. 51

Chapter 2. Development of a Spectrophotometric Assay for Measuring Xanthine
 Oxidase Activity in Canine Serum and the Effect of Storage Temperature
 and Duration on Xanthine Oxidase Activity .. 70-91
 Introduction ... 70
 Materials and Methods ... 72
 Results ... 76
 Discussion .. 83
 References .. 88
Chapter 3. Serum Xanthine Oxidase Activity in “Healthy” Dogs and the Estimation of a Reference Interval 92-111
Introduction ... 92
Materials and Methods .. 94
Results ... 96
Discussion ... 101
References ... 108

Chapter 4. Serum Xanthine Oxidase in Dogs Undergoing Ischaemia-Reperfusion
Injury ... 112-130
Introduction .. 112
Materials and Methods .. 115
Results ... 117
Discussion ... 120
References ... 125

Chapter 5. Conclusions .. 131-133
List of Tables

Table 1.1 Blood, Serum and Pulmonary Xanthine Oxidase Activity in Various Species .. 30
Table 1.2 Serum Xanthine Oxidase Activity (mU/l) in the Blood From the Ventricles of 2 Dogs 30
Table 1.3 Xanthine Oxidase Activity of Various Tissues In Dogs .. 31
Table 1.4 Xanthine Oxidase Activity in the Tissues of Various Species ... 32
Table 2.1 Measured and Actual Xanthine Oxidase Activities ... 78
Table 2.2 Intra-assay Variation Data for Specimens Containing High and Moderate Xanthine Oxidase Activity .. 80
Table 2.3 Inter-assay Variation Data for Specimens Containing High and Moderate Xanthine Oxidase Activity .. 80
Table 2.4 Mean Xanthine Oxidase Activity ± Standard Deviation After Storage at +4, -20 and -80°C for up to 90 Days .. 81
Table 2.5 Optimum pH for Xanthine Oxidase Activity in Various Tissues and in the Presence of Various Buffer Types .. 83
Table 3.1 Serum Xanthine Oxidase Activity in 39 Clinically Healthy Dogs ... 97
Table 3.2 Some Potential Factors Influencing Serum Enzyme Activities ... 103
Table 4.1 Pre-reperfusion and Post-reperfusion Serum Xanthine Oxidase Activity, Severity of Clinical Signs of Cardiovascular Compromise and Outcome in 30 Sick Dogs .. 119
List of Figures

Figure 1.1 The Haber Weiss Reaction .. 5
Figure 1.2 The Formation of Hydroxyl Radical by Fenton Chemistry 5
Figure 1.3 The Formation of Superoxide by NADPH Oxidase 7
Figure 1.4 The Production of Hypochlorous Acid by Myeloperoxidase 7
Figure 1.5 The Pathophysiology of Ischaemia-Reperfusion Injury 9
Figure 1.6 The Chain Reaction of Lipid Peroxidation by Oxygen Derived Free Radicals .. 16
Figure 1.7 The Relationship Between and Interconversion of Xanthine Dehydrogenase, Intermediate Xanthine Dehydrogenase/Oxidase and Xanthine Oxidase ... 26
Figure 1.8 Formation of Uric Acid from Hypoxanthine, Catalysed by the Xanthine Oxidase System .. 28
Figure 1.9 The Effect of Temperature of Reaction on Enzyme Activity 35
Figure 1.10 The Effect of Substrate Concentration on Reaction Velocity 36
Figure 1.11 Kinetics of Reactions Catalysed by Enzymes 37
Figure 2.1 Enzyme Kinetics of Bovine Milk Xanthine Oxidase in Canine Serum .. 76
Figure 2.2 The Change in Absorbance (Reaction Rate) at Varying Xanthine Oxidase Activities .. 77
Figure 2.3 The Effect of Varying Quantities of Canine Serum on the Reaction Rate (Change in Absorbance) 78
Figure 2.4 Reaction Rates, With or Without Oxonate 79
Figure 2.5 The Effect of Storage Temperature and Duration on the Activity of Bovine Milk Xanthine Oxidase Stored in Canine Serum 82
Figure 3.1 Distribution of Serum Xanthine Oxidase Activity in 39 Clinically Healthy Dogs .. 98
Figure 3.2 Logarithmic Transformation of the Reference Distribution of Serum Xanthine Oxidase Activity in 39 Clinically Healthy Dogs 98
Figure 3.3 Square Root Transformation of the Reference Distribution of Serum Xanthine Oxidase Activity in 39 Clinically Healthy Dogs 99
Figure 3.4 Serum Xanthine Oxidase Activity of 39 Clinically Healthy Dogs of Various Ages .. 100
Figure 3.5 Cumulative Percentile Plot of Xanthine Oxidase Activity 101