Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY ON THE BREEDING PERFORMANCE
OF ROMNEY AND BORDER LEICESTER CROSS ROMNEY
EWE LAMBS AFTER CIDR TREATMENT

A thesis presented in partial fulfilment of the
requirements for the degree of Master of Agricultural
Science in Animal Science at Massey University
Palmerston North
New Zealand

BAE SEOK CHUN
1987
ABSTRACT

The reproductive performance of 117 Border-Leicester X Romney (BLX) and 91 Romney ewe hoggets in 1984 and 108 BLX and 101 Romney in 1985, was studied after treatment with controlled internal drug releasers (CIDRs) containing progesterone or with polyurethane sponges containing medroxyprogesterone acetate (MAP). To induce and synchronise oestrus at the beginning of the breeding season, progestagens were administered for 11-12 days. The animals were joined with teaser rams or with entire rams and data collected on the occurrence and synchronisation of oestrus, conception and lambing performance.

In 1986, 36 lambs of each of the Romney or BLX genotypes were used in a study to determine the time of ovulation after treatment with CIDRs either with or without 200 i.u. PMSG injected at CIDR withdrawal. Laparoscopies were carried out one or more times at 54, 60, 66, 72 hours and one week after CIDR withdrawal to determine the occurrence of ovulation. The release of progesterone from the CIDR was monitored in blood samples from entire animals and from ovariectomised animals during treatment and after withdrawal of the CIDRs.

Following progestagen withdrawal, 69% and 42% of sponge-treated hoggets and 45% and 40% of CIDR-treated animals were in oestrus over 5 days in the two years, respectively. In 1986, following progestagen withdrawal, 61% and 83% of animals came into oestrus within 3 days in CIDR- and CIDR + PMSG-treated ewe lambs.

The mean time of ovulation was 67 h and 65 h in CIDR and CIDR + PMSG treated animals, respectively. The incidence of multiple ovulation was similar in CIDR- (15%) and Sponge-treated (20%) ewe lambs. Although the injection of a small amount of PMSG caused a higher incidence of multiple ovulation than in CIDR-treated ewe lambs, the difference was not significant. The conception rate was higher in animals treated in 1984 than in the next year (69% v 49%). Treatment
or breed differences in conception were not significant but in 1985 the
BLX animals had a reduced conception rate of only 38%; the Breed X
Year interaction was significant (P < 0.05). There were only a few
multiple births recorded and the gestation length was not affected by
treatment. Significant birth weight effects due to year and breed were
apparent, but only a difference due to year occurred in the weaning
weights. The fleece weights recorded at one year age were not
influenced by the treatments, but year effects were important.

Progesterone levels in blood plasma of ovariectomised ewe lambs
reached a maximum by 24 h after CIDR insertion, then declined gradually
and an abrupt fall resulted soon after CIDR withdrawal. In the entire
lambs with CIDRs the levels of progesterone remained high until
withdrawal and then fell to basal levels consistent with ovulation.
After this the levels rose and were similar to that in animals with a
corpus luteum of a natural oestrous cycle.

It was concluded that CIDR treatment can induce earlier breeding
among ewe lambs and that the induced ovulation resulted in a normal
corpus luteum. The pregnancy rate after CIDR treatment was influenced
by year effects and this was probably associated with differences in
liveweight among the ewe lambs.
ACKNOWLEDGEMENTS

I gratefully acknowledge the guidance and assistance of my supervisor Dr. M.F. McDonald during the experimental work and the preparation of this manuscript.

I am indebted to Mr. J.M. Rendel for advice and aid in the statistical analysis of the data and in computer operation.

Special thanks are due to Messrs M.G. Divehall, M.A. Wycherly, M.L. Carter and M.P. Dickson for their skilled technical assistance.

Grateful acknowledgement is made to Mr. P.M. Whitehead, Sheep Farm Supervisor and to W.S. Morris, and L. Williams for care of the animals. Acknowledgement is also made to Dr. K. Lapwood and Mr. J. Elgan for their advice and assistance in the progesterone assay work.

Grateful is extended to Dr. R.A.S. Welch of D.S.I.R. for helpful discussion on aspects of the treatment of sheep with CIDRs. Special thanks are due to my colleagues Miss. M. Datten, Miss. L. Anne McCleland, Mr. R.S. Rangel, Mr. A. Willis and P. Morgan with whom I had many rewarding discussions.

Also I am grateful to the postgraduates of the Animal Science Department for their friendship and hospitality during the period of my study.

Finally very special thanks are due to my parents for their support and encouragement throughout this study.
<table>
<thead>
<tr>
<th>TABLE</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Effect of breed, treatment and year on the incidence of ewe lambs oestrus before treatment period</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of breed, treatment and year on the incidence of ewe lambs oestrus during and after treatment</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of treatment and year on the interval between Sponge or CIDR removal and the onset of oestrus</td>
</tr>
<tr>
<td>4.4</td>
<td>Analysis of variance of factors influencing the interval of onset of oestrus</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of breed and treatment on the incidence of multiple ovulation</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of breed, year and treatment on conception rate in marked ewe lambs</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of breed, year and treatment on conception rate in the lambs joined with rams</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of breed, treatment and year on gestation length</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of breed, treatment and year on the day of birth in ewe lambs</td>
</tr>
<tr>
<td>4.10</td>
<td>Incidence of multiple birth in ewe lambs</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of breed, treatment and year on birth weight</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of breed, treatment and year on the percentage of lambs weaned per ewe lamb joined</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of breed, treatment and year on hogget fleece weight</td>
</tr>
<tr>
<td>4.14</td>
<td>Plasma progesterone level during and after CIDR treatment in entire and ovariectomised (OXV) ewe lambs</td>
</tr>
<tr>
<td>4.15</td>
<td>Progesterone levels in entire ewe lambs treated with CIDRs</td>
</tr>
<tr>
<td>4.16</td>
<td>Progesterone levels in entire ewe lambs after treatment with CIDRs</td>
</tr>
<tr>
<td>4.17</td>
<td>Proportion of ewe lambs which ovulated by various times after CIDR withdrawal</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect of breed of hogget, treatment and laparoscopy group on the incidence of ovulation by 1 week after CIDR withdrawal</td>
</tr>
<tr>
<td>4.19</td>
<td>Distribution of hoggets in which twin ovulations occurred after CIDR withdrawal</td>
</tr>
<tr>
<td>4.20</td>
<td>Distribution of animals ovulating by various hours after CIDR withdrawal</td>
</tr>
<tr>
<td>4.21</td>
<td>Effect of breed and treatment on the mean time of ovulation</td>
</tr>
</tbody>
</table>
after withdrawal of CIDR

4.22 Comparison of time of ovulation (h after CIDR withdrawal) between groups of hoggets

4.23 Effect of breed, treatment and group on the incidence of oestrus within 7 days of CIDR withdrawal

4.24 Effect of breed, treatment and group on the occurrence of oestrus at the expected second oestrus after CIDR withdrawal

4.25 Effect of breed and treatment on the interval between CIDR removal and the onset of the first oestrus

4.26 Breed and treatment effects on the synchronization of oestrus one cycle after CIDR withdrawal

4.27 Effect of breed, treatment and group on cycle length
LIST OF FIGURES

FIGURE

4.1 Distribution of the onset of oestrus after progestagen withdrawal

4.2a Effect of breed on the distribution of onset of oestrus after progestagen withdrawal -1984

4.2b Effect of breed on the distribution of onset of oestrus after progestagen withdrawal -1985

4.3a Distribution of day of birth -Mating group

4.3b Distribution of day of birth -Sponge group

4.3c Distribution of day of birth -CIDR group

4.4 Mean plasma progesterone levels during and after CIDR treatment in ewe lambs (Exp. 1)

4.5 Mean plasma progesterone levels during CIDR treatment in ewe lambs (Exp. 2)

4.6 Mean plasma progesterone levels after CIDR treatment in CIDR only, CIDR + PMSG and control groups (Exp. 2)

4.7a Distribution of onset of the first oestrus (relative to treatment)

4.7b Distribution of onset of the first oestrus (relative to treatment and breed)

4.8a Distribution of onset of the second oestrus (relative to treatment)

4.8b Distribution of onset of the second oestrus (relative to treatment and breed)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER ONE

INTRODUCTION ... 1

CHAPTER TWO

REVIEW OF LITERATURE ... 3

2.1. ASPECTS OF PUBERTY ... 3
 2.1.1. Definition ... 3
 2.1.2. Endocrinology of puberty .. 3
 A) During foetal development 3
 B) During early postnatal period 4
 C) During pubertal period ... 6

2.2. FACTORS AFFECTING FIRST OESTRUS 7
 2.2.1. Breed ... 7
 2.2.2. Age and Body weight .. 8
 2.2.3. Nutrition ... 8
 2.2.4. Photoperiod ... 9
 2.2.5. Exteroceptive factors ... 10
 2.2.6. Temperature .. 11
 2.2.7. Exogenous hormones .. 11

2.3. ARTIFICIAL CONTROL OF OESTRUS AND OVULATION 12
 2.3.1. Progesterone and its analogues 12
 2.3.2. Melatonin ... 13
 2.3.3. Steroid immunization .. 14

2.4. TIME OF OVULATION .. 14
 2.4.1. Factors affecting time of ovulation 15
2.4.1.1. Season .. 15
2.4.1.2. Age ... 15
2.4.1.3. Hormonal treatment effect 16
2.4.1.4. Ram effect 16
2.4.1.5. Stress 16

2.5. PROGESTERONE IN PERIPHERAL BLOOD 17
2.5.1. Prepubertal period 17
2.5.2. Oestrous cycle 17

2.6. REPRODUCTIVE PERFORMANCE 18
2.6.1. Oestrus and ovulation 18
2.6.2. Conception 19
2.6.3. Embryo mortality 20
2.6.4. Lamb mortality 21

PURPOSE AND SCOPE OF INVESTIGATION 22

CHAPTER THREE
MATERIALS AND METHODS 23

3.1. ANIMALS .. 23

3.2. EXPERIMENT 1: INDUCTION OF BREEDING 23
3.2.1. Mating records 23
3.2.2. Synchronization of oestrus 26
3.2.3. Blood sampling and progesterone analysis 26
3.2.4. Ovarian activity 27
3.2.5. Fleece weight 27
3.2.6. Lambing management 28
3.2.7. Weaning 28

3.3. EXPERIMENT 2: TIME OF OVULATION 29

3.4. ANALYSIS OF DATA 30

CHAPTER FOUR
RESULTS ... 31
4.1. EWE LAMB PERFORMANCE...31
 4.1.1. Incidence of oestrus...31
 A) Before treatment...31
 B) After treatment...31
 4.1.2. Synchronization of oestrus..................................34
 4.1.3. Incidence of multiple ovulation............................34
 4.1.4. Pregnancy...41
 A) Conception rate...41
 B) Gestation length...45
 C) Day of birth..45
 D) Incidence of multiple birth...............................46
 E) Birth weight...46
 4.1.5. Lambs weaned...54
 4.1.6. Fleece production...54

4.2. PLASMA PROGESTERONE LEVELS IN EWE LAMBS TREATED WITH CIDs...............................57
 4.2.1. Experiment 1..57
 4.2.2. Experiment 2..60
 A) Progesterone levels during CIDR treatment..............60
 B) Progesterone levels after CIDR treatment..............60

4.3. OVULATORY ACTIVITY AFTER CIDR WITHDRAWAL......................65
 4.3.1. Incidence of ovulation......................................65
 4.3.2. Time of ovulation..69
 4.3.3. Incidence of oestrus..73
 A) Expected "first" oestrus..................................73
 B) Expected "second" oestrus................................73
 4.3.4. Synchronization of oestrus..................................76
 A) Expected "first" oestrus..................................76
 B) Expected "second" oestrus................................76
 4.3.5. Cycle length..83

4.4. APPLICATION AND RETENTION OF CIDRs AND SPONGES.................85
CHAPTER FIVE

DISCUSSION AND CONCLUSION.................................86

5.1. REPRODUCTIVE PERFORMANCE AFTER CIDR TREATMENT..........86
 5.1.1. Incidence of oestrus..86
 5.1.2. Synchronization of oestrus.................................87
 5.1.3. Ovarian activity...89
 5.1.4. Pregnancy..91
 5.1.5. Lambing performance......................................92
 5.1.6. Fleece weight..93

5.2. UPTAKE OF PROGESTERONE FROM CIDR..........................95

5.3. PROGESTERONE PRODUCTION AFTER INDUCED OVULATION.........96

5.4. CONCLUSION..97

REFERENCES..98